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The concept of Contrastive Learning (CL) is developed as a family of 
possible learning algorithms for neural networks. CL is an extension 
of Deterministic Boltzmann Machines to more general dynamical sys- 
tems. During learning, the network oscillates between two phases. 
One phase has a teacher signal and one phase has no teacher signal. 
The weights are updated using a learning rule that corresponds to gra- 
dient descent on a contrast function that measures the discrepancy be- 
tween the free network and the network with a teacher signal. The CL 
approach provides a general unified framework for developing new 
learning algorithms. It also shows that many different types of clamp- 
ing and teacher signals are possible. Several examples are given and 
an analysis of the landscape of the contrast function is proposed with 
some relevant predictions for the CL curves. An approach that may be 
suitable for collective analog implementations is described. Simula- 
tion results and possible extensions are briefly discussed together with 
a new conjecture regarding the function of certain oscillations in the 
brain. In the appendix, we also examine two extensions of contrastive 
learning to time-dependent trajectories. 

1 Introduction 

In this paper, we would like to develop the concept of Contrastive Learn- 
ing (CL) as a family of possible learning algorithms for arbitrary conver- 
gent dynamical systems. CL is an extension of Deterministic Boltzmann 
Machines (Peterson and Anderson 1987) and Contrastive Hebbian Learn- 
ing (Movellan 1990). Deterministic Boltzmann Machines are mean field 
approximations to Boltzmann Machines (Ackley et al. 1985). Contrastive 
Hebbian Learning is essentially a different method for deriving a Heb- 
bian learning rule for Deterministic Boltzmann Machines. It is equivalent 
to the observation in Hinton (19891, based on a geometric argument, that 
Deterministic Boltzmann Machines perform gradient descent on a suit- 
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ably defined cross-entropy function. The mathematical approach given 
here makes very few assumptions concerning the details of the activation 
dynamics beyond the requirement that it be a gradient dynamics. It is, 
therefore, a general approach that illuminates the common structure of 
Deterministic Boltzmann Machines and their variants. It also allows one 
to derive, almost by inspection, new learning algorithms for particular 
gradient systems. These algorithms are not necessarily Hebbian. 

Consider the problem of training a neural network to associate a given 
set of input-output pairs. In the course of CL training, the network is run 
in alternation with and without a proper teacher signal applied to some 
of its units, The weights in the network are updated so as to reduce 
the discrepancy between the steady-state behavior of the free network 
(without teacher) and the forced network (with teacher). As we shall 
see, this waxing and waning of the teacher can also be approximated 
with continuous oscillations. 

In Section 2, we describe CL for a general class of convergent dynami- 
cal systems. For clarity, the reader may want to particularize some of the 
statements to the usual additive neural network model with symmetric 
zero-diagonal interactions (see, for instance, Hopfield 1984) with 

and energy function 

1 1 "1 

Ef(V,I. W) = - - c w i j V i V j + C - /  . 'Ti rest g- ' (v )dv-CI iVi  (1.2) 
2 i , j  I 

Throughout the paper, the superscripts f ("free") and t ("teacher") are 
used to distinguish quantities in the free system and in the system with 
teacher. In Section 3, we give four different examples of CL that go 
beyond the special case of Deterministic Boltzmann Machines and the 
additive neural network model. In Section 4, we analyze the landscape 
of the contrast function, argue that it is characterized by three types of 
regions, and make some predictions about CL curves. In Section 5, we 
present an approach that may be suitable for collective analog imple- 
mentations and that uses oscillations to continuously approximate CL. 
We conclude in Section 6 with the results of some preliminary simula- 
tions and a few possible extensions and open questions. Finally, in the 
appendix we sketch how CL may be extended from learning fixed points 
to learning trajectories. 

2 Contrastive Learning 

To be more precise, consider an arbitrary convergent n-dimensional dyna- 
mica1 system, where the states are described by the vector u = ( ~ 1 , .  . . , u,,). 
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The parameters of the dynamical system can be classified into two classes: 
the external parameters I and the internal parameters W. Only the inter- 
nal parameters W are subject to modification in the course of learning. In 
the case of neural networks, the states u, can be thought of as representing 
the membrane potentials of the units, while the vector 1 = (11.. . . . Ill) and 
the array W represent the external inputs and the connection weights, 
respectively (in addition, W may also include various gains and time 
constants). We assume that the convergent dynamical system is a gradi- 
ent system governed by an energy function' Ef( V. I. W) so that 

