
NEURAL CORRELATES OF GRAMMAR LEARNING 1 

Oscillatory and aperiodic neural activity 

jointly predict grammar learning 
 

Zachariah R. Cross1,2*, Andrew W. Corcoran1,3, Matthias Schlesewsky1,2, Mark. J. Kohler1,4, Ina 

Bornkessel-Schlesewsky1,4 

 

1Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, Australia 
2School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, Australia. 
3Cognition and Philosophy Laboratory, Monash University, Melbourne, Australia. 
4Adelaide Brain & Cognitive Development Laboratory, Adelaide University, Adelaide, Australia. 

 

 

*Corresponding author: Tel. +61 8 8302 4375, e-mail: Zachariah.Cross@mymail.unisa.edu.au 

 

 

 

Manuscript details 

Number of pages:   31 

Number of figures:   7 

Abstract word count:   250 

Introduction word count: 1,309 

Discussion word count:   2,372 

Data available at:   TBC 

Code available at:  TBC 

  

Funding: Preparation of this work was supported by Australian Commonwealth Government funding 

awarded to ZRC under the Research Training Program (RTP; number 212190). IB-S is supported by 

an Australian Research Council Future Fellowship (FT160100437). AWC is supported by an Australian 

Government RTP scholarship. 

Acknowledgements: We thank Isabella Sharrad, Lena Zou-Williams, Erica Wilkinson, Nicole June 

and Angela Osborn for help with data collection. Thank you also to the participants. 

Conflict of interest 

The authors declare no competing financial interests. 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2020. ; https://doi.org/10.1101/2020.03.10.984971doi: bioRxiv preprint 

mailto:Zachariah.Cross@mymail.unisa.edu.au
https://doi.org/10.1101/2020.03.10.984971
http://creativecommons.org/licenses/by-nd/4.0/


NEURAL CORRELATES OF GRAMMAR LEARNING 2 

ABSTRACT 

Memory formation involves the synchronous firing of neurons in task-relevant networks, with 

recent models postulating that a decrease in low frequency oscillatory activity underlies 

successful memory encoding and retrieval. To date, this relationship has predominantly been 

investigated using objects (e.g., faces, natural scenes); however, considerably less is known 

about the oscillatory correlates of complex rule learning (e.g., language acquisition). Further, 

recent work has shown that aperiodic (non-oscillatory) 1/ƒ activity is functionally and 

behaviourally relevant, yet its interaction with oscillatory activity during complex rule learning 

remains virtually unknown. Using spectral decomposition and power-law exponent estimation 

of human EEG data, we show for the first time that 1/ƒ and oscillatory activity jointly influence 

the learning of different word order rules of a miniature language system. Fixed word order 

rules were associated with an increased power-law exponent (i.e. steeper 1/ƒ slope) compared 

to flexible word order rules. We also show that stronger anterior beta synchronisation predicts 

fixed word order rule learning and subsequent behavioural performance, while stronger 

theta/alpha synchronisation is associated with the learning of flexible word order rules. These 

results also revealed nonlinear differences between word order rules as a function of time and 

sensor space. Moreover, we demonstrated that inter-individual variations in spectral power 

across the learning task interacted with aperiodic activity to influence subsequent behavioural 

performance. Together, these results suggest that 1/ƒ activity plays an important role in higher-

order cognition, including language processing, and that grammar learning is modulated by 

different word order permutations, which manifest in distinct oscillatory profiles. 
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1. INTRODUCTION 

Understanding the neural mechanisms underlying the encoding and retrieval of new 

information is a fundamental endeavour in cognitive neuroscience. Memory supports many 

essential cognitive functions, from learning the distinction between semantic categories (e.g., 

animal vs. human) to complex (motor) sequences, such as learning how to drive a car or speak 

a new language. However, while research has revealed a neocortical-hippocampal network 

subserving the encoding and retrieval of memory (Greenough, 1984; McClelland et al., 1995; 

Norman & O’Reilly, 2003), considerably less is known about the temporal mechanisms 

underlying memory formation, such as electrophysiological patterns of neural synchronisation 

(i.e., excitation) and desynchronization (i.e., inhibition; Fellner et al., 2019; Hanslmayr & 

Staudigl, 2014; Hanslmayr et al., 2012). 

While a broad literature has related neural (de)synchronisation with memory encoding 

and retrieval of image and word stimuli (Parish, Hanslmayr, & Bowman, 2018), considerably 

less is known about oscillatory activity during the encoding and retrieval of complex 

sequences, such as in language (cf. de Diego-Balaguer, Fuentemilla, & Rodriguez-Fornells, 

2011; Kepinska, Pereda, Caspers, & Schiller, 2017). Further, the few studies examining 

sequence and artificial language learning report mixed findings relative to (episodic) word and 

image paradigms: while alpha/beta desynchronisation predicts encoding of words and images 

(Griffiths, et al., 2019), alpha/beta and theta synchronisation is associated with sequence 

(Crivelli-Decker et al., 2018) and language learning (e.g., Kepinska et al., 2017). This apparent 

inconsistency might be accounted for by stimulus heterogeneity; however, another possible 

source of divergence may lie in the mixture of oscillatory power with aperiodic activity 

(Ouyang et al., 2020; Wen & Liu, 2016), which to the best of our knowledge has not been 

addressed in previous studies involving complex rule learning paradigms. Here, we aim to 

better characterise the (de)synchronisation patterns underlying the encoding and retrieval of 

language-related rules. We also investigate whether task-related aperiodic activity interacts 

with oscillatory power in individualised frequency bands to influence language learning. 

1.1. Oscillatory correlates of artificial language learning 

Previous research examining spectral dynamics during (artificial) language learning has 

revealed that increased alpha/beta power (i.e., synchronisation) predicts sensitivity to 

grammatical violations (Kepinska et al., 2017), while increased gamma phase coherence 

between frontal, temporal and parietal cortices is associated with successful learning (De 

Diego-Balaguer et al., 2011). An increase in theta synchronisation is also associated with 

poorer learning of auditory rules (De Diego-Balaguer et al., 2011).During visual grammar 

learning, theta synchronisation increases early in the task and declines after prolonged exposure 

(Kepinska et al., 2017).While these findings are inconsistent with images and word stimuli, 

studies using complex sequence processing have reported linear increases in beta power for 

predicable sequences, which coincide with increased theta activity in task-related cortical 

regions (Crivelli-Decker et al., 2018; Wang et al., 2019), and occipital alpha power (Wang et 

al., 2019). These data are also in line with the supposed role of active, top-down mechanisms 

in the processing of incoming sensory input, akin to a predictive-coding account of brain 

function (Friston, 2010; Kikuchi et al., 2018; Rao & Ballard, 1999). Under this framework, 
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higher cortical areas send predictions to downstream regions via alpha/beta oscillations 

(Friston, 2019; Friston et al., 2020; Kikuchi, et al., 2018), which are compared to error signals 

passed from lower levels of the hierarchy. From this perspective, greater alpha/beta 

synchronization during grammar learning may reflect the encoding of complex structured 

sequences, while theta synchronization may facilitate the binding of individual elements based 

on sequence rules; however, this hypothesis has not been tested in the context of artificial 

language learning. 

