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ABSTRACT

The encoding problem [1] is an important canonical problem. It has widely been used as a benchmark.
Here, we have analytically derived minimal—-sized nets necessary and sufficient to solve encoding problems
of arbitrary size. The proofs are constructive: we constructn — 2 — n encoders and show that 2 hidden units
are also necessary fon > 2. Moreover, the geometrical approach employed is general and has much wider
applications. For example, this method has also helped us derive lower bounds on redundancy necessary
for achieving complete fault tolerance [2, 3].

| Introduction

The encoding problem is an important canonical problem for neural networks [1]. In this problem,
a set of orthogonal input patterns are mapped onto a set of orthogonal output patterns through a (small)
set of hidden units. Typically, the inputs and outputs are assumed to be binary. Theregreunits;n
output units anan hidden units wheren~ log,n . The hidden units are generally arranged in a single
layer resulting in three layers of units. There an@put/output patterns. The hidden units are expected
to form some sort of compact code for each of the patterns. Henceforth, we refer to an encoding problem
of sizen by the acronynm x n problem and a net for a problem of this size that tidgdden units as an
n—m-— nencoding net.

The inputs and outputs of the units are continuous valued. That raises the question; réidden
units necessary to solve arx n problem ? If less units can do the job, what is theimum number of
units needed for an x n encoding problem ?

We have analytically derived this minimum number of hidden units and established the capabilities
of n— m— n encoding nets. The next section describes the topology and states the assumptions. Section
[l presents and proves the results on the bounds and related parameters. The following sections presen
discussion and conclusion.
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Il Topology

The network is arranged into 3 layers as shown in Figure 1. Every unit in a layer feeds all other units
in the next layer. There are no layer-skipping connections. Besides the incoming weights, each unit (in
the hidden and output layers) has one more independently adjustable parameter, i.e., threshold or bias.
The units are assumed to be sigmoidal and the output aftthait is given by

out put = S (resultantinput; here S(u)=—1 and
ut put (resu inpug) w (u) =
resultantinput = netinput— bias and netinpuf= zgzlwijoj (1)

Here,r is the number of units that feed umiandw;; is the weight of the link from unif (sender) ta
(receiver). The output is considered todoe or at logical level 1" ifitis greater than or equal to 0.50

; andoff oratlevel ‘0" ifitislessthan 0.50 . The input patterns are the rowa gfn identity matrix.

The target outputs are identical to the inputs, i.e., the hidden units are expected to simply replicate the
input pattern onto the output layer. The hidden lagrecode®ach of then patterns withm < n units and

the output layedecodeghe compact codes developed by the hidden units back to original patterns.

1l Results

With the above topology and assumptions we now proceed to state the following results.

Theorem 1: Anencoding net with one single hidden unit (i.e., m = 1) can learn at mgs2 2ncoding
problem.

Proof : That it can learn X 1 and 2x 2 problems can be demonstrated by giving an example. In
Figure 2, a 2- 1—2 net is illustrated along with all the weights and biases. Unit numbers are shown
in parenthesis and the bias values are indicated inside the circles representing the units. Units 4 and 5
constitute the input layer and 1 and 2 belong to the output layer. It can be verifiegktaat, = b, =
b, =5.0; w; =w, =10.0 along with the signs indicated in the figure lead to correct reproduction of
the two input patterns (viz{1,0} and{0,1}) at the output layer. This is one of the infinitely many sets
of weight and bias values that lead to correct outputs.