~ (2.1) 

with V = (V, .  . . . . VFl) and V ,  - ~ ( X U , ) ,  where g is a monotonically in- 
creasing function such as the identity or one of the usual sigmoid transfer 
functions used in neural models (V, can be interpreted in terms of firing 
rates). X is a parameter corresponding to the gains or the temperature in 
the system. Here, and in the rest of the paper, all functions are assumed 
to be continuously differentiable, unless otherwise specified. Out of the I I  
variables V,. .  . . . V,, the first I V , . .  . . . VI are considered output variables. 
The goal of the learning algorithm is to adjust the internal parameters 
so that for a given fixed initial state u ( 0 )  and external input I, the free 
system converges to a stable state where the output variables have the 
target values T = (TI . .  . . . TI). For simplicity, we are dealing here only 
with one association 1 -+ T (the generalization to many input-output 
pairs by averaging in the usual way is straightforward). To train the free 
system, we introduce a second "forced" dynamical system. In the forced 
system the energy E'(V.1. W. T) has the form 

(2.2) 

The function F denotes a generalized teacher forcing term. The func- 
tion F(V, 1. W, T) is not completely arbitrary and is chosen such that 
F(V. I, W, T) = 0 if TI = V ,  over all visible units. In addition, F must be 
continuously differentiable and bounded with respect to the Vs so that 
the function E' governs the gradient dynamics of a convergent system 
defined by 

du, - dEf 
dt ov, - -~ 

E' = Ef + F(V, I .  W. T )  

The equilibrium point of the free and forced systems are denoted by Vf 
and V', respectively. At a fixed point, V becomes an implicit function of 
I, W, and T. 

'Even more generality could be achieved by using an equation of the form d u / d t  = 
-A(u)VE, where the matrix A satisfies some simple properties (see, for instance, Co- 
hen and Grossberg 1983). The dynamics could be "downhill" without following the 
gradient. 
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If Ht and Hf are two similar functions defined on the Vs  in the forced 
and free systems, then the difference in behavior between the two sys- 
tems can be measured by taking the difference Ht(l/t) - Hf(Vf) [or alter- 
natively, as in the usual LMS approach, by using a function H(V' - V')]. 
In contrastive learning, the internal parameters are adjusted by gradi- 
ent descent so as to minimize this difference. A particularly interesting 
choice of H, which will be used in the rest of the paper, is when H is the 
energy function of the corresponding system. The main reason for that, 
in addition to being a natural extension of the Deterministic Boltzmann 
Machine algorithm, is that it leads to very simple learning rules. Indeed, 
we can define the contrast function C by 

C(I,W,T) =E'(V ' , I ,W,T)-E ' (V ' , I ,  W) (2.4) 

The contrastive learning rule modifies an adjustable internal parameter 
w by 

(2.5) 

where 7 is the learning rate. To see the second equality in equation 2.5, 
notice that 

(2.6) 

where 7 is either f or t. Now at equilibrium dEY/dVz  = -du,Y/dt = 
0. Therefore the implicit terms do not contribute to equation 2.5. The fact 
that only the explicit dependence enters into the gradient means that the 
learning rule is simple and can often be written down from the contrast 
function by inspection. 

It is essential to notice that the derivation of equation 2.5 is purely 
heuristic. In general, the contrast function C is not necessarily bounded 
in W. If, over the range of operation, both E'(Vf,I, W) and Et(V' , I ,  W, T )  
are convex in W, then equation 2.5 achieves the desired goal but this is 
certainly a very unrealistic assumption. A more detailed treatment of the 
properties of the contrast function will be given in Section 4. 

CL is based on successive alternating relaxations of a free and a forced 
system. The initial state of the activation dynamics must be set before 
each relaxation. In general, the state to which the activation dynamics 
is reset depends on the task being performed. There are two classes of 
tasks. A parametric input task is one where the initial state of the network 
is always the same (usually the origin) and the input information is fed 
in through the vector I .  An initial state task, on the other hand, has 
the input information fed in as part of the initial state and I is always 
the same. Here, we concern ourselves with parametric input tasks only. 
Accordingly, the activation of the network is reset to zero before each 
relaxation. The CL approach, however, can also immediately be extended 
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to the case of initial state tasks by initializing the fixed and forced systems 
in similar pattern-dependent ways and computing the contrast function 
and its gradient in the way described above. 

3 Examples 

3.1 Competitive Systems. A useful class of competitive dynamical 
systems, discussed in Cohen and Grossberg (1983), can be described by 

where W = (wij) is symmetric. Equation 3.1 includes as special cases the 
additive model and also a number of models from population biology. 
If we define the matrix 

then equation 3.1 is gradient dynamics of the form 

du  
dt 
- = -A(u)VE(U) 

(3.2) 

(3.3) 

with energy function 

The corresponding forced energy function is given by equation 2.2 where 
F(V, 1. W, T) is any convenient forcing term. If F has no explicit W de- 
pendence, the CL rule is simply 

(3 .5)  

The form of this learning rule is identical to that used in Determinis- 
tic Boltzmann Machines (DBM) (Peterson and Anderson 1987) and in 
Contrastive Hebbian Learning (CHL) (Movellan 1990). Both DBM and 
CHL are based on the additive model [a,(u,) = 1 and b , (u , )  = 141 and the 
learning rule Awl, = q(Vc,Vcl - Vf,Vf,) where V: denotes the equilibrium 
activities in the network where the output (and input) units are clamped 
to their target values. 