1.2. Aperiodic activity as a functionally relevant source of neural activity 

In addition to oscillatory activity, the brain exhibits a 1/ƒ-like power distribution, which 

is often removed from the signal to isolate transient task-related oscillations (Donoghue et al., 

2020; Haller et al., 2018; He, 2014; Lendner et al., 2019). However, aperiodic activity has 

recently been implicated in a variety of higher-order cognitive computations (Fellner et al., 

2019), partially explaining individual differences in theta activity during memory encoding and 

recall performance (Sheehan et al., 2018) and processing speed over and above that of alpha 

activity (Ouyang et al., 2020). Work on prediction during language has also shown that higher 

aperiodic, but not oscillatory activity influences the N400 event-related potential and 

performance accuracy (Dave et al., 2018), attesting to the utility of examining global power 

spectrum changes alongside narrow-band responses to predict behavioural outcomes. 

The slope (or power-law exponent) of the 1/f power distribution has also been shown 

to vary parametrically by task difficulty: it is at its steepest for easy tasks and becomes 

progressively shallower with increasing task difficulty (He et al., 2010). In this way, aperiodic 

activity may serve as a proxy for inter-individual differences in neural “efficiency” during 

online information processing (He, 2014). For example, in the context of artificial language 

learning, a shallower 1/ƒ slope during grammar acquisition may be associated with higher 

behavioural performance, explaining behavioural gains over and above that of oscillatory 

activity – an empirically testable prediction. 

Taken together, understanding aperiodic brain activity seems critical if a full 

understanding of the neurobiology of cognition is to be achieved (He et al., 2010). Further, 

oscillatory and aperiodic activity appear to play separable functional roles in higher-order 

cognition, such as memory formation (Sheehan et al., 2018) and linguistic prediction (Dave et 

al., 2018). However, it is currently unknown whether oscillatory and aperiodic activity interact 

during the initial stages of complex sequence learning, and whether any such interaction 

influences behavioural outcomes. Clarifying the (separable) roles of oscillatory and aperiodic 

components of the electroencephalogram (EEG) power spectrum may also bridge the diverging 

results reported in studies utilising image and word stimuli and artificial grammar paradigms, 

lending support to the idea that neuronal oscillations differentially contribute to the formation 

of memory of varying complexity. 

1.3. The present study 

To better characterise the neural mechanisms underlying complex rule learning, we 

examined delta, theta, alpha and beta power during an artificial language learning task. We also 

studied the interaction between oscillatory and aperiodic activity in order to characterise how 
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patterns of (de)synchronisation and aperiodic fluctuation influence the generalisation of 

different word order rules characteristic of many natural languages. We used the artificial 

miniature language Mini Pinyin (Cross, Zou-Williams, Wilkinson, Schlesewsky, & 

Bornkessel-Schlesewsky, 2020a), which contains two main sentence constructions, namely 

fixed and flexible word orders. The key distinction between these word orders relates to the 

cues used for interpretation. Fixed word orders rely heavily on linear order-based processing 

(e.g., the linear position of each element in the sentence), and thus likely relies on predictive 

sequence processing for accurate interpretation. Flexible word orders rely more heavily on 

sequence-independent cues (e.g., animacy) in order to combine non-adjacent elements in a 

sentence. Importantly, the distinction between fixed and flexible word orders not only mirrors 

differences between natural languages (Bates et al., 2001; Bornkessel-Schlesewsky et al., 2011; 

MacWhinney et al., 1984; Muralikrishnan et al., 2015), but also basic and dissociable 

components of the neurobiology of human language (e.g., Bornkessel-Schlesewsky et al., 

2015), including the capability of the brain to generalise the meaning of ordinal sequences (the 

when in fixed word order rules) and establishing semantic schemas of unordered items (the 

what in flexible word order rules; Cross et al., 2018a; Friston & Buzsaki, 2016). 

We implemented generalised additive and linear mixed-effects analyses to model 

dynamic changes in oscillatory and aperiodic activity during the learning of fixed and flexible 

word order rules, and subsequent performance on a judgement task. We hypothesised that: (1) 

alpha/beta synchronisation would increase across the learning task, with stronger 

synchronisation predicting improved behavioural performance; (2) higher theta 

synchronisation over the duration of the learning task would be associated with improved 

behavioural performance on the judgement task, and; (3) variations in oscillatory activity 

would differentially predict sensitivity to fixed and flexible word orders. We also explored 

aperiodic effects on learning-related oscillatory dynamics, given that recent studies suggest 

aperiodic activity plays a functional role in memory formation and language processing. 

2. METHOD 

2.1. Participants 

Data from 34 right-handed healthy, monolingual, native English-speakers (mean age = 

25.3, SD = 7.13; 17 female) were analysed from a study examining the role of sleep in language 

learning (for a detailed description of sample demographics, see Cross et al., 2020b). Ethics 

approval was granted by the University of South Australia’s Human Research Ethics 

committee (I.D: 0000032556). 

2.2. Stimuli and design 

Stimuli were based on the modified miniature language Mini Pinyin (for a detailed 

description of the language, see Cross et al., 2020a; see also Cross et al., 2020b), which contains 

grammatical rules present in a number of natural languages (see Figure 1A and 1B for example 

sentence constructions and vocabulary items). Briefly, each sentence in Mini Pinyin contains 

two noun phrases and a verb phrase, while each noun is associated with a different classifier: 
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human nouns are preceded by ge, while animals, and small and large objects are preceded by 

zhi, xi and da, respectively. 

Mini Pinyin includes two main sentence types based on whether the sentence contains 

the coverb ba. When ba is present, the sentence contains a fixed word order, in that the first 

noun phrase is invariably the Actor (the active, controlling participant) and the sentence must 

be verb-final. From this perspective, accurate sentence processing is dependent on the linear 

position of the words. When ba is not present, the sentence contains a flexible word order, in 

that the first noun phrase can either be the Actor or the Undergoer (the affected participant); 

however, the sentence must be verb-medial. As such, accurate sentence interpretation is based 

more heavily on the animacy status of the noun phrases rather than word order. 

The experiment contained three phases, involving a vocabulary test, a learning phase, 

and a grammaticality judgement task. Approximately 7 days before the sentence learning 

phase, participants received a paired picture-word vocabulary booklet containing the 25 nouns. 

Participants were required to learn the 25 nouns to ensure that they had a basic vocabulary. 

Prior to the learning and judgement tasks, participants completed the vocabulary test on a 

desktop computer by typing in translations of the nouns from Mini Pinyin to English. Only 

prospective participants who attained a score > 90% were eligible to move onto the learning 

and judgement task phases of the experiment. 

 Three grammatical sentence structures were included in the learning phase. While no 

explicit instruction was given to participants, a picture was shown prior to each sentence 

illustrating events occurring between two entities, which was then described in the 

subsequently presented sentence. The learning task contained four blocks with 96 grammatical 

picture-sentence pairs that were presented via rapid visual serial presentation (RSVP). A 

further 156 novel sentences (50% grammatical, 50% ungrammatical) were presented during 

the judgement task which occurred immediately after the learning phase. The ungrammatical 

sentences violated either the position of the Actor or verb in fixed word order sentences (e.g., 

Actor-ba-Verb-Undergoer [AbaVU] instead of AbaUV) or the position of the verb in flexible 

word order sentences (e.g., AUV instead of AVU; see Figure 1A for an illustration and full list 

of ungrammatical constructions). 