We now prove that it is impossible to reproduce 3 patterns using only one hidden unit. Here, the
hidden unit must have 3 distinct outputs, one corresponding to each of the 3 input patterns, otherwise
the output units can not distinguish between those patterns that map onto the same output value of the
hidden unit. Denote the 3 distinct outputs of the hidden unit,as, andos respectively, where without
loss of generality,01 > 02 > 03 . Let the weights from the hidden units to the output unitsvipav, and
ws and biases of the output units B¢ 8, and03, respectively. Then, the resultant input to ttieoutput
unit (denoted byy;) is given by

yi =wx—06; where i=1,23 and Xx= 01,02,03 (2)



Here,x denotes the output of hidden unit(s). Note that the functions

1
1+ e (WiXx—8;)

where i =1,2,3 and Xx= 01,02,03 (3)

fi(x) =Sy(9] =

are monotonic. Without loss of generality, the input patterns are assumed fd 80}, {0,1,0}, and
{0,0,1}. These same patterns should be reproduced at the output, which implies

fi(o1) ="1"; fi(op) ="0"; fi(03) ="0", i.e., fi(01)>0.5; fi(02) <0.5; f1(03) <0.5 4)
fo(01) =07 fa(op) =17 fa(03) ="0", i.e., fa(01) <0.5; fp(02) >0.5; fy(03) <0.5 5)
f3(01) =“0"; fz(02) ="0"; fz(0o3) ="1", i.e., fz(01) <0.5; f3(02) <0.5; fz(03) > 0.5 (6)

From (3) it is seen that constraints (4) and (6) can be satisfied since they obey monotonicity. Constraints
(5), however, cannot be satisfied since the function on the left—hand side is monotonic while the required
outputs on the right—hand side are not monotonic. It can be verified that for any permutation of input
patterns and output values, the constraints on one of the three units are impossible to satisfy since the
inputs to that unit arenonotonic but the target outputs art monotonic Thus the 3< 3 problem

cannot be solved by just one hidden unit.

The proof for then x n sized problem withn > 3 is identical to the above proof for:33 case.
Q.E.D.

There is a geometrical interpretation of the above result which is illustrated in Figure 3. This inter-
pretation is critical for the proof of the next theorem which establishes a bound for the genenal
problem. Fora 21— 2 net, the output of the hidden unit corresponding to each of the (input) patterns
can be represented by a point along 1 dimension or a line. Without loss of generality, Choose that line to
be thex axis. Then, the output of the hidden unit corresponding to each of the 2 input patterns is a point
between [0,1] on th& axis, as illustrated by point3; andP. in Figure 3. Because of the one-to—one
mapping from the input patterns to the points representing the outputs of hidden units, the $gmbols
andP, will also be used to refer to thgatterns The resultant input to thigh unit is given by equation (2),
wherei = 1,2 andw; and6; are the weight and bias associated withitheunit. Note that these equations
represent straight lines (hyperplanes in general) ixthplane, as illustrated by linégs andl, in Figure
3. Henceforth, we just use the labels 1 and 2 to refer to the output units as well as the corresponding lines
(hyperplanes) implemented by the units. A poigis considered to be on thmositive side of the line
y=wx—0 if wxp—0>0; and on thanegativeside of the line ifwxy — 6 < 0. For example, in Figure
3, all points (on thex axis) to the right of point Q are on the positive side of lip@nd on the negative
side of linel,. The vertical distanc A between poinP; and the lind represents theesultantinput
to output unit 1 for patterf;. Similarly, distancd® B represents theesultantinput to unit 2 for pattern
P1. It is useful to think ofdirected distance from the pointBy, P, to lineslq,lo. If the direction is
upwards (alongty axis), then the correspondimgsultantinput is positive (i.e., the output of the unit
is “1” ), while a downwards (alongy axis) distance implies a negatikesultantinput ( “0” output).

For the patterns (points) on the positive side of the line, the resultant input to the corresponding unit is



positive and the unit output mnor “1” . Conversely, a uniti®nonly if the pattern lies on the positive
side of the line it implements. Similarly, a unitadf if and only if the pattern lies on theegative side
of the line corresponding to the unit.