To show that DBM are a special case of the general framework, we 
need to interpret clamping in terms of a teacher forcing term. This is 
easily done by writing 

Awl, = 11 (V:V; - Vf V;) 

= -u l+g; ' (T , )  for i = 1  ..... I (3.6) du1 
d t  
- 
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which relaxes to u, = g-'(T1).' It is simple to check that the network with 
such corresponding teacher has the energy function 

E'(V.1, W. T )  = €'(TI.. . . . T/.  V/+l,. . . , V,, I ,  W) 
I 

By applying equation 2.5 to the corresponding contrast function, one 
immediately gets equation 3.5 with in fact V: = Vi(= Ti for i = 1,. . . , I ) .  

The previous considerations extend immediately to neural networks 
consisting of higher order (or En)  units with the proper symmetric inter- 
connections. For instance, in the case of third-order interactions one can 
replace equation 3.5 by Awljk = r~(VitViV; - VyVfVi). These examples can 
also be extended to networks of simple or higher order threshold gates 
with the proper modifications. 

3.2 Simple Error Teacher Signal. In this example, we consider a par- 
ticularly simple form of teacher term in the additive model. The free 
network satisfies equations 1.1 and 1.2. In the forced network, the acti- 
vation equation contains a teacher signal which is a simple measure of 
the error and is given by 

dui 1 1 1  

dt 7; , - = -- + c w , j v ,  

where yi may be nonzero 
parameter. The associated 

only for the output units and a is a positive 
energy function is 

(3.9) 

For simpIicity, we shaIl assume that on the output units yl = y. Different 
values of the parameter a yield different models. For instance, when 
cu = 1 we obtain the usual LMS error term in the energy function. A 
value of cu = 1/3 has been used in relation to the terminal attractors 
approach (Zak 1989). By applying equation 2.5, the corresponding CL 
rule is Awl, = ?](V:V; - VtV:). Notice that in contrast to DBM where the 
output units are clamped to their target values, the output units here 
may relax to fixed points of equation 3.8 satisfying V: # TI.  Of course, 
as y + 03, V: + T,  (i = 1,. . . , I ) .  It is worth noticing that in this example 
(as in the previous ones), the teacher forcing term F does not depend 

'Alternatively, to prevent the initial relaxation of the clamped units, one could write 
du,/dt  = 0 and require the initiaI conditions to be u,(0)  = g-'(TZ),  i = 1,. . . , 1 .  
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explicitly on W. Thus the expression of the resulting CL rule is identical 
for an entire family of systems corresponding to different values of the 
parameters ( v  and 7 .  However, these values affect the learning implicitly 
because the corresponding systems have different dynamics and relax to 
different fixed points while being trained. 

3.3 Coupled Oscillators Models. This fourth example is mainly 
meant to illustrate the CL formalism on a different class of models for 
networks of coupled oscillators (see, for instance, Baldi and Meir 1990 
and references therein) used recently in conjunction with the study of 
oscillatory brain activity. Networks of coupled oscillators can be studied 
by representing each oscillator by a single variable, its phase u,. The os- 
cillators are associated with the vertices of a graph of interactions. Each 
edge in the graph corresponds to a symmetric coupling strength w,,. One 
possibility is to model the evolution of the phases by the system of equa- 
tions 

du, 
- = Cw,, sin(u, - 11,)  

dt  1 

The corresponding energy function is 

Ef(tf. W) = - 
1 
- c w,, cos( ill - u,) 

1.1 

(3.10) 

(3.11) 

If we let Ti denote a set of target angles, then a possible associated forced 
system can be described by 

(3.12) 

with 

(3.13) 

By inspection, this results in the CL learning rule 

a w l /  = r/[coS(u: - u;, ~ cos(u; - u;)] (3.14) 

In some sense, this learning rule is still Hebbian since if we use the 
complex exponential zk = eruk, then &&, = I /  Re [zLzi - zizf]. 

