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ABSTRACT

The encoding problem [1] is an important canonical problem. It has widely been used as a benchmark.

Here, we have analytically derived minimal–sized nets necessary and sufficient to solve encoding problems

of arbitrary size. The proofs are constructive: we constructn�2�n encoders and show that 2 hidden units

are also necessary forn> 2. Moreover, the geometrical approach employed is general and has much wider

applications. For example, this method has also helped us derive lower bounds on redundancy necessary

for achieving complete fault tolerance [2, 3].

I Introduction

The encoding problem is an important canonical problem for neural networks [1]. In this problem,

a set of orthogonal input patterns are mapped onto a set of orthogonal output patterns through a (small)

set of hidden units. Typically, the inputs and outputs are assumed to be binary. There aren input units;n

output units andm hidden units wherem� log2n . The hidden units are generally arranged in a single

layer resulting in three layers of units. There aren input/output patterns. The hidden units are expected

to form some sort of compact code for each of the patterns. Henceforth, we refer to an encoding problem

of sizen by the acronymn�n problem and a net for a problem of this size that hasm hidden units as an

n�m�n encoding net.

The inputs and outputs of the units are continuous valued. That raises the question : are log2n hidden

units necessary to solve ann�n problem ? If less units can do the job, what is theminimum number of

units needed for ann�n encoding problem ?

We have analytically derived this minimum number of hidden units and established the capabilities

of n�m�n encoding nets. The next section describes the topology and states the assumptions. Section

III presents and proves the results on the bounds and related parameters. The following sections present

discussion and conclusion.
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II Topology

The network is arranged into 3 layers as shown in Figure 1. Every unit in a layer feeds all other units

in the next layer. There are no layer-skipping connections. Besides the incoming weights, each unit (in

the hidden and output layers) has one more independently adjustable parameter, i.e., threshold or bias.

The units are assumed to be sigmoidal and the output of theith unit is given by

out puti = S(resultant inputi) where S(u) = 1
1+e�u and

resultant inputi = netinputi�biasi and netinputi = ∑r
j=1wi j oj (1)

Here,r is the number of units that feed uniti andwi j is the weight of the link from unitj (sender) toi

(receiver). The output is considered to beon or at logical level “1” if it is greater than or equal to 0.50

; andoff or at level “0” if it is less than 0.50 . The input patterns are the rows ofn�n identity matrix.

The target outputs are identical to the inputs, i.e., the hidden units are expected to simply replicate the

input pattern onto the output layer. The hidden layerencodeseach of then patterns withm< n units and

the output layerdecodesthe compact codes developed by the hidden units back to original patterns.

III Results

With the above topology and assumptions we now proceed to state the following results.

Theorem 1 : An encoding net with one single hidden unit (i.e., m = 1) can learn at most 2� 2 encoding

problem.

Proof : That it can learn 1�1 and 2�2 problems can be demonstrated by giving an example. In

Figure 2, a 2�1�2 net is illustrated along with all the weights and biases. Unit numbers are shown

in parenthesis and the bias values are indicated inside the circles representing the units. Units 4 and 5

constitute the input layer and 1 and 2 belong to the output layer. It can be verified thatw3 = w4 = b1 =

b2 = 5:0; w1 = w2 = 10:0 along with the signs indicated in the figure lead to correct reproduction of

the two input patterns (viz.f1,0g andf0,1g) at the output layer. This is one of the infinitely many sets

of weight and bias values that lead to correct outputs.