During the learning phase, each picture was presented for 4000ms, while each 

corresponding sentence was presented on a word-by-word basis, with each word presented for 

700ms with an inter-stimulus interval (ISI) of 200ms. Across four blocks, each grammatical 

construction was presented 32 times, with stimuli pseudo-randomised, such that no sentence 

of the same construction followed each other. During the judgement task, novel grammatical 

and ungrammatical sentences were presented word-by-word with a presentation time of 600ms 

and an ISI of 200ms. Participants responded via a button press based on whether the sentence 

followed the rules of Mini Pinyin. The assignment of grammatical/ungrammatical response 

buttons was counterbalanced across participants. Response time windows were presented for a 

maximum of 4000ms. Each participant received feedback on whether their response was 

correct or incorrect (see Figure 1C and 1D for a schematic of the learning and judgement tasks, 
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respectively). Both the learning and judgement tasks were created in OpenSesame (Mathot et 

al., 2012) and performed on a desktop computer. 

Figure 1: Summary of Mini Pinyin. (A) Summary of the grammatical (left) and ungrammatical (right) sentence 

constructions. (B) A portion of linguistic elements used in the sentence examples provided in (A). 

2.3. EEG recording and pre-processing 

The EEG was recorded during the learning task using a 32-channel BrainCap with 

sintered Ag/AgCI electrodes (Brain Products, GmbH, Gilching, Germany) mounted according 

to the extended International 10-20 system. The online reference was located at FCz. The 

ground electrode was located at AFz. The electrooculogram (EOG) was recorded via electrodes 
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located at the outer canthus of each eye and above and below participants’ left eye. The EEG 

was amplified using a BrainAmp DC amplifier (Brain Products GmbH, Gilching, Germany) 

using an initial band-pass filter of DC – 250 Hz with a sampling rate of 1000 Hz. Electrode 

impedances were kept below 10kΩ. EEG was also recorded during 2 minutes of eyes-open and 

2 minutes of eyes-closed resting state periods immediately before the learning task and after 

the judgement task. 

EEG analysis was performed in MATLAB 2017b (The MathWorks, Natick, USA) 

using custom scripts in conjunction with the Fieldtrip toolbox (Oostenveld et al., 2011). EEG 

data were re-referenced offline to the average of both mastoids and band-pass filtered from 1 

– 40 Hz. Data were then epoched from -200ms to 13s relative to the onset of each picture-

sentence pair for both fixed and flexible sentences and corrected for ocular artefacts using 

Infomax Independent Component Analysis (Bell & Sejnowski, 1995; implemented in 

runica.m). Components demonstrating clear EOG artefacts were removed and electrodes 

showing strong impedance were interpolated with surrounding electrodes. 

2.4. EEG data analysis 

The aim of the analysis was to characterise the oscillatory and aperiodic mechanisms 

underlying the initial encoding of complex grammatical rules. To this end, we computed five 

spectral features from the EEG during the learning phase: mean power density within the delta, 

theta, alpha, and beta bands, and the slope of the 1/ƒ spectral distribution (i.e. power-law 

exponent). These metrics were used to predict whether trial-level variation during the learning 

task predicted behavioural performance on the judgement task. We also tested whether 

interactions between oscillatory and aperiodic activity afford unique information predicting 

behavioural performance. 

2.4.1. Spectral decomposition and power-law exponent χ estimation 

The power-law scaling exponent χ, which summarises the rate of decay of the power 

spectrum in double-logarithmic co-ordinates, was estimated using the Irregular-Resampling 

Auto-Spectral Analysis toolbox (IRASA v1.0; Wen & Liu, 2015). Briefly, this technique seeks 

to separate oscillatory from aperiodic (random fractal) components by iteratively resampling 

the power spectrum across a range of non-integer factors h and their reciprocals 1/h. This 

procedure shifts any narrowband components away from their original location along the 

frequency spectrum while leaving the distribution of the fractal component intact. The median 

of the resampled spectral estimates is then calculated in order to strip the spectrum of any 

redistributed narrowband peaks. For a more detailed treatment of the IRASA method, see Wen 

and Liu (2016). 

Channel data from the 7-13 s time window of each trial epoch (i.e., the trial period 

corresponding to word presentation) were divided into ten 2 s segments using a sliding window 

(400 ms step width) and passed to amri_sig_fractal.m. They were Hanning-windowed, 

detrended, and anti-alias filtered per default settings, with the output frequency range set to 1 

– 40 Hz. Following Muthukumaraswamy and Liley (2018), an extended set of resampling 
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factors (h = 1.1 to 2.9 in steps of 0.05, h ≠ 2) was used to reduce interference from fractal-

oscillatory interactions.  

Once the fractal component had been recovered from the power spectrum, the power-

law exponent χ was estimated using amri_sig_plawfit.m. This function fits a linear regression 

to a region of the double-log transformed fractal spectrum (here, 1 – 35 Hz) after rescaling the 

frequency spectrum to achieve equally-spaced intervals in log-space. The negative of the 

regression slope coefficient was taken as the χ exponent. 

2.4.2. Spectral band power estimation 

In order to quantify narrowband changes in spectral power independent of underlying 

changes in aperiodic activity, power estimates were derived from spectra following fractal 

component subtraction. This residual, ‘oscillatory spectrum’ was averaged across epoch 

segments, half-wave rectified (negative values set to zero), and divided into the four frequency 

bands of interest. Notably, the limits of each frequency band were adapted for each participant 

on the basis of their resting-state EEG. Specifically, band limits for each of the four frequency 

bands of interest were calculated according to the harmonic frequency architecture proposed 

by Klimesch (2012; 2013), in which the centre frequency of each successive band constitutes 

a harmonic series scaled in relation to individual alpha frequency (IAF). To avoid the potential 

overlap of neighbouring frequency bands, we determined lower and upper frequency bounds 

using the following formulae:  

f1 = fc – fc /4, 

f2 = fc + fc /2, 

where fc is the centre frequency, f1 the lower bound, and f2 the higher bound of a given 

frequency band. 

IAF estimates used to derive fc were obtained from a set of parieto-occipital electrodes 

(P3/P4/O1/O2/P7/P8/Pz/Iz) using the restingIAF package (v1.0.3; Corcoran et al., 2019; see 

also Cross et al. 2018b). This method applies a Savitzky-Golay filter (frame width = 11 bins, 

polynomial order = 5) to smooth and differentiate the power spectrum prior to estimating a 

weighted average of the spectral peak frequencies identified across channels within a specified 

frequency range (here, 7—14 Hz). A minimum of 3 channel estimates was required to return 

an IAF for a given recording. Estimates derived from pre- and post-session eyes-closed resting 

states were then averaged for each participant using meanIAF.m. For further details on this 

algorithm, see Corcoran and colleagues (2018). 

