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Identifying and classifying action potential shapes in extracellular neu- 
ral waveforms have long been the subject of research, and although 
several algorithms for this purpose have been successfully applied, 
their use has been limited by some outstanding problems. The first is 
how to determine shapes of the action potentials in the waveform and, 
second, how to decide how many shapes are distinct. A harder prob- 
lem is that action potentials frequently overlap making difficult both 
the determination of the shapes and the classification of the spikes. In 
this report, a solution to each of these problems is obtained by apply- 
ing Bayesian probability theory. By defining a probabilistic model of 
the waveform, the probability of both the form and number of spike 
shapes can be quantified. In addition, this framework is used to ob- 
tain an efficient algorithm for the decomposition of arbitrarily complex 
overlap sequences. This algorithm can extract many times more infor- 
mation than previous methods and facilitates the extracellular investi- 
gation of neuronal classes and of interactions within neuronal circuits. 

1 Introduction 

Waveforms of extracellular neural recordings often contain action po- 
tentials (APs) from several different neurons. Each voltage spike in the 
waveform shown in Figure 1 is the result of APs from one or more neu- 
rons. An individual AP typically has a fast positive component and a 
fast negative component and may have additional slower components 
depending on the type of neuron and where the electrode is positioned 
with respect to the cell. Determining what cell fired when is a difficult, 
ill-posed problem and is compounded by the fact that cells frequently 
spike simultaneously, which results in large variations in the observed 
shapes. 

Identifying and classifying the APs in a waveform, which is com- 
monly referred to as ”spike sorting,” have three major difficulties. The 
first is determining the AP shapes, the second is deciding the number 
of distinct shapes, and the third is decomposing overlapping spikes into 
their component parts. In general, these cannot be solved independently 
since the solution of one will affect the solution of the others. Algorithms 
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Figure 1: The extracellular waveform shows several different action potentials 
(APs) generated by an unknown number of neurons. Note the frequent presence 
of overlapping A h ,  which can, in the case of the right-most group, completely 
obscure individual spikes. The waveform was recorded with a glass-coated 
platinum iridium electrode in zebra finch nucleus lMAN (courtesy of Allison 
Doupe, Caltech). 

for identifying and classifying APs (see Schmidt 1984 for a review) fall 
into two main categories: feature clustering and template matching. 

Feature clutering involves describing features of APs, such as the 
peak value, spike width, slope, etc., and using a clustering algorithm 
to determine distinct classes in the set of features. Using a small set 
of features, although computationally efficient, is often sufficient only to 
discriminate the cells with the largest APs. Increasing the number of 
features in the clustering often yields better discrimination, but there still 
remains the problem of how to choose the features, and it is difficult with 
such techniques to handle overlapping spikes. 

In template matching algorithms, typical action potential shapes are 
determined, either by an automatic process or by the user. The waveform 
is then scanned and each event classified according to how well it fits 
each template. Template matching algorithms are better suited for clas- 
sifying overlaps since some underlying APs can be correctly classified if 
the template is subtracted from the waveform each time a fit is found. 
The main difficulty in template matching algorithms is in choosing the 
templates and in decomposing complex overlap sequences. 

The approach demonstrated in this paper is to model the waveform 
directly, obtaining a probabilistic description of each action potential and, 
in turn, of the whole waveform. This method allows us to compute the 
class conditional probabilities of each AP, which quantifies the certainty 
with which an AP is assigned to a given class. In addition, it will be 
possible to quantify the certainty of both the form and number of spike 
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shapes. Finally, we can use this description to decompose overlapping 
APs efficiently and to assign probabilities to alternative spike model se- 
quences. 

2 Modeling Action Potentials 

First we consider the problem of fitting a model to events from a single 
cell. Let us assume that the data from the event we observe (at time zero) 
is a result of a fixed underlying spike function, s ( t ) ,  plus noise: 

A computationally convenient form for s ( t )  is a continuous piece-wise 
linear function: 

s ( t )  = yj + Vi -( t  - Xi), xj L t < Xj+l h 

where h = xj+l - x,, j = 1 . . . R, and v, = y,+l - y,. We will treat R and the 
Xis as known. The noise, 77, is modeled as gaussian with zero mean and 
standard deviation u,,. 

2.1 The Posterior for the Model Parameters. From the Bayesian per- 
spective, the task is to infer the posterior distribution of the parameters, 
v = {v,, . . . , vR}/ given the data from the observed events, D, and our 
prior assumptions of the spike model, M .  Applying Bayes' rule we have 

P(D 1 v, u,,, M )  is the probability of the data for the model given in (2.2) 
and is assumed to be gaussian: 

where ZD(U,,) = 1/(27~u;)'''. The time of the ith data point, d; ,  is taken 
to be relative to the corresponding event, i.e., t; = tic") - d"). By conven- 
tion, d*) is the time of the inferred AP peak. The data range over the 
predetermined extent of the action potential.' 

P ( v  I uw, M )  specifies prior assumptions of the structure of s ( t ) .  Ideally, 
we want a distribution over v from which typical samples result only in 
shapes that are plausible APs. Conversely, this space should not be so 

'For the examples shown here, this range is from 1 msec before the spike peak to 
4 msec after the peak. 
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restrictive that legitimate AP shapes are excluded. We adopt a simple 
approach and use a prior of the form 

1 P ( s ( t )  I uw,M) 0: exp 

where the superscript (m) denotes differentiation. m = 1 corresponds to 
linear splines, m = 2 corresponds to cubic splines, etc. The smoothness 
of s ( t )  is controlled through the parameter uw with small values of ow pe- 
nalizing large fluctuations. A prior simply favoring smoothness ensures 
minimal restrictions on the kinds of functions we can interpolate, but it 
does not buy us anything either. If we had a more informative prior, we 
would require less data to reach the same conclusions about the form of 
s ( t ) .  Any reasonable prior should have little effect on the shape of the 
final spike function if there are abundant data. Even though the prior 
may have little effect on the shape, it still plays an important role in 
model comparison which will be discussed in Section 4. 