We now prove that it is impossible to reproduce 3�3 patterns using only one hidden unit. Here, the

hidden unit must have 3 distinct outputs, one corresponding to each of the 3 input patterns, otherwise

the output units can not distinguish between those patterns that map onto the same output value of the

hidden unit. Denote the 3 distinct outputs of the hidden unit aso1;o2 ando3 respectively, where without

loss of generality,o1 > o2 > o3 . Let the weights from the hidden units to the output units bew1;w2 and

w3 and biases of the output units beθ1;θ2 andθ3, respectively. Then, the resultant input to theith output

unit (denoted byyi) is given by

yi = wix�θi where i = 1;2;3 and x= o1;o2;o3 (2)
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Here,x denotes the output of hidden unit(s). Note that the functions

fi(x) = S [yi(x)] =
1

1+e�(wix�θi)
where i = 1;2;3 and x= o1;o2;o3 (3)

are monotonic. Without loss of generality, the input patterns are assumed to bef1,0,0g, f0,1,0g, and

f0,0,1g. These same patterns should be reproduced at the output, which implies

f1(o1) = “1”; f1(o2) = “0”; f1(o3) = “0” ; i.e., f1(o1)> 0:5; f1(o2)< 0:5; f1(o3)< 0:5 (4)

f2(o1) = “0”; f2(o2) = “1”; f2(o3) = “0” ; i.e., f2(o1)< 0:5; f2(o2)> 0:5; f2(o3)< 0:5 (5)

f3(o1) = “0”; f3(o2) = “0”; f3(o3) = “1” ; i.e., f3(o1)< 0:5; f3(o2)< 0:5; f3(o3)> 0:5 (6)

From (3) it is seen that constraints (4) and (6) can be satisfied since they obey monotonicity. Constraints

(5), however, cannot be satisfied since the function on the left–hand side is monotonic while the required

outputs on the right–hand side are not monotonic. It can be verified that for any permutation of input

patterns and output values, the constraints on one of the three units are impossible to satisfy since the

inputs to that unit aremonotonic but the target outputs arenot monotonic. Thus the 3� 3 problem

cannot be solved by just one hidden unit.

The proof for then�n sized problem withn> 3 is identical to the above proof for 3�3 case.

Q.E.D.

There is a geometrical interpretation of the above result which is illustrated in Figure 3. This inter-

pretation is critical for the proof of the next theorem which establishes a bound for the generaln� n

problem. For a 2�1�2 net, the output of the hidden unit corresponding to each of the (input) patterns

can be represented by a point along 1 dimension or a line. Without loss of generality, Choose that line to

be thex axis. Then, the output of the hidden unit corresponding to each of the 2 input patterns is a point

between [0,1] on thex axis, as illustrated by pointsP1 andP2 in Figure 3. Because of the one–to–one

mapping from the input patterns to the points representing the outputs of hidden units, the symbolsP1

andP2 will also be used to refer to thepatterns. The resultant input to theith unit is given by equation (2),

wherei = 1;2 andwi andθi are the weight and bias associated with theith unit. Note that these equations

represent straight lines (hyperplanes in general) in thex-y plane, as illustrated by linesl1 andl2 in Figure

3. Henceforth, we just use the labels 1 and 2 to refer to the output units as well as the corresponding lines

(hyperplanes) implemented by the units. A pointx0 is considered to be on thepositive side of the line

y= wx�θ if wx0�θ > 0; and on thenegativeside of the line ifwx0�θ < 0. For example, in Figure

3, all points (on thex axis) to the right of point Q are on the positive side of linel1 and on the negative

side of linel2. The vertical distanceP1A between pointP1 and the linel1 represents theresultant input

to output unit 1 for patternP1. Similarly, distanceP1B represents theresultant input to unit 2 for pattern

P1. It is useful to think ofdirected distance from the pointsP1;P2 to lines l1; l2. If the direction is

upwards (along+y axis), then the correspondingresultant input is positive (i.e., the output of the unit

is “1” ), while a downwards (along�y axis) distance implies a negativeresultant input ( “0” output).

For the patterns (points) on the positive side of the line, the resultant input to the corresponding unit is
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positive and the unit output isonor “1” . Conversely, a unit isononly if the pattern lies on the positive

side of the line it implements. Similarly, a unit isoff if and only if the pattern lies on thenegative side

of the line corresponding to the unit.