In many examples, the CL rule is a very simple Hebbian one and this 
is attractive from a hardware perspective. It should be noticed, however, 
that this is a consequence of the fact that the explicit dependence of the 
energy function on the weights rests on a quadratic form. As can be seen 
from the examples of higher order DBM and coupled oscillator models, 
more complicated learning rules can be derived by introducing different 
terms in the energy function with an explicit dependence on wq. 
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The previous examples also show that the notion of clamping a unit is 
not a precise one and that different algorithms can be defined depending 
on the degree of softness contained in the clamping. In hard clamping, 
all the variables pertaining to one output unit are kept fixed at their target 
values and only these target values appear in the contribution of the unit 
to the learning rule. In soft clamping, some of the variables may evolve. 
In fact, by varying the parameter in Section 3.2, one can easily envision 
a continuum of possible clampings. The description we have given of 
a DBM is based on hard clamping. However, one can conceive a softer 
DBM, for instance, where the value V, of any output unit is held constant 
at a value V,C = T, while the network relaxes. The internal states u, of the 
output unit may then evolve according to equation 1.1 and equilibrate to 
a final value u: (such a network always reaches a fixed point although, 
strictly speaking, it has no energy function). V: = g ( u ! )  may then be used 
to adjust the weights rather than the clamped value V:. 

4 The Landscape of the Contrast Function 

We shall now analyze the typical landscape of the contrast error func- 
tion C(W) as a function of the internal parameters W. For simplicity, 
we shall deal with the case of Deterministic Boltzmann Machines with 
hard clamping or with their version with a softer teacher term given by 
equation 3.8. We shall argue that, in general, the landscape of C contains 
three interesting and characteristic regions. A region corresponding to 
the initial stage of learning characterized by rapid progress and smooth 
descent. A region corresponding to an intermediary stage possibly char- 
acterized by abrupt discontinuities due to basin hopping phenomena. A 
third region associated with a final stage, found in the neighborhood of 
an optimal set of weights W, characterized by local convexity and smooth 
descent. 

To begin with, it should be noticed that the contrast function is an 
average of several contrast functions, one for each pattern. To em- 
phasize this important point and only in this section, we shall use a 
p superscript to denote the pattern dependence. Thus, for instance, 
C = &CP = &E‘P(VtP) - EfP(VfP). Furthermore, even for one pattern, 
the contrast function CP( W) is not bounded and is not continuous every- 
where because there are values of W for which Vtp’ or VfP vary abruptly. 
If one tries to learn a unique association pair by CL, the descent, how- 
ever, is in general smooth. It can easily be seen that the contrast function 
is continuous over the restricted region covered by the corresponding 
descent procedure. Yet, it is when we try to learn several associations 
simultaneously and satisfy somewhat conflicting constraints that gradi- 
ent descent leads us to regions of the parameter space where the contrast 
functions corresponding to the individual patterns may be discontinu- 
ous. We shall call a fracture any point or connected set of points where 
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C is discontinuous (that is where at least one of the CP is discontinuous 
and the corresponding V'!' or V'P varies abruptly). Thus a fracture is 
a point or a set of connected points in weight space associated with a 
basin boundary going through the initial state (usually the origin) in the 
activation space of either the free or forced system for at least one of 
the patterns (see also Pineda 1988). In general, basin hopping can result 
from abrupt disruption in the flow of the system at bifurcation points or 
from the smooth evolution of basin boundaries in the course of learning. 
Notice that when a bifurcation occurs and a new fixed point is created, 
the newly created basin boundaries may cross the origin only some time 
after. 

In the initial stage, when training is started with very small initial 
weights, the units in the network operate near their linear regime and, 
for each pattern, both the free and forced networks have a unique fixed 
point. Thus, for each pattern p and as the weights W begin to evolve, 
Vt/' and VflJ vary continuously. Thus, for small weights, each Cp( W) 
is continuous and differentiable. Thus the total contrast function C( W) 
is also continuous and differentiable and the learning curve decreases 
smoothly. This smooth descent lasts at least until the first bifurcation 
occurs in one of the networks corrresponding to one of the patterns. The 
first bifurcation creates the first additional fixed points and therefore the 
first basin boundary capable of causing a discontinuity. 

In the intermediary stage, which is probably the most crucial for suc- 
cessful learning, the conflict introduced by the different patterns can be- 
come apparent. The learning trajectory may run into and cross fractures. 
Every time this happens, the contrast function jumps abruptly up or 
down. We believe that such a stage is inevitable in any reasonably chal- 
lenging problem (for instance, we have seen no discontinuities in the 
case of one, two, or even three pattern learning from the XOR table; 
on the other hand, these tasks are easy and linearly separable) and the 
phenomenon is accentuated by large learning rates, noise, or increasing 
approximations to the gradient. It remains to analyze what happens 
in the proximity of an optimal set of weights W* that achieves perfect 
Iearning, that is, such that, for each pattern, the equilibrium values of the 
output units in the free and forced network are identical and identical 
to the targets. In addition, at an optimum W =- W* we can also assume 
that the hidden units in the free and forced systems equilibrate for each 
pattern to the same values. Configuration of optimal weights without 
this property could conceivably exist. These would likely be unstable 
when gradient descent updates are performed after each pattern (this 
is because 3C~'/tlw,, - V y V y  - Vf'V? # 0 for many patterns although 
3C/8zu,, may be 0 on the average). 