 Having determined the individualised bounds of the delta, theta, alpha, and beta bands 

according to the IAF, power within each of these bands was quantified using the mean power 

density metric proposed by Westfall (1990): 

𝑃𝑘 =  
1

1 + 𝑘𝑓2
− 𝑘𝑓1

 ∑ 𝑝(𝑓𝑖) 

𝑘𝑓2

𝑖=𝑘𝑓1

, 
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where p(fi) is the power estimate of the ith frequency bin, and f1 and f2 index the lower and 

upper bounds of the individualised frequency band k, respectively. An advantage of this 

approach is that power estimates are scaled by spectral range, thus controlling for differing 

frequency bandwidths both within and between individuals. Note that this formula was applied 

to power estimates that had been normalised to the mean of the oscillatory spectrum. 

2.5. Statistical analysis 

We used R v.3.6.2 (R Core Team, 2019) and the packages lme4 v.1.1.21 (Bates et al., 

2015), lmerTest v.3.0.1 (Kuznetsova et al., 2017), effects v.4.0.3 (Fox et al., 2019), car v.3.0.2 

(Fox et al., 2011), tidyverse v.1.3.0 (Wickham et al., 2019), lattice v.0.20-38 (Sarkar, 2008), 

itsadug v.2.3 (van Rij et al., 2016), mgcv v.1.8-31 (Wood, 2006), mgcViz v.0.1.4 (Fasiolo et 

al., 2019) and rgl v.0.1.3 (Nenadic & Greenacre, 2007). Raincloud plots were produced to 

visualise behavioural data using the code provided by (Allen et al., 2019). For linear models, 

contrasts for categorical variables were sum-to-zero contrast coded, with coefficients reflecting 

differences to the grand mean (Schad et al., 2020). 

2.5.1. Generalised additive mixed models (GAMMs) 

Generalized additive models (GAMs) are a nonparametric extension of the standard 

linear regression model that substitute a linear predictor variable x with a smooth function f(x) 

(Hastie & Tibshirani, 1987, 1990; Wood, 2017). Generalized additive mixed models (GAMMs; 

Lin & Zhang, 1999) constitute a further extension that incorporates random effects components 

within the GAM framework (Pedersen et al., 2019; Wood, 2013). Together, these innovations 

offer an elegant solution to the problem of autocorrelation amongst residuals induced by (1) 

attempting to fit linear models to non-linear relationships, and (2) non-independence (or 

nesting) of observations (e.g. repeated measures within subjects or items; (Baayen et al., 2008). 

Here, GAMMs were constructed to investigate how the power-law exponent χ, and the 

mean power density P for each kth frequency band delta, theta, alpha, and beta, fluctuate over 

(experimental) time and (sensor) space during artificial grammar learning. Trial-level χ and Pk 

estimates were modelled as a function of experimental time (trial number), sensor space (2D 

Cartesian co-ordinates), and sentence type (Fixed vs. Flexible). Random factor smooth 

interactions were included to account for individual differences in the functional relationship 

between spectral features and time (see Baayen et al., 2017, for a similar approach). Each 

GAMM took the following general form: 

 𝑔(𝔼(𝑌𝑖)) =  𝛽0 + 𝛽1𝑡𝑦𝑝𝑒𝑖 + 𝑓(𝑡𝑟𝑖𝑎𝑙𝑖, 𝑡𝑜𝑝𝑜. 𝑥𝑖 , 𝑡𝑜𝑝𝑜. 𝑦𝑖, by = 𝑡𝑦𝑝𝑒𝑖) + 

𝑓𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖
(𝑡𝑟𝑖𝑎𝑙𝑖) + 𝜖,    𝜖𝑖 ~ (0, Λσ2) , 

where 𝔼(𝑌𝑡) is the expected value of the ith observation of spectral feature Y, g is the link 

function, β0 is the model intercept, β1type is the main effect of sentence type, f( . , by = type) is 

the tensor product interaction between predictors for each level of the Type factor, fsubject is the 

by-subject factor smooth on Trial, and 𝚲 is a correlation matrix modelling the autocorrelation 

of residuals ε. Note that marginal smooths for topographic x and y co-ordinates were treated as 

isotropic (i.e. assumed to share a common scale). 
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GAMMs were estimated using the bam() function of the R package mgcv (v.1.8-31; 

Wood, 2011). Models were fit using the Fast REML method. Since power estimates were 

bounded at 0 and showed heavy positive-skewness, all power models were initially fit with a 

log-linked Tweedie distribution (Wood, Pya, & Säfken, 2016). Model residuals were then 

evaluated for evidence of additional nonlinearity/autocorrelation structure, and re-fit with an 

increased basis dimension/first-order autoregressive process (AR(1)) as required.1  

Each finalised model was fit with tensor product interaction smooths in order to enable 

ANOVA-decomposition of main effect and interaction components (Wood, Scheipl, & 

Faraway, 2013). All tensor product smooths were fit using low rank thin plate regression 

splines as their basis function (Wood, 2003, 2017). Factor smooths were fit with a first-

derivative penalty in order to shrink subject-level smooths towards the population-level. An 

additional shrinkage penalty was imposed on the smoothing penalty null space to enable 

automated model reduction (see Marra & Wood, 2011). As Type was entered as an ordered 

factor with Fixed assigned as the reference level, model terms involving a Sentence Type 

interaction assess the difference between Fixed and Flexible condition splines (see van Rij et 

al., 2016). 

2.5.2  Linear mixed-effects models 

Linear mixed effects models (LMM) are extensions of the traditional linear model, but 

include a combination of fixed and random effects as predictor variables (Harrison et al., 2018). 

The inclusion of random effects structures (e.g., by-participant and by-item) enable the 

modelling of inter- and intra-individual variance, particularly for subjects, items and time in 

repeated-measures designs (Meteyard & Davies, 2020). Here, fixed effects included Delta, 

Theta, Alpha and Beta power, Sentence Type (Fixed, Flexible), χ-exponent, topographical 

factors Laterality and Sagittality and their interaction. Subject-level factor smooths from 

corresponding GAMMs were also included as a fixed effect in the LMM to investigate whether 

individual differences in spectral feature dynamics over the duration of the learning task predict 

performance for Fixed and Flexible sentences during the judgement task. Proportion correct on 

the judgement task was specified as the dependent variable, while intercepts were grouped by 

participant. More complex random effect structures involving random slopes by participant did 

not converge. Type II Wald χ2-tests were used to provide p-value estimates, while an 83% 

confidence interval (CI) threshold was adopted, which corresponds to the 5% significance level 

with non-overlapping estimates (Austin & Hux, 2002; MacGregor-Fors & Payton, 2013). 

3. RESULTS 

3.1. Task performance 

The results on the judgement task are visualised in Figure 2 using raincloud plots (Allen 

et al., 2019). Participants performed moderately on the judgement task, with a mean accuracy 

of 62.28% (range: 8.33 – 100%) and mean reaction time of 878.08 ms (range: 254.75 – 2076.83 

ms). Specifically, there is clearly a high degree of inter-individual variability across both fixed 

and flexible sentences; however, fixed grammatical sentences had a higher degree of accuracy 

                                                           

1 Note that inclusion of the AR(1) model required the assumption of Gaussian-distributed random errors. 
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and faster responses overall. For a detailed report and interpretation of these behavioural data, 

see Cross et al. (2020b). 