Learning implies finding weights and biases that satisfy the constraints

y1(o1)> 0 ; y1(o2)< 0 ; y2(o1)< 0 ; y2(o2)> 0 (7)

The first two inequalities say that pointsP1 andP2 must be on positive and negative sides of line

l1, because unit 1 should beon for pattern 1 andoff for pattern 2. The interpretation of the last two

inequalities is similar. Together, the constraints imply that both linesl1 andl2 intersect thex axis between

P1 andP2 and that one of them has a positive slope and the other has a negative slope. Figure 3 illustrates

a case where the pointsP1;P2 and linesl1; l2 satisfy the above constraints. In this figure, bothl1 and l2
intersect thex axis at the same pointQ. In general, this may not be the case, as long as the constraints

are satisfied.

In general, learning implies constraints similar to (7). The constraints are such that

1. An output unit ison for only one pattern. This means that the weight(s) and bias associated with

that unit define a hyperplane which is such that only one of the pointsPi is on itspositive side, all

others are on itsnegativeside.

2. Each pointPi is such that for the corresponding input pattern, only one output unit ison and this

unit staysoff for all other input patterns. This means that each of the pointsPi it is on thepositive

side of exactly one hyperplane and on thenegativeside of all others.

In Figure 3,P1 is onpositive side of only one line viz.l1 andP2 is onpositive side of only one line viz.

l2 . Similarly line l1 has only one point on itspositive side viz.P1 and linel2 has only one point on its

positive side viz.P2.

For then�n encoding problem, it may be expected that the minimum number of hidden units re-

quired is a function ofn. Contrary to this expectation, however, it turns out that only 2 hidden units are

sufficient to solve anyn�n problem for arbitrarily large n.

Theorem 2 : Only 2 hidden units are sufficient to encode and decode n�n patterns for any positive

integer n.

Proof : We prove this by a geometrical construction similar to the one illustrated above for the 2�1�2

case. Here the network isn�2�n, i.e., there aren input units, 2 hidden units andn output units. For

each input pattern, the hidden units develop outputs that can be represented by adistinctpoint in thex-y

plane, where thex coordinate denotes the output of the 1st hidden unit and they coordinate denotes the

output of the 2nd hidden unit. These points are denoted byPi ; i = 1;2::n .

The hidden units feed all the output units. Let the weight associated with the link between hidden

unit 1 and output uniti be denoted byw1
i . The weight from hidden unit 2 to output uniti is denoted

by w2
i . Let the bias of the output uniti be denoted byθi . Then, the resultant input to theith output unit
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(denoted byzi) is given by

zi = w1
i x+w2

i y�θi where i = 1; � � � ;n and (x;y) = (o1
1;o

2
1); � � � ;(o

1
n;o

2
n) (8)

Here,x andy correspond to the axes or dimensions representing the outputs of the hidden units, andz

represents the dimension that corresponds to theresultant input to the output units. These equations

represent (hyper) planes in the 3-D space and that will henceforth be denoted byΠi wherei = 1; � � � ;n.

These planes are the decision surfaces implemented by the corresponding units. We say that a point

(x0;y0) is on thepositive side of planeΠi if

z0 = w1
i x0+w2

i y0�θi > 0 (9)

and on thenegativeside if

z0 = w1
i x0+w2

i y0�θi < 0 (10)

In order to map the input patterns onto the output patterns, the pointsPk and the planesΠi have to

satisfy constraints similar to those listed above in the exposition on geometrical interpretation. Once

again we observe that each planeΠi defines the output of one of the units in the output layer, and each

of the pointsPk corresponds to a pattern. An output unit ison only for one of then patterns andoff for

others. Similarly, each pattern has exactly one output uniton and all othersoff . These constraints can

be geometrically interpreted as follows :

1. Each planeΠi has only one point on itspositive side, all other points are on itsnegativeside.

2. Each pointPk is on thepositive side of only one plane and on thenegativeside of all other planes.

If there exist pointsPk and planesΠi ; i;k = 1;2::;n that satisfy the above constraints, then they

constitute a valid solution for then�nproblem using only 2 hidden units. Figure 4 shows the geometrical

construction that proves the existence of such solution(s). It shows a 6�2�6 case for the purpose of

illustration, but the procedure can be applied to anyn�2�n problem.