So, with these assumptions, for an optimal set of parameters W*, 
a'( W') ~ 0 for every p and therefore C( W') = 0. Yet, the converse is not 
necessarily true. Now, it is reasonable to consider that no fracture passes 
through W'. Otherwise, the problem would be inherently intractable. It 
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would mean that the set of training patterns cannot be loaded on the 
chosen architecture in any stable way or, equivalently, that there is no 
region in weight space with a proper interior that contains an optimal 
solution. Thus, if we assume that the network is capable of implementing 
the given function, each C?' and C must be continuous in a neighborhood 
of W'. It is easy to see that this implies that each CP and C is also 
differentiable at W*. From the form of the CL rule, it is obvious that if 
W* is optimal, then dCp/aW = 0 for each p (and dC/aW = 0) at W'. 
In the case of Deterministic Boltmann Machines with hard clamping the 
converse is also true. Indeed, let us assume that qpV," = V?V: for 
every p and every i and j .  Since the inputs are clamped to the same 
values in the free and clamped network, by simple propagation through 
the network this implies that V:p = Vf" everywhere and therefore we are 
at an optimum. In the case of softer forms of Deterministic Boltzmann 
Machines (as in equation 3-81, it is not difficult to show that if every 
connected component of the graph of connections contains at least one 
cycle of odd length, then DCP/DW = 0 everywhere implies that VfP = Vp 
everywhere and therefore W must be optimal. This sufficient condition 
for equivalence on the structure of the graph of connections is usually 
easily realized (for instance, in the case of fully interconnected or of 
typical random graphs). So, without great loss of generality, we can 
assume that 

(4.1) -- - 0 for every p acp W is optimal 
aW 

Thus, the only critical points of C satisfying BCp/BW = 0 everywhere are the 
points W that lead to a perfect implementation of the inputloutput function. 
We are going to show that, in general, these critical points W are local 
minima of C and therefore C is convex (not necessarily strictly convex if 
W' is not isolated) in a neighborhood of any such W. Since C = &CP, 
it is sufficient to show that each CP is convex in a neighborhood of W'. 
Consequently, in the rest of the discussion we shall assume now that the 
pattern p is fixed. 

When both the free and forced systems are started at the origin with 
a critical configuration of weights W",  they both converge to the same 
vector of activities V'P. In neural networks, we can safely assume that 
V'P is an attractor (thus W' is asymptotically stable). Let Bw(Vfp) denote 
the domain of attraction of Vfp in the free system associated with W. 
Bw.(V'p) is an open connected set that contains V'P and the origin (see 
Fig. 1). 0 and V'fp are in the interior of BW.(V*~P). For sufficiently small 
perturbations A W* of W*,  the fixed points Vfp and VtP vary continuously 
as a function of W = w" -k AW*. Let d ( W )  denote the smallest distance 
from Vfp  to the boundary of its basin Bw(VfPP) (when these quantities 
are defined, which is the case in a small neighborhood of W") .  Clearly, 
d(W*)  > 0. We can find do > 0, €1 > 0, and €2 > 0 such that for any 
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Figure 1: When the free (respectively forced) system is started at the origin 0, it 
converges to V" (respectively V*) when the internal parameters are W', and to 
V' (respectively V ' )  when the internal parameters are W' + AW*. The contours 
are meant to represent basin boundaries. A representation of the perturbation 
in the space of internal parameters is shown in the inset. 

perturbation A W' of the parameters: 

/ lAW*(( < 61 =+do < d(W)  (4.2) 

and 

(4.3) 

Thus, for any perturbation satisfying 1 1  A W' I I < ~3 = inf(f1, t 2 )  we simul- 
taneously have d(W)  > d o  and IIV@ - W'j/ < do/2, which ensures that 
the open ball with radius do/2 centered at V'P is entirely contained in 
B W ( V f p ) .  Now, by continuity in the forced system, we can find €4 > 0 
such that 

(4.4) 

Finally, for any perturbation satisfying IlAW*l( < E = inf(E3,64) we have 
that VtP(W) is contained in the ball of radius do/2 centered at V*P and 
therefore also in B W . + h W * ( V f p ) .  But since the activation dynamics is a 
gradient dynamics, within the basin of attraction of Vfp we must have 

Efp(Vfp) 5 Efp(V'p) = EtP(VtP) (4.5) 
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and therefore CP(W* + A W )  L 0. Hence, for any iiAW*/i < t, P ( W *  + 
AW*) 2 Cp(W*) = 0. Thus the critical point W* is a local minimum of 
each Cp, Each CP is convex around W* and the same holds for C. 