Learning implies finding weights and biases that satisfy the constraints

y1(01) >0 ; y1(02) <0 ; y2(01) <O ; y2(02) >0 (7)

The first two inequalities say that poing and P, must be on positive and negative sides of line
l1, because unit 1 should lmn for pattern 1 andff for pattern 2. The interpretation of the last two
inequalities is similar. Together, the constraints imply that both lipasdl; intersect thex axis between
P1 andP, and that one of them has a positive slope and the other has a negative slope. Figure 3 illustrates
a case where the poinB, P, and linedl1, |, satisfy the above constraints. In this figure, blatlndl,
intersect thex axis at the same poil@. In general, this may not be the case, as long as the constraints
are satisfied.

In general, learning implies constraints similar to (7). The constraints are such that

1. An output unit isonfor only one pattern. This means that the weight(s) and bias associated with
that unit define a hyperplane which is such that only one of the pBimgson itspositive side, all
others are on iteegative side.

2. Each poin® is such that for the corresponding input pattern, only one output uait #&d this
unit staysoff for all other input patterns. This means that each of the p&irtss on thepositive
side of exactly one hyperplane and on tiegative side of all others.

In Figure 3,Py is onpositive side of only one line vizl; andP; is onpositive side of only one line viz.
[> . Similarly linel1 has only one point on itgositive side viz. P, and linel, has only one point on its
positive side viz.P..

For then x n encoding problem, it may be expected that the minimum number of hidden units re-
quired is a function oh. Contrary to this expectation, however, it turns out that only 2 hidden units are
sufficient to solve any x n problem for arbitrarily large n.

Theorem 2 : Only 2 hidden units are sufficient to encode and decodempatterns for any positive
integer n.
Proof : We prove this by a geometrical construction similar to the one illustrated above forthe 2
case. Here the network is— 2 —n, i.e., there ar@ input units, 2 hidden units andoutput units. For
each input pattern, the hidden units develop outputs that can be representéidtiycapoint in thex-y
plane, where th& coordinate denotes the output of the 1st hidden unit angl to®rdinate denotes the
output of the 2nd hidden unit. These points are denoteld by i = 1,2..n.

The hidden units feed all the output units. Let the weight associated with the link between hidden
unit 1 and output unit be denoted byv! . The weight from hidden unit 2 to output urits denoted
by w?. Let the bias of the output uniitbe denoted b;. Then, the resultant input to tfih output unit



(denoted by) is given by
Z = W|1X+\NI2y_ ei where i = 1) =N and (Xay) = (O%,O%), Ty (0%,0%) (8)

Here,x andy correspond to the axes or dimensions representing the outputs of the hidden unts, and
represents the dimension that corresponds todheltantinput to the output units. These equations
represent (hyper) planes in the 3-D space and that will henceforth be dendigdviyerei = 1,---,n.

These planes are the decision surfaces implemented by the corresponding units. We say that a point
(X0, Yo) is on thepositive side of plandT; if

20 = Wi%o +Wyo — 6 > 0 )

and on thenegativeside if

20 =W X0 +Wyo— 8 <0 (10)

In order to map the input patterns onto the output patterns, the gairaisd the planefbl; have to
satisfy constraints similar to those listed above in the exposition on geometrical interpretation. Once
again we observe that each pldngedefines the output of one of the units in the output layer, and each
of the points corresponds to a pattern. An output unitda only for one of then patterns andff for
others. Similarly, each pattern has exactly one output anitand all othersoff. These constraints can
be geometrically interpreted as follows :

1. Each planél; has only one point on iggositive side, all other points are on itegative side.

2. Each poinB is on thepositive side of only one plane and on thegativeside of all other planes.

If there exist points’ and planedl; ; i,k=1,2..,n that satisfy the above constraints, then they
constitute a valid solution for thex n problem using only 2 hidden units. Figure 4 shows the geometrical
construction that proves the existence of such solution(s). It shows2-66 case for the purpose of
illustration, but the procedure can be applied to ary2 — n problem.