As a first step toward the solution of then�2�n problem, a regular polygon of n sides is constructed

in thex-y plane. This is illustrated by the hexagon with vertices (a,b,c,d,e,f) drawn in solid linestyle in

Figure 4. Next, every edge is extended beyond the vertex up to a point where it meets the extension of

some other edge of the polygon, so that (isoceles) triangles are obtained on the exterior of the original

polygon, with the edges of the polygon as the bases of these triangles. This is illustrated by the shaded

triangles in Figure 4. Now consider the original polygon as the base of a pyramid or a cross section of

the pyramid along thex-y plane. The faces of the pyramid intersect at a point directly (vertically) below

(along the�z direction) the center of the circumcircle of the polygon. In Figure 4, for example, the

center of the circumcircle is labeled as V. The vertex of the hexagonal pyramid lies directly (vertically)

below the point V (i.e., on a line in the�z direction, directed into the page from point V). Then faces

of the pyramid define then planesΠi. The pointsPk have to be located within the isoceles triangles
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on the exterior of the polygon in thex-y plane, in order to satisfy the two constraints mentioned above.

One point is placed inside each triangle, as illustrated by pointsP1; � � � ;P6 inside the shaded triangles in

Figure 4.

With this construction, each planeΠi is such that only one point is on itspositive side and all other

points are on itsnegativeside. For example, in Figure 4, the planeΠ1 passing through the vertex of the

pyramid and edgeab is such that only one point, viz.,P1 is on itspositive side while all others are on

its negativeside. Similarly, each point is onpositive side of exactly one plane andnegativeside of all

others. In Figure 4, for example, pointP2 is on thepositive side of planeΠ2 only, and is on thenegative

side of all other planes.

Thus the points and planes satisfy all the above constraints and represent a valid solution. The outputs

of all the units have to be in [0,1]. This means that the entire diagram should be within the unit square in

thex-y plane, which is bounded by vertices (0,0), (0,1), (1,0), (1,1). This is always possible to do since

the polygon can be shrunk to any desired size so that the entire diagram can fit inside the unit square.

This proves that a solution (in fact infinitely many of them) always exists to then�2�n problem and

can be obtained by the above construction.

Q.E.D.

IV Discussion

Above results hold for the complementary encoding problem (0’s and 1’s are interchanged) as well.

For a complementary encoding problem, the vertex of the pyramid in the above construction lies directly

(vertically) above the circumcenter V, which is in thex-y plane. Also note that the I/O patterns for the

complementary encoding problem arenot mutually orthogonal.

In the above construction, the points corresponding to the outputs of the hidden units must lie within

the triangles formed on the edges of the polygon. Hence the area of the triangles is, in a crude sense,

related to the probability of finding a valid solution. The larger the area, the higher is the probability

that the gradient descent will latch on to a valid solution. Note that the outputs of the hidden units are

confined to be between two circles, viz., an inner circle which touches (is tangent to) each edge of the

polygon and an outer circle that passes through the tips of all the triangles on the exterior of the polygon.

Both these circles are drawn in dotted linestyle in Figure 4. For a givenn, the triangles have the largest

area when the outer circle is as large as possible, i.e. it touches the edges of unit square in thex�y plane.

Hence the net is more likely to hit upon this solution. This is consistent with the observation that neural

nets tend to stabilize at vertices or corners of the solution space.

As n! ∞ , the circles approach each other and in the limit they coincide. This means that the

volume (area in this case) of the solution space approaches 0 and therefore, the probability that the

search algorithm converges to a valid solution also approaches 0, as expected.