Figure 2: Behavioural responses during the sentence judgement task. (A) Mean proportion of correct responses 

(x-axis) for Grammatical (G) and Ungrammatical (U) Fixed (left) and Flexible (right) sentence types. (B) Mean 

reaction time (ms; x-axis) for Grammatical (G) and Ungrammatical (U) Fixed (left) and Flexible (right) sentence 

types. Individual data points represent the mean for each participant. 

3.2. Neurophysiological results 

 

3.2.1. Aperiodic and oscillatory changes across time and space during language learning 

Here, we examine how aperiodic and oscillatory activity changes across the learning 

task (for full model summaries, see the supplementary material). Average change in activity 

across learning task trials is illustrated in Figure 3.  

The χ-exponent summarising the slope of the aperiodic spectral component was on 

average 0.01 n.u. lower (i.e., shallower) in the Flexible compared to Fixed word order condition 

(se = 0.002, t = -4.82, p < .001). The χ-exponent also showed significant nonlinear differences 

between Fixed and Flexible word order rules over time and space. The mean χ-exponent 

decreased almost linearly for the first third of Fixed rule trials, increased slightly over the 

middle third, and declined more steeply over the final third of trials (edf = 2.803, F = 3.18, p < 

.001). A similar qualitative pattern was observed during Flexible rule learning; however, 

changes in slope were more pronounced, differing significantly from the Fixed condition (edf 

= 3.512, F = 6.62, p < .001). These effects were further modulated by topography, with the χ-

exponent higher over centro-posterior regions for early Fixed trials (edf = 3.041, F = 1.49, p < 

.001), becoming more laterally pronounced during later trials (edf = 8.532, F = 2.11, p < .001). 

Time by laterality effects were enhanced during Flexible trials (edf = 2.466, F = 1.05, p < .001), 

while posterior sensor activity showed a U-shaped relative difference relative to Fixed trials 

(edf = 2.029, F =1.64, p <.001).  
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Mean delta power density was on average 0.03 n.u. higher during Flexible word order 

processing compared to Fixed word order processing during the learning task (se = 0.006, t = 

4.88, p < .001). Mean power density also showed significant nonlinear differences between 

sentence types as a function of trial time and sensor space. While mean delta power tended to 

decline almost linearly during Fixed trials (edf = 1.995, F = 2.08, p < .001), a more complex 

pattern was evident during Flexible trials (edf = 3.731, F = 11.44, p < .001). These dynamics 

were further modulated by topography, with mean delta power density lower over lateral 

regions at the beginning of the session, but higher towards the end of the session, for Flexible 

relative to Fixed word order rules (edf = 2.243, F = 0.74, p < .001). Mean delta power over 

posterior sensors showed a similar U-shaped pattern of difference during the Flexible word 

order trials as that observed for the χ-exponent (edf = 2.867, F = 2.681, p < .001). 

Mean theta power density during the learning task was on average 0.06 n.u. lower 

during Flexible word order processing compared to Fixed word order processing (se = 0.007, 

t = -7.50, p < .001). Further, mean theta power decreased nonlinearly across the learning task 

for Fixed word order rules (edf = 3.100, F = 4.03, p < .001), showing a steep decrease over the 

first quarter of trials, increasing gradually over the second quarter, and then steadily decreasing 

until the end of the task. Flexible word order rules evoked a similar pattern of theta band 

activation, with a significantly more pronounced nonlinear effect (edf = 1.866, F = 1.51, p = 

.03). Mean theta density was further modulated by topography, showing a decline in power 

density over centro-anterior sensors, and an increase in density over posterior sensors, during 

the middle period of the learning phase (edf = 5.543, F = 0.38, p < .001; no difference between 

word-order conditions; p = .239). 

For alpha activity, mean power density was on average 0.14 n.u. lower during Flexible 

word order processing compared to Fixed word order processing (se = 0.022, t = -6.10, p < 

.001). Mean alpha power also showed a significant nonlinear effects of trial time over Fixed 

and Flexible word order rule learning: alpha power increased steeply over the first third of 

Fixed word order trials, levelled off over the middle third, and increased again towards the end 

of the learning task (edf = 3.442, F = 9.96, p < .001); a more complex pattern of activity was 

observed for Flexible word order trials (edf = 2.738, F = 4.31, p < .001). This effect was also 

modulated by topography: alpha activity was significantly higher over central sensors in the 

initial stages of Fixed word order learning, becoming more pronounced over lateral sensors 

during the middle of the session (edf = 5.405, F = 0.89, p = .003); while additional laterality 

differences towards the beginning and end of the learning phase were noted for Flexible word 

order trials (edf = 1.282, F = 0.40, p = .005).  Alpha power density further varied as a function 

of sagittality over trial time (edf = 6.212, F = 1.62, p < .001), although this effect did not 

significantly differ between Fixed and Flexible word order conditions (p = .174).  

Finally, mean beta power density was on average 0.09 n.u. higher during Flexible word 

order compared to Fixed word order trials (se = 0.012, t = 7.61, p < .001). Mean beta power 

density showed significant nonlinear changes over time for both Fixed and Flexible word order 

rule learning: beta power decreased over the first third of Fixed word order trials, steadily 

increasing thereafter (edf = 1.182, F = 0.74, p < .001). Beta power showed the opposite pattern 

during the first two-thirds of Flexible word order trials, before increasing at a faster rate 
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towards the end of the session (edf = 3.503, F = 8.97, p < .001). These dynamics were further 

modulated by topography, with mean beta power density higher over lateral (edf = 2.177, F = 

0.68, p = .001) and posterior (edf = 5.854, F = 2.43, p < .001) sensors during early Fixed word 

order trials, and decreasing towards the end of the session. Significant deviations from this 

pattern were also noted during Flexible word order trials for laterality (edf = 7.556, F = 1.88, 

p < .001) and sagittality (edf = 4.253, F = 1.16, p < .001). 

Together, these data illustrate a complex relationship between spectral activity in the 

range of 1 – 35 Hz during grammar learning (see Figure 4 for a visualisation of mean spectral 

power changes over stimulus presentation). Low frequency activity (i.e., < ~8 Hz) shares a 

similar spatiotemporal pattern to aperiodic activity, where mean power density tends to 

decrease over the course of grammatical learning. Higher frequency activity (i.e. ~8-35 Hz), 

by contrast, tends to increase over time, with greater variability in the temporal dynamics 

associated with Fixed and Flexible word order learning observed in the beta band.
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Figure 3. Modelled effects for changes in aperiodic (A), delta (B), theta (C), alpha (D) and beta (E) activity across the learning task for Fixed (top row) and Flexible (bottom 

row) word order rules. Note that the bottom row displays difference waves, where a horizontal line at 0 would entail no deviation from the Fixed waveform.
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Figure 4: Power spectral modulations as a function of stimulus presentation averaged across the learning task. 

Each topographical plot represents differences in grand mean delta (A), theta (B), alpha (C) and beta (D) spectral 

power density between fixed and flexible word order sentences. Note that 0 – 6 s is during the presentation of the 

picture, while 6 – 12 s is during the presentation of the grammatical sentence presented via RSVP. (E) represents 

the grand event-related spectral perturbation (ERSP) based on the mean spectral power density values across 

participants and electrodes for fixed word order sentences, while (F) represents the same for flexible word order 

sentences. (G) and (H) represent single participant ERSP plots across all channels for fixed and flexible sentences, 

respectively. Time is represented on the x-axis, spanning the presentation of the picture (2 – 6 s) and the 

grammatical sentence presented via RSVP (6 – 12 s). 