It is important to observe that, in a given problem, the previous anal- 
ysis does not say anything about the size of the neighborhood of W* over 
which C is convex (nor do we know with certainty that such a neighbor- 
hood is always entered). This neighborhood can conceivably be small. 
Furthermore, nothing can be inferred at this stage on the duration of 
each one of the stages in the course of contrastive training. If at some 
point, however, the contrast function becomes negative, then one knows 
that the optimum has been missed and training should be stopped and 
restarted from a point where C is positive. Finally, the previous analysis 
assumes the existence of a set of weights that can do the task perfectly, 
without any error. Additional work is required for the case of approxi- 
mate learning. 

5 Oscillations and Collective Implementations 

In this section, we consider some issues concerning the implementation 
of CL algorithms in collective physical analog systems. We cast the algo- 
rithm in the form of a set of nonautonomous coupled ordinary differen- 
tial equations with fast and slow time scales, governing the simultaneous 
evolution of both the activation and the weight dynamics. The formal 
description we have given thus far of CL relies on two different dynam- 
ical systems, a free system and a forced system. For implementations, 
however, it is desirable to have a collective dynamical system that alter- 
nates between forced and free phases. This can be achieved in several 
ways by making use of some basic oscillatory mechanism to alternate 
between the phases and leads to algorithms that are local in space but 
not necessarily in time. For instance, in Example 3.2 we can introduce 
an oscillatory mechanism in the activation dynamics by considering the 
parameter y to be a periodic function y ( t )  resulting in 

- dtl, 
dt (5.1) 

where y,(f) = 0 for the internal units and yl(f) = y(t) for the output 
units. If y(f) changes slowly enough and if the activation dynamics is 
fast enough, the network is almost always at steady state. For example, 
y( t )  could be a square wave oscillation with magnitude and frequency 
w [i.e., y(t) = y or 0, depending on whether the teacher is on or off]. The 
network departs from steady state only during the transient after y ( f )  
suddenly changes its value. 

We now consider several possibilities for using oscillations in the 
weight updates. The most obvious approach is to perform one update 
per relaxation. The learning rate must be small and alternate in sign 
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(positive when the system is forced and negative when the system is 
free). In this simple approach, the weight dynamics hemstiches its way 
downhill. It  follows the true gradient of the contrast function only in 
the t i  + 0 limit. We have found that this method is particularly prone to 
discontinuities associated with basin hopping phenomena. This leads to 
learning curves that exhibit extreme sawtooth and/or spiking behavior 
and often do not converge. A better approximation to equation 2.5 is 
to continuously integrate the weights based on the difference of some 
running average of V,V, while the teacher signal is on and off. That is, 
something like 

1 '1 

t l - t o  f l i  

&ulJ = r l -  / 83(t)V,( f )Vl( t )dt  (5.2) 

where A j ( t )  can be a bipolar square wave or any other kind of bipolar os- 
cillation and I j ( t )  is phase locked with ? ( t )  [such that $ ( t )  < 0 if ? ( t )  = 01. 
In the implementation of equation 5.2, one needs to choose an integra- 
tion time interval t l  - t o  of the order of several teacher signal periods and 
to be able to update the weights at regular multiples of this time inter- 
val. In an analog system, a suitable alternative may be to approximate 
equation 2.5 using the differential equations 

dw 1 
r r ( , 2  dt  = -s rs ' I  

ds,, = --sl, + S(t)V,( t )V,( t )  

with 
1 

d t  r, 

Equation 5.4 is a leaky integrator 

(5.3) 

(5.4) 

that averages over the forced and free 
gradients with opposite signs and thus cal&lates an approximation to 
the gradient of the contrast function. If r << r, << 27r/w, then sll remains 
close at any time to its instantaneous equilibrium value rJ(  t)V,(t)V,( t )  
in which case the right-hand side of equation 5.3 becomes just equal to 
$(t)V,( t )V,( f ) .  Thus wlI integrates the instantaneous correlation between 
the activities V ,  and V,. Yet in practice, the filter should be rather operated 
with rq >> r and rs 2 2x/w in order to get good averaging over several 
oscillations of the teacher signal. In summary, for this scheme to work, 
it is essential to keep in mind that there are at least four time scales 
involved: the relaxation time of the activities r,  the period of the 0-1 
teacher signal ~ / U J  (and the phase-locked fl weight modulation), the 
time between pattern changes T? and the relaxation time of the weights 
r , .  These should satisfy r < 2x/w < rp < rw. In principle, even with r 
small, it cannot be guaranteed that the activations always converge faster 
than the patterns changes or faster than the oscillations. This is because 
there can be large variations in the convergence time of the activation 
dynamics as the weights evolve. In practice, it seems to be sufficient 
to have the activation dynamics very fast compared to other time scales 
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so that the transients in the relaxation remain short. A similar caveat 
applies to Deterministic Boltzmann Machines. 