As afirst step toward the solution of the- 2—n problem, a regular polygon of n sides is constructed
in thex-y plane. This is illustrated by the hexagon with vertices (a,b,c,d,e,f) drawn in solid linestyle in
Figure 4. Next, every edge is extended beyond the vertex up to a point where it meets the extension of
some other edge of the polygon, so that (isoceles) triangles are obtained on the exterior of the original
polygon, with the edges of the polygon as the bases of these triangles. This is illustrated by the shaded
triangles in Figure 4. Now consider the original polygon as the base of a pyramid or a cross section of
the pyramid along thg-y plane. The faces of the pyramid intersect at a point directly (vertically) below
(along the—z direction) the center of the circumcircle of the polygon. In Figure 4, for example, the
center of the circumcircle is labeled as V. The vertex of the hexagonal pyramid lies directly (vertically)
below the point V (i.e., on a line in thez direction, directed into the page from point V). Théaces
of the pyramid define tha planesrll;. The pointsh have to be located within the isoceles triangles



on the exterior of the polygon in they plane, in order to satisfy the two constraints mentioned above.
One point is placed inside each triangle, as illustrated by p&ints-, Ps inside the shaded triangles in
Figure 4.

With this construction, each plamg is such that only one point is on ip@sitive side and all other
points are on itsiegative side. For example, in Figure 4, the plare passing through the vertex of the
pyramid and edgeb is such that only one point, viz?; is on itspositive side while all others are on
its negative side. Similarly, each point is goositive side of exactly one plane amggative side of all
others. In Figure 4, for example, poiRt is on thepositive side of plandl, only, and is on th@egative
side of all other planes.

Thus the points and planes satisfy all the above constraints and represent a valid solution. The outputs
of all the units have to be in [0,1]. This means that the entire diagram should be within the unit square in
thex-y plane, which is bounded by vertices (0,0), (0,1), (1,0), (1,1). This is always possible to do since
the polygon can be shrunk to any desired size so that the entire diagram can fit inside the unit square.
This proves that a solution (in fact infinitely many of them) always exists tmth@ — n problem and
can be obtained by the above construction.

Q.E.D.

IV  Discussion

Above results hold for the complementary encoding problem (0’s and 1's are interchanged) as well.
For a complementary encoding problem, the vertex of the pyramid in the above construction lies directly
(vertically) above the circumcenter V, which is in thg plane. Also note that the I/O patterns for the
complementary encoding problem anet mutually orthogonal.

In the above construction, the points corresponding to the outputs of the hidden units must lie within
the triangles formed on the edges of the polygon. Hence the area of the triangles is, in a crude sense,
related to the probability of finding a valid solution. The larger the area, the higher is the probability
that the gradient descent will latch on to a valid solution. Note that the outputs of the hidden units are
confined to be between two circles, viz., an inner circle which touches (is tangent to) each edge of the
polygon and an outer circle that passes through the tips of all the triangles on the exterior of the polygon.
Both these circles are drawn in dotted linestyle in Figure 4. For a giyére triangles have the largest
area when the outer circle is as large as possible, i.e. it touches the edges of unit squase inplame.

Hence the net is more likely to hit upon this solution. This is consistent with the observation that neural
nets tend to stabilize at vertices or corners of the solution space.

As n— o , the circles approach each other and in the limit they coincide. This means that the
volume (area in this case) of the solution space approaches 0 and therefore, the probability that the
search algorithm converges to a valid solution also approaches 0, as expected.

The distance (along thedirection) between the poift and the corresponding plafk represents
the resultant input to a unit. In the limit as— o , the pointsk, approach planeBl; and the vertical
distance between the planes and the points approaches 0 as well. This means that the resultant input



to the output units approaches 0. Hence the outputs of units thahaeproach 0.5 from above, i.e.,
output values indicating a logical levell™ — 0.5+ and the outputs of the units that aapproach
the limit 0.5 from the other side, i.e., logical0™ — 0.5—

If the output tolerances are are specified (for examplela cannot be below 0.75 and a0™ cannot
be above 0.25) then, in the above construction, it is possible to find out the maximum valiaoivill
deliver the outputs within the desired tolerances, for a giverConversely, given an, the number of
hidden unitanrequired to deliver the outputs within the specified tolerance can be also calculated from
the above construction.