3.2.2. Learning-related oscillatory correlates of behavioural performance 

Here, we examine whether power spectral density estimates in the individualised bands 

during the learning task predict behavioural performance on the sentence judgement task (for 

full model summaries, see the supplementary material). The first model focussed on activity in 
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the delta band. There was a significant Delta x Sagittality x Sentence Type interaction (χ2(2) 

= 39.36, p < .001). As is illustrated in Figure 5A, increased delta power predicted an increase 

in the proportion of correct responses for Flexible word orders, while the reverse was observed 

for Fixed word orders. All other three- and four-way interactions were nonsignificant. By 

contrast, the theta model demonstrated a significant Theta x Sagittality x Laterality x Sentence 

Type interaction (χ2(4) = 13.10, p = .01): an increase in theta power in posterior regions 

predicted an increase in the proportion of correct responses for Flexible word orders, while 

predicting a decrease in performance for Fixed word orders. This effect was most pronounced 

at midline posterior regions, weakening in central regions and disappearing in central- and 

right-anterior regions. 

The alpha model yielded a significant Alpha x Sagittality x Sentence Type interaction 

(χ2(2) = 167.93, p < .001). As is clear from Figure 5C, an increase in anterior alpha power 

predicted an increase in the proportion of correct responses for Flexible, but not Fixed, word 

orders. All other three- and four-way interactions were nonsignificant. Finally, the beta model 

demonstrated a significant Beta x Sagittality x Laterality x Sentence Type interaction (χ2(2) = 

77.95, p < .001). An increase in beta power was associated with higher proportion of correct 

response for Fixed word order sentences but was associated with a decrease in performance for 

Flexible word orders. While this effect was similar across all regions, the effect was most 

pronounced over anterior midline channels. 

 Together these results suggest that an increase in posterior low-frequency activity (i.e., 

< 8 Hz) during grammar learning is associated with an increase in accurate responses for 

flexible word order sentences, while an increase in anterior alpha power showed a similar 

behavioural effect. Higher frequency activity showed a more complex pattern, with an increase 

in anterior beta power during grammar learning predicting an increase in accurate responses 

for fixed word order sentences, but a decrease in performance for flexible word order sentences. 
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Figure 5: Estimated marginal means for proportion of correct responses (y-axes) by power in the delta, theta, 

alpha and beta bands (x-axes), sentence type (fixed = blue solid line, flexible = dashed orange line), sagittality 

and laterality. Shaded regions indicate the 83% CI. The red highlight indicates ROIs showing the largest effect 

between fixed and flexible word orders. 

3.2.3. Interactions between oscillatory and aperiodic activity influences behaviour 

Next, we tested whether 1/ƒ slope and oscillatory activity interact during learning to 

influence performance on the judgement task. While the Delta x χ-exponent x Sentence Type 

interaction was nonsignificant (χ2(1) = 1.83, p = .17), activity in the Theta (χ2(1) = 53.21, p < 

.001), Alpha (χ2(1) = 291.00, p < .001) and Beta (χ2(1) = 77.58, p < .001) bands interacted 

significantly with χ-exponent and Sentence Type. As is clear from Figure 6, increased theta 

power and decreased χ-exponent predicted performance for fixed word order sentences, and 

this effect reversed with high χ-exponent. By contrast, decreased alpha power and low χ-

exponent predicted an increase in performance for fixed word order sentences, while the 

reverse was observed for flexible word orders. Finally, an increase in beta power and low χ-

exponent positively predicted fixed, but not flexible word order performance. This effect 

diminished as the χ-exponent increased. Together, these results suggest that learning-related 

oscillatory and aperiodic activity selectively influence the learning and processing of different 

word orders rules.
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Figure 6: Estimated marginal means for proportion of correct responses (y-axes) by global spectral power in the delta, theta, alpha and beta bands (x-axes, 1/ƒ slope (faceted 

from low to high) and sentence type (fixed = blue solid line, flexible = dashed orange line). Shaded regions indicate 83% confidence intervals.
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3.2.4. Individual variability in neural activity across learning influences sentence processing 

Here, we examined whether inter-individual differences in spectral power variations 

across the learning task predict performance on the judgement task. In line with our aim, we 

focus on interactions between variations in (spectral) Power, Trial and Sentence Type. 

Variations in spectral power are random effect estimates of change in spectral activity for each 

subject from the GAMM models, which reflect intra-individual differences in power estimates 

across time. For each frequency band, Wald tests (see Table 1) revealed no significant 

interactions with Sentence Type and Trial. However, as is apparent from Table 1, each 

frequency band yielded a significant interaction with Sentence Type. Figure 7 shows that this 

effect is clearest for the delta and beta bands. An increase in delta power was associated with 

higher performance for flexible word order rules, while lower delta power predicted an increase 

in performance for fixed word order sentences. This (de)synchronisation pattern was inverted 

for the beta band: while an increase in beta power predicted higher performance for fixed word 

order rules, a reduction in power was associated with improved performance for flexible word 

order rules. The theta and alpha bands, by contrast, show the weakest differentiation between 

fixed and flexible word order processing, which changed over the course of the experiment, as 

shown in Figure 7C and 7D, respectively. Finally, aperiodic activity demonstrated a similar 

pattern to delta, albeit stronger, with a lower χ-exponent (i.e., shallower 1/ƒ slope) predicting 

improved performance for fixed word order sentences, but worse performance for flexible 

word orders. This effect is also opposite to the influence of beta power on fixed and flexible 

word orders. 

Table 1: Type II Wald 2 tests for interaction terms examining the relationship between 

sentence type, trial and variation in spectral power on proportion of correct responses. 

 

 Delta Theta Alpha Beta 1/ƒ 

Parameter χ2 p χ2 p χ2 p χ2 p χ2 p 

Type 240.88 <.001 239.77 <.001 239.98 <.001 242.45 <.001 243.04 <.001 

Power .01 .89 .00 .98 0.02 .86 .06 .79 .06 .80 

Trial .00 .95 .00 .99 .00 .96 .02 .87 .00 .92 

Type x Power 75.50 <.001 6.52 .01 22.09 <.001 176.31 <.001 209.31 <.001 

Type x Trial .29 .58 .06 .80 .18 .67 .81 .36 .60 .43 

Power x Trial .00 .92 .00 .98 .00 .98 .00 .98 .00 .95 

Type x Power 

x Trial 

3.02 .08 2.37 .12 .57 .45 .31 .57 3.97 .04 
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Figure 7: Estimated marginal means for proportion of correct responses (y-axes) by global variations in aperiodic 

activity and spectral power in the delta, theta, alpha and beta bands (x-axes) and Sentence Type (fixed = blue solid 

line, flexible = dashed orange line) averaged across each trial of the learning task. Shaded regions indicate 83% 

confidence intervals. 
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4. DISCUSSION 

The current experiment tested how neural oscillations and aperiodic activity 

differentially contribute to higher-order cognitive processing. Using a miniature artificial 

language, we analysed how spectral power in the 1 – 35 Hz range is modulated during the 

learning and processing of different word order permutations. We demonstrated that aperiodic 

and oscillatory activity interacted to influence fixed word order processing to a greater degree 

than flexible word orders. Our results further reveal that: (1) fixed word order processing was 

associated with an increase in the 1/ƒ slope, while flexible word order sentences were 

associated with a shallower slope; (2) fixed and flexible word order sentences were associated 

with a nonlinear modulations in in delta, theta, alpha and beta activity, and; (3) aperiodic and 

low frequency (i.e., < 8 Hz) activity yielded a similar pattern of activity during language 

learning, including their spatiotemporal profiles. Moreover, we demonstrated that inter-

individual variations in spectral power across the learning task interacted with aperiodic 

activity to influence subsequent behavioural performance. To our knowledge, this is the first 

study to systematically characterise the contribution of oscillatory and aperiodic neural activity 

during language learning and word order processing. Below, we discuss how our findings relate 

to existing literature, and how the combined study of aperiodic and oscillatory activity is 

necessary if a full understanding of the neurobiology of cognition is to be achieved. 