It should be noticed that in CL, the waxing and waning of the clamp- 
ing or of the teacher signal provide a basic underlying rhythm. In general, 
the time scale of the synaptic weight updates can be much larger than 
the period of this rhythm. However, one can envision the case where 
the time scale of the updates is close to the period of the rhythm. In 
this range of parameters, CL requires some mechanism for fast Hebbian 
synaptic plasticity consistent with the ideas developed by von der Mals- 
burg (see von der Malsburg 1981). 

6 Simulations and Conclusion 

We have tested the CL algorithm corresponding to equations 3.8 and 3.9 
on a small size but nonlinearly separable problem: XOR. The network 
architecture consists of three input lines (one for the bias), three hidden 
units and one output unit (see Fig. 2). All the units receive an input bias, 
but only the hidden units are connected to the inputs. In addition, the 
hidden units and the output are fully interconnected in a symmetric way. 

We use equation 2.5 to descend along the gradient, as described in the 
previous section. All the gains of the units are kept constant (A = 1) and 
no annealing is used.3 The learning rate is r) = 0.01. In these simulations, 
patterns are presented in cyclic fashion although no major differences 
seem to arise when presentations are done randomly. The network is 
relaxed using a fourth order Runge Kutta method but the results are es- 
sentially identical when Euler's integration method is used with a small 
step size. Figure 3 shows the results of the simulations for different val- 
ues of 7.  As the strength of the teacher signal 7 is reduced, learning 
becomes slower. As can be seen, there are spikes that occur simultane- 
ously in the contrast function and in the LMS error. These discontinuities 
are a consequence of basin hopping. It is easy to test this hypothesis nu- 
merically by freezing the weights just before a given spike and probing 
the structure of the energy surface by starting the activation dynamics at 
random points in a neighborhood of the origin. As expected, we observe 
that the system converges to one of several final states, depending sen- 
sitively on the particular initial state. To demonstrate that this algorithm 
actually trains the input-to-hidden weights, it is necessary to perform 
an additional control to eliminate the possibility that the hidden units 
start with an internal representation that is linearly separable by the out- 
put unit. To perform this control, we trained the network in two ways. 
In one case, we froze the input-to-hidden weights and in the second 

'Tt is worthwhile to stress that our purpose here is only to demonstrate the basic 
principles and not to develop optimal algorithms for digital computers. Indeed, we can 
achieve significant speed-ups by using the usual tricks such as annealing, momentum 
terms, and higher learning rates (up to = 1). 
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Figure 2: The network architecture used in all simulations. 

case we let them adapt. We found a set of parameters where networks 
were untrainable with frozen input-to-hidden weights, but trainable with 
adaptable input-to-hidden weights. This proves that the CL algorithm 
is training the input-to-hidden weights. The present work needs to be 
extended toward problems and networks of larger size. The ratio of the 
number of visible units to the number of hidden units may then become 
an important parameter. 

Finally, we would like to conclude with the conjecture that oscillations 
of the sort discussed in this paper may possibly play a role in biologi- 
cal neural systems and perhaps help in the interpretation of some of the 
rhythms found in nervous tissues, especially in circuits that are believed 
to participate in associative memory functions (for instance in hippocam- 
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Figure 3: Time evolution of the contrast function and the LMS error function 
associated with equations 3.8 and 3.9 for different values of the parameter 7 ,  
with a = 1, X = 1, 11 = 0.01 and the target values Ti are f0.99. Relaxations 
are performed using fourth order Runge-Kutta method with a time step of 0.1, 
starting from activations initialized to 0. Initial weights are normally distributed 
with a mean of 0 and a variance of 0.5. Patterns are presented cyclically, once 
per weight update. Each iteration on the time axis corresponds to one pattern 
presentation, thus to the relaxation of a free and a forced network. 

pus or piriform cortex). Functionally, these oscillations would correspond 
to some form of rehearseal whereby a waxing and waning teacher sig- 
nal generated by reverberating short-term memory circuits would induce 
stable synaptic modifications and storage in long-term memory circuits. 
Physically, they would correspond to oscillations in the degree of clamp- 
ing of various neuronal assemblies. These oscillations would act as local 
clocks in analog hardware, ensuring that communications and computa- 
tions occur in the proper sequence. Intuitively, it would seem more likely 
for this rehearsing process to be associated with a relatively slow rhythm, 
perhaps in the 8 range (3-10 Hz) rather than with the faster 7 oscillations 
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(40-80 Hz) that have recently been linked to functions such as phase 
labeling and binding (see, for instance, Gray ef al. 1989 and Atiya and 
Baldi 1989). However, a form of CL based on y oscillations originated 
in sensory cortices may be able to account for the sort of memory traces 
revealed by experiments on priming effects (Tulving and Schacter 1990). 
Obviously, additional work is required to explore such hypotheses. 