If n <4, the “allowable” regions for the point are no longer triangles since the edges of a regular
polygon withn < 4 sides when extended beyond the vertices, do not intersect the extensions of any of
the other edges.

It should also be noted that in the above construction, the polygon need not be regular. If the polygon
is not regular, however, some of the “allowable” areas shrink and others expand. Also, theRjanes
need not intersect at the same point or need not form a pyramid, as long the relative placement of the
planes and the points satisfy the two constraints mentioned above.

The unbounded allowable areas for poiRtghat arise due tm < 4 or due to irregularity of the
underlying polygon, as well as the asymmetry in allowable areas that arises when the polygon is irregular
is illustrated in Figure 5. Note that the construction remains the same in all these cases. ThB points
still have to be in the regions exterior to the polygon, and between the lines obtained by extending the
edges of the polygon beyond the vertices. This is illustrated by the shaded regions in Figure 5. If the
qguadrilateral shown in Figure 5 was regular, i.e., it was a square, then all the “allowable” regions for
pointsP, would be identical in shape and unbounded on one side. Because the quadrilateral is irregular,
some allowable regions have shrunk and others have grown. For example, the shaded region to the left of
planell, has shrunk from a rectangular strip unbounded on left side, to a bounded and triangular region
shown in the figure. Similarly the shaded region to the righi ghas expanded from a rectangular strip
to to an unbounded quadrilateral.

It seems that the symmetric solution is more fault—tolerant. The reasoning is as follows. The edges
and planes of the polygon can be jiggled without changing the classification or logical output of the
network. This corresponds to changing the weights and biases of the units represented by the planes.
How much change is allowed in the weight and bias values dependsaad other factors. For the
symmetric solution, it is evident that whatever tolerance applies to a point or a plane also applies to all
other points or planes. In contrast, if the polygon is not regular or if the planes do not form a pyramid,
then some points and planes must be confined to smaller tolerances (smaller than the corresponding one
in the symmetric case) while others can have larger tolerance. The total amount of deviation allowed
can be measured by the volume enclosed between the original positions of the planes and the extreme
positions after large deviations in parameters (or faults), at which the solution (relative placement of
planes and points) still satisfies the above constraints. It is conjectured that the total of such “fault—
tolerance volumes” is maximum for the symmetric case, or in other words, a symmetric solution is more



fault—tolerant.
V  Conclusion

Bounds have been established for the solution of the encoding problem using a feedforward network
with one layer of hidden units. Existence of solution(s) is demonstrated by constructive proofs, leading
to the actual solutions. The discussion reveals interesting connections to limiting cases, fault tolerance,
probability of finding a valid solution and other issues. The geometrical interpretation is general and
applicable to other problems as well. For instance, this approach was employed in [2, 3]. to derive
lower bounds on the redundancy necessary to achieve complete fault tolerance for all single faults. The
encoding problem directly reflects on the ability of the net to develop distributed representations among
the hidden units and map them back onto localized representations on the output units. These results will
possibly help to define a meaningful measure of the distributedness of representations.
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Output layer, n units

Hidden layer, m units

Input layer, n units

Figure 1: An n—m-—n encoding net.



(1) (2)

(4) (5)

Figure2: A 2—1—2 encoding net with weights and biases
w; and b; > 0 for alli. Unit indices are shown in parenthesis.
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Figure 3 : A geometrical interpretation of the-2 — 2 encoding problem.
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Figure 4 : The geometrical construction to obtain the weights and biases fera—®
(or n—2—n in general) encoding net.
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Figure 5 : The construction for the case whred 4 and the polygon is not regular.
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