4.1. Neural oscillations, language learning and sentence processing 

To date, only a few studies have examined the neural oscillations involved in (artificial) 

grammar learning (e.g., de Diego-Balaguer et al., 2011; Kepinska et al., 2017), demonstrating 

that alpha/beta synchronisation and gamma phase synchrony between different cortical areas 

predicts successful learning. While we did not examine gamma activity due to potential EEG 

artifacts (e.g., volume conduction currents, saccades etc; Buzsaki & Schomburg, 2015; Kovach 

et al., 2011; Whitham et al., 2007), we found that alpha/beta activity differentially contribute 

to the learning and processing of fixed and flexible word order rules. Increased anterior alpha 

synchronisation predicted an increase in performance for flexible word orders, while 

desynchronization predicted fixed word order processing. By contrast, the strongest beta 

effects were across central anterior sensors, with beta synchronisation predicting higher 

performance for fixed sentences, while beta desynchronization was associated with higher 

performance for flexible word orders.  

These findings are consistent with previous work (e.g., Kepinska et al., 2017), but 

reveal more fine-grained patterns of (de)synchronisation between word order variations, which 

may be explained by cue-integration-based models of native language processing (Bates et al., 

2001; Bornkessel & Schlesewsky, 2006; Bornkessel-Schlesewsky et al., 2015; Kaufeld et al., 

2020; Martin, 2016). Under this framework, cues that are differentially weighted according to 

the conditional probabilities of the language are integrated to comprehend incoming linguistic 

input (e.g., sentences). Here, fixed word order sentences contained linear order-based cues, 

which are analogous to English, while flexible word orders required animacy-based cues for 

interpretation. From this perspective, and in line with previous work on sequence processing 

(Crivelli-Decker et al., 2018; Kikuchi, et al., 2018; Wang et al., 2019), beta synchronisation 

likely reflected the propagation of top-down predictions during the learning of fixed word order 
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rules. Specifically, in fixed sentences, the first noun is invariably the Actor, and as such, 

predictions are constrained to anticipating that the second noun will be the Undergoer, while 

also containing a verb-final construction. As such, due to the strong sequence dependence in 

fixed word orders, precision-weighted predictions would likely increase linearly across the 

sentence, manifesting in beta synchronisation (Arnal, 2012; Cross et al., 2018a; Lewis & 

Bastiaansen, 2015).  

The inverse relationship with flexible word order processing – which was predicted by 

greater beta desynchronization – can also be explained under this framework. Given that 

flexible word orders can contain either Actor-first or Undergoer-first constructions, predictions 

cannot be based on the linear position of the words, and instead must be driven by the 

integration of (non-adjacent) animacy-based cues to arrive at an accurate sentential percept. 

Given that our sample consisted of native monolingual English speakers (a language that relies 

heavily on word order cues; Bates et al., 2001; Bornkessel-Schlesewsky, et al. 2011; 

MacWhinney et al., 1984), beta desynchronization during flexible word order processing may 

have reflected prediction errors and internal model updating. That is, beta desynchronization 

during the learning of flexible word order rules may have reflected internal generative 

(predictive) model updating based on mismatches with predicted and actual sensory input, 

while beta synchronisation during fixed word order processing likely reflected the 

accumulation of top-down predictions based on our sample of native English speakers’ 

preference for word-order based cues. Importantly, this interpretation is consistent with 

temporal sequence learning paradigms, where beta power has been shown to increase for fixed 

sequences relative to “random” sequences (Crivelli-Decker et al., 2018). 

Alpha activity showed a similar pattern; however, increased anterior alpha 

synchronisation predicted flexible word order processing, while desynchronization predicted 

fixed word order processing. Frontal alpha synchronisation during language processing may 

reflect goal-directed processing and the allocation of enhanced attentional resources, which 

may have been required for the successful learning of flexible word order rules (Kepinska et 

al., 2017), given that they deviate from the canonical English word order (Bates et al., 2001). 

This interpretation is in line with evidence demonstrating that alpha oscillations reflect 

rhythmic cortical gating by alternating the activation of task-relevant cortical regions while 

actively inhibiting the processing of task-irrelevant information (Chapeton et al., 2019; de 

Vries et al., 2020; Gallotto et al., 2020; Klimesch, 2012; Jensen & Mazaheri, 2010). From this 

perspective, greater alpha synchronisation may have facilitated the extraction of flexible word 

order rules by suppressing task-irrelevant input and optimising cortical communication in a 

selectively precise manner, promoting the encoding and consolidation of non-canonical 

grammatical rules. 

Finally, we recently proposed that the combination of (animacy-based) non-adjacent 

elements is reflected in increased theta activity (Cross et al., 2018a; see also Cross et al., 

2020b). Here, we found that theta synchronisation predicted improved performance for flexible 

but not fixed word order rules, an effect that parametrically decreased from posterior to anterior 

regions. Increased theta synchronisation has been shown to predict memory for temporally 

close stimuli (e.g., in temporal associative memory tasks; for review, see Herweg et al., 2020), 
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and in encoding novel grammatical rules (e.g., Kepinska et al., 2017). The increase in theta 

power reported here for flexible word orders may have reflected the learning and integration 

of rules governing conceptual relations between words, rather than word order-based rules. 

Indeed, such theta effects have been reported during native sentence processing, with theta 

synchronisation localised to left temporal regions (Lam et al., 2016). These effects are also 

consistent with the general memory literature: retrieval of language (e.g., single words), shape 

and face stimuli elicit higher theta synchronisation (Bastiaansen et al., 2002; Klimesch et al., 

2008; Klimesch et al., 2010; Mormann et al., 2005; Osipova et al., 2006), with these effects 

manifesting the strongest over medial temporal and prefrontal cortices (Guderian & Düzel, 

2005), likely reflecting the activation of relevant memory traces and executive control 

processes, respectively. Theta activity has also been shown to decrease for fixed relative to 

flexible sequences, which were associated with increased theta synchronisation over frontal 

areas (Crivelli-Decker et al., 2018), highlighting the role of theta in binding non-sequential 

elements to form a coherent percept. 