7 Appendix: Contrastive Learning of Trajectories 

The same minimization principle that leads to simple learning algorithms 
for convergent dynamical systems can be extended to time-dependent 
recurrent networks where the visible units are to learn a time-dependent 
trajectory in response to a time-dependent input. In this appendix, we 
include for completeness two possible directions for this extension. In 
the first case, we assume that there are delays in the interactions and we 
exploit the fact that the limit trajectories are minima of suitably defined 
Lyapunov functions. In the second case, we assume no delays and exploit 
the fact that trajectories can be expressed as extrema of functionals or 
actions. 

7.1 Time-Dependent Contrastive Learning with Delayed Interac- 
tions. In Herz et al. (19911, it is shown that if multiple pathways with 
different time delays are introduced in the usual binary Hopfield model, 
then cycles of period P can be stored as local minima of a time-dependent 
Lyapunov function that decreases as the network is relaxed. Here, we 
apply the contrastive learning approach to this setting with discrete time 
and continuously valued model neurons (Hem 1991). To be specific, 
consider a network of n units with activations defined by 

V,(f + 1) gi[ui(f)l (a.1) 

where gi is a differentiable, bounded, and monotonically increasing in- 
put/output function. ui( t )  is the usual local field or internal membrane 
potential and is defined by 

w,,(T) is the weight of the connection from j to i with delay 7 .  Since the 
time is discretized, all the delays are integers. In addition, for simplicity, 
we assume that q ( 7 )  = 0 for 7 2 P - 1. The task of the network is to 
learn to associate a periodic output cycle of length P to a periodic input 
cycle also of length P. The output can be read on all the units in the 
networks or alternatively from a subset of "visible" units. Provided the 
couplings satisfy an extended synaptic symmetry 

~ ~ ~ ( 7 )  = wij[P - (2 + ~) (modP) ]  (a.3) 
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it is not difficult to see that the network has a time-dependent energy 
function given by 

E(V.1. W. t )  = 

with 

GI ( Vi) = bv' 8;' (x) d x  (a.5) 

At each synchronous time step of the dynamic defined by equations a.1 
and a.2, AE 5 0 and since E ,  for fixed weights, is a bounded function of 
V,  the function E must converge to a stable value. Once E has stabilized, 
the network is either at a fixed point, either on a cycle of period P (or, 
possibly, a divisor of P).  Learning can be attempted by using, for instance, 
a generalization in time of Hebb's rule. In the CL approach, as for the 
case of Boltzmann Machines, one can define a forced network that relaxes 
with its inputs and outputs clamped to the respective target limit cycles. 
A time-dependent contrast function in this case is defined by 

C[W,I ( t ) ,T( t ) . t ]  = E'[V',I(t), W.T( t ) . t ]  -Ef[Vf,I(t) ,  W , t ]  (a.6) 

where Vt and Vf represent the instantaneous activities in the free and 
forced networks. By differentiating equation a.6 with respect to w, one 
immediately obtains the CL rule 

P-1 

A w i j ( ~ )  = q{ v(t - o)V,! [( t  - (0 + 7 + l)(modP)] 
fY=O 

-Vf(t - ct)V![t - (N + T + l)(modP)]} (a.7) 

which is a generalized version of the usual Hebbian CL rule of Deter- 
ministic Boltzmann Machines. 

7.2 Lagrange Machines. In this section, we briefly extend CL to time- 
dependent problems using a variational formalism. Consider a free sys- 
tem with an action along the trajectory rf in the space of the activations 
Vf, during the time interval [ to ,  t l ] ,  given by 
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The dynamics of the system extremizes this action and corresponds to 
the Lagrange equations 

d aLf ~ 8L' 
d t a v f  aVf 
-~ ~ - 

Similar relations hold in the forced system with 

(a.9) 

S'(T') = J" Lt[V'. v'. W. Z(t). T ( t ) .  t]  d t  (a.10) 
to  

We can define the contrast function C( W) = S'(1'') - Sf(rf) so that the in- 
ternal parameters are updated according to Aw = -q(aC/aw),  calculated 
along the t w o  actual trajectories followed by the free and forced systems. As 
in the fixed point algorithms, the differentiation of the actions contains 
both implicit and explicit terms. The implicit terms can be simplified by 
integrating by parts and using the Lagrange equations. Finally, we get 

Now there are several possible choices for Lf and L' and two observations 
can be made. First, if the dependence of Lf (and L') on w is based on a 
quadratic form such as Lf = - f  C , , ,w , ,VfV~+V~~, ( t )+C, f , (Vf .  Vf ) ,  then the 
integral in equation a.11 is Hebbian, similar to the Deterministic Boltz- 
mann Machine learning rule, and equal to the average of the difference 
between the local covariance of activities. Second, by properly choosing 
the initial conditions in the free and forced systems, it is easy to have the 
corresponding boundary term in equation a.11 vanish. Finally, it should 
be noticed that with a nondissipative dynamics, the trajectories that are 
learned can vary with the input but cannot be stored as attractors. 
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