The distance (along thez direction) between the pointPr and the corresponding planeΠr represents

the resultant input to a unit. In the limit asn! ∞ , the pointsPi approach planesΠi and the vertical

distance between the planes and the points approaches 0 as well. This means that the resultant inputs
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to the output units approaches 0. Hence the outputs of units that areon approach 0.5 from above, i.e.,

output values indicating a logical level “1” ! 0:5+ and the outputs of the units that areoff approach

the limit 0.5 from the other side, i.e., logical “0” ! 0:5� .

If the output tolerances are are specified (for example a “1” cannot be below 0.75 and a “0” cannot

be above 0.25) then, in the above construction, it is possible to find out the maximum value ofn that will

deliver the outputs within the desired tolerances, for a givenm. Conversely, given ann, the number of

hidden unitsm required to deliver the outputs within the specified tolerance can be also calculated from

the above construction.

If n� 4, the “allowable” regions for the pointsPi are no longer triangles since the edges of a regular

polygon withn� 4 sides when extended beyond the vertices, do not intersect the extensions of any of

the other edges.

It should also be noted that in the above construction, the polygon need not be regular. If the polygon

is not regular, however, some of the “allowable” areas shrink and others expand. Also, the planesPii
need not intersect at the same point or need not form a pyramid, as long the relative placement of the

planes and the points satisfy the two constraints mentioned above.

The unbounded allowable areas for pointsPi that arise due ton� 4 or due to irregularity of the

underlying polygon, as well as the asymmetry in allowable areas that arises when the polygon is irregular

is illustrated in Figure 5. Note that the construction remains the same in all these cases. The pointsPi

still have to be in the regions exterior to the polygon, and between the lines obtained by extending the

edges of the polygon beyond the vertices. This is illustrated by the shaded regions in Figure 5. If the

quadrilateral shown in Figure 5 was regular, i.e., it was a square, then all the “allowable” regions for

pointsPi would be identical in shape and unbounded on one side. Because the quadrilateral is irregular,

some allowable regions have shrunk and others have grown. For example, the shaded region to the left of

planeΠ2 has shrunk from a rectangular strip unbounded on left side, to a bounded and triangular region

shown in the figure. Similarly the shaded region to the right ofΠ4 has expanded from a rectangular strip

to to an unbounded quadrilateral.

It seems that the symmetric solution is more fault–tolerant. The reasoning is as follows. The edges

and planes of the polygon can be jiggled without changing the classification or logical output of the

network. This corresponds to changing the weights and biases of the units represented by the planes.

How much change is allowed in the weight and bias values depends onn and other factors. For the

symmetric solution, it is evident that whatever tolerance applies to a point or a plane also applies to all

other points or planes. In contrast, if the polygon is not regular or if the planes do not form a pyramid,

then some points and planes must be confined to smaller tolerances (smaller than the corresponding one

in the symmetric case) while others can have larger tolerance. The total amount of deviation allowed

can be measured by the volume enclosed between the original positions of the planes and the extreme

positions after large deviations in parameters (or faults), at which the solution (relative placement of

planes and points) still satisfies the above constraints. It is conjectured that the total of such “fault–

tolerance volumes” is maximum for the symmetric case, or in other words, a symmetric solution is more
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fault–tolerant.

V Conclusion

Bounds have been established for the solution of the encoding problem using a feedforward network

with one layer of hidden units. Existence of solution(s) is demonstrated by constructive proofs, leading

to the actual solutions. The discussion reveals interesting connections to limiting cases, fault tolerance,

probability of finding a valid solution and other issues. The geometrical interpretation is general and

applicable to other problems as well. For instance, this approach was employed in [2, 3]. to derive

lower bounds on the redundancy necessary to achieve complete fault tolerance for all single faults. The

encoding problem directly reflects on the ability of the net to develop distributed representations among

the hidden units and map them back onto localized representations on the output units. These results will

possibly help to define a meaningful measure of the distributedness of representations.
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Figure 1 : An n�m�n encoding net.
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