Together, these results build upon the handful of studies examining the oscillatory 

correlates of grammar learning, but also offer more fine-grained insights into the mechanisms 

underlying grammar learning and sentence processing, including: (1) beta activity likely 

reflects the accumulation and propagation of top-down precision-weighted predictions, which 

are modulated by different word order permutations; (2) alpha activity reflects more domain-

general mechanisms of attention during learning and sentence processing, allowing the brain 

to prioritise the encoding of novel grammatical rules, and; (3) theta oscillations support the 

encoding of novel grammatical rules by binding conceptual relations between individual 

elements in a sentence, particularly for flexible word orders. The pattern of findings in the 

current study also speak strongly to the idea that neural oscillations differentially contribute to 

the formation of memory of varying complexity, such that the encoding and retrieval of image 

and word stimuli elicit distinct (de)synchronisation patterns compared to artificial grammar 

learning paradigms; however, future research should systematically study such task- and 

stimulus-related differences. 

4.2. Aperiodic and oscillatory interactions support (language) learning and memory 

Using Irregular-Resampling Auto-Spectral Analysis (IRASA; Wen & Liu, 2016), we 

estimated the 1/ƒ slope during artificial grammar learning with the aim of characterising the 

influence of dynamic alterations in aperiodic activity on higher-order cognitive processing. 

This is the first study to examine aperiodic activity and its interaction with oscillatory power 

in the context of language learning, with two critical findings emerging: (1) learning-related 

aperiodic activity interacted with oscillatory power to modulate behavioural performance for 

fixed word orders to a stronger degree than flexible word order rules, and; (2) 1/f slope and 

beta activity showed an inverse relationship with flexible and fixed word order processing. 

These findings speak strongly to the fact that 1/ƒ-like activity should not be filtered from the 

signal, but instead be analysed in combination with transient oscillatory activity to predict 

behaviour. 

This claim is supported by a number of studies demonstrating the influence of aperiodic 

activity on a range of cognitive computations, including processing speed (Ouyang et al., 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2020. ; https://doi.org/10.1101/2020.03.10.984971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.984971
http://creativecommons.org/licenses/by-nd/4.0/


NEURAL CORRELATES OF GRAMMAR LEARNING 25 

2020), memory (Sheehan et al., 2018) and prediction in language (Dave et al., 2018). From a 

neurophysiological perspective, 1/ƒ-like neural activity has been proposed to encode 

information relating to intrinsic brain function (Muthukumaraswamy and Liley, 2018), 

including the balance between excitation/inhibition (Gao et al., 2017), likely reflecting 

glutamate and GABA synaptic inputs into inter- and intra-cortical networks (Dave et al., 2018; 

Gao et al., 2017). Based on this perspective, Dave et al. (2018) argued that aperiodic activity 

influences prediction in language by modulating the strength of predictions of upcoming 

linguistic information via population spiking synchrony (Engel et al., 2001). This interpretation 

applies to our finding that aperiodic and beta activity showed an inverse association with 

performance for fixed and flexible word orders: beta synchronisation predicted accurate 

responses for fixed sentences, while beta desynchronization predicted performance for flexible 

word orders. By contrast, a steeper 1/ƒ slope during learning was associated with improved 

accuracy for flexible sentences, while a shallower slope predicted improved accuracy for fixed 

word orders. This relationship becomes more complex when examining the interactive 

influence of beta and 1/ƒ activity on behaviour: when the 1/ƒ slope is shallow, the effect of 

beta activity on fixed and flexible word order processing is strongest; however, when the 1/ƒ 

is steep, the effect of beta activity on accurate sentence processing for both fixed and flexible 

word orders diminishes. We believe that this pattern of results can be explained by integrating 

two perspectives; namely the “spectral fingerprints” hypothesis (Hanslmayr & Staudigl, 2014; 

Keitel & Gross, 2016; Siegel et al., 2012; Watrous et al., 2015; Womelsdorf et al., 2014) and 

models of hierarchical predictive coding (Friston, 2010, 2019, 2020). 

The “spectral fingerprints” hypothesis argues that power changes in different frequency 

bands reflects distinct stages of memory and information processing (Fellner et al., 2019; Keitel 

& Gross, 2016), rather than reflecting a “spectral tilt” between lower and higher frequencies. 

For example, decreases in alpha/beta and increases in gamma power during memory retrieval 

have been shown to occur on different temporal scales and in different brain areas, providing 

evidence against proposals that a change in the tilt of the power spectrum solely drives memory 

computations (Fellner et al., 2019). Further, increases in high frequency gamma activity has 

been proposed to reflect the propagation of bottom-up sensory signals (Lewis et al., 2015; 

Richter, Thompson, Bosman, & Fries, 2017), while a decrease in alpha/beta power is thought 

to index top-down prediction errors (Bressler & Richter, 205; Friston, 2019; Samaha, Bauer, 

Cimaroli, & Postle, 2015). From this perspective, a steeper 1/ƒ slope may reflect the 

maintenance of top-down predictions that allow comprehenders to generate expectations of 

incoming stimuli, minimizing prediction errors. This interpretation also holds for interactions 

observed with aperiodic and oscillatory activity in the theta and alpha bands, and as such, 

provides evidence that 1/ƒ-like activity dynamically influences cortical excitability across the 

frequency spectrum to minimize prediction error and to maximize precision-weighted 

predictions during language learning and sentence processing. 

Taken together, we have demonstrated for the first time that oscillatory and aperiodic 

activity jointly contribute to the learning of higher-order language. There are, of course, several 

open questions that arise from the present results. First, how does the interaction between 

oscillatory and aperiodic activity relate to individual differences in atypical populations, such 
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as those with schizophrenia and age-related pathologies, including Alzheimer’s disease? 

Previous research has shown that cognitive deficits characteristic of schizophrenia may be 

better explained by changes in the 1/ƒ slope than irregularities in the canonical frequency bands 

(Peterson et al., 2018), and that 1/ƒ activity mediates age-related deficits in working memory 

(Voytek et al., 2015); however, the interaction between aperiodic and oscillatory activity 

during more complex cognitive computations, such as sequence learning and language 

processing, remain unknown. Second, we did not examine oscillatory and aperiodic activity 

during the judgement task (cf. Cross et al., 2020b). Doing so would have provided a more 

thorough analysis of the aperiodic and oscillatory components related to grammar learning, 

how these dynamics change over time, and whether they manifest differently during retrieval. 

Lastly, given that we used scalp-recorded EEG, we are unable to make any neuroanatomical 

inferences. Future research using techniques with greater spatiotemporal resolution, such as 

magnetoencephalography and intracranial EEG, would be able to better isolate potential 

neuroanatomical generators of aperiodic and oscillatory activity during grammar learning, and 

by extension, complex cognitive processing more generally. 

4.3. Conclusion 

In this study we connected neural oscillations, a mainstream electrophysiological 

measure, with the 1/ƒ slope, and in doing so, have provided further evidence that aperiodic 

activity plays an important role in higher-order cognition, including language learning. We 

have also demonstrated that grammar learning is modulated by different word order 

permutations, which manifest in distinct oscillatory profiles during incremental sentence 

processing. Future work would benefit from examining how and if these interactions emerge 

in (age-related) pathologies, and whether patterns of aperiodic and oscillatory activity during 

language learning and sentence processing are generated by specific neuroanatomical 

networks. Such work will provide a better understanding of the neurobiology of cognition in 

both health and disease. 
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