The components of the posterior distribution for v are now defined. 
There still remains, however, the problem of determining uq and uw. An 
exact Bayesian analysis requires that we eliminate the dependence of the 
posterior on u,, and a, by integrating them out: 

(2.6) 

In this paper, we use the approximation P(v 1 D , M )  x P(v I D,u,MP, 
u r , M ) .  The most probable values of v, uw, and uq were obtained using 
the methods of MacKay (1992), which we briefly summarize here. First, 
we transform v to a basis in which the Hessian of log P(v I uw, M )  is the 
identity. For splines, this is the Fourier representation: 

P(v I D, M) = /duT1 dow P(v I D, 4, uw, M )  P ( G ,  oq I M )  

using the prior 

(2.7) 

where w = {a, b} -ao. The term uo is set to the known Dc level (the offset 
of the A/D converters). In the limit R -+ 00, C , 4 / 2  = $ [ s ( " ) ( ~ ) ] ~ d u  
(Wahba 1990), which is the splines regularizer. We take m = 1 for linear 
splines. 

The most probable parameter values, ww, were determined as fol- 
lows. Let ED = Ci[d, - s(ti)12/2 and Ew = C,z$/2. Letting B = VVED 
and C = VVEw (around vML), we obtain w" = o;'A-'BwML , where 
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A = U ; ~ C  + U;~B. The maximum likelihood values, vML, can be deter- 
mined efficiently by inverting a tridiagonal matrix. The Fourier coeffi- 
cients can be computed efficiently with the fast Fourier transform. 

The most probable values of a,, and a, were obtained using the rees- 
timation formulas u: = ~ E D / ( I  - y)  and ui = Ew/y, where y = C A,/(& + 
u i 2 )  and A, is the rth eigenvalue of u;*B. In terms of A, wy = A r w ~ / ( A r +  

Note that we could at this point apply the methods described by 
MacKay (1992) and discussed later on in Section 4 to compare alterna- 
tive spike models, in essence to determine the most probable spike model 
given the data. For example, we might choose cubic splines instead of 
piecewise linear functions or choose priors that better represented our 
knowledge about spike shapes. The piece-wise linear spike models dis- 
cussed here can be made to fit any fixed shape, since they can contain 
arbitrarily many segments. With 75 segments, the spike models have 
been descriptively sufficient for the all the data we have observed. Sit- 
uations for which this is not the case will be discussed in Section 9. 
Figure 2a shows the result of fitting one spike model to data consisting 
of 40 APs. 

U i Z ) .  

2.2 Checking the Assumptions. Before proceeding to the more com- 
plicated cases of multiple spike models and overlapping spikes, we must 
check our assumptions on real data. Equation (2.1) assumes that the noise 
process is invariant throughout the duration of the AP, but in principle 
this need not be the case. For example, the noise might show larger vari- 
ation at the extremes. The spike model residuals, ~i = di - s ( t i ) ,  shown in 
Figure 2a, give no indication of an amplitude-dependent noise process. 

A second assumption we have made is that the noise is gaussian. Fig- 
ure 2b shows a gaussian distribution with the inferred width u,, overlaid 
on a normalized histogram of the residuals from Figure 2a. The most 
significant deviation is in the tails of the distribution, which reflects the 
presence of overlapping spikes. In this case, the overlaps are evenly dis- 
tributed over the range of the fitted event so they have little effect on the 
model’s form in the limit of large amounts data. The model would be 
poorly inferred, however, if the overlaps were not uniformly distributed 
over the interval, for example if one cell tended to fire within a few milli- 
seconds of another. This is a common problem in practice and will be 
addressed in Section 5. 

An assumption that has not been tested is whether the residuals are 
independent. Figure 2c and d shows that the noise in these data is slightly 
correlated. This has little effect on the fit of the models but does affect the 
accuracy of the probabilities discussed in the later sections. A convenient 
way of reducing the correlation is to sample close to the Nyquist rate to 
avoid correlation introduced by the amplifier filters. 
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Figure 2: (a) Spike model fit to data consisting of 40 APs. The solid line is 
a 75 segment piece-wise linear model. Each AP is aligned with respect to the 
inferred spike peak. Each dot is one sample point. The residual error for each 
sample, 17; = d;  - s(t i) ,  is offset by -200 1V and plotted below. The flat residuals 
indicate that the data is well-fit by the model. (b) Normalized histogram of the 
residuals from a. The curve is the gaussian inferred with the methods discussed 
in the text. The outliers result from overlapping APs, which can be seen in the 
data in a. (c and d) Lagged scatter plot of a sample of the residuals in a. (c) 17; vs 
v,+~. (d) 17; vs 77;+2. These graphs indicate that there is some correlation between 
11; and ~l;+l  (c), but little between 17, and 77if2 (d). This is expected for these data 
because the sampling rate (20 kHz) was higher than the Nyquist rate (14 kHz). 
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3 Multiple Spike Shapes 

When a waveform contains multiple types of APs, determining the spike 
shapes is more difficult because the classes are not known a priori. We 
cannot infer the parameters for one spike model if we don't know what 
data is representative of its class. Furthermore, if two spike models are 
similar, it is possible that an observed event could have come from either 
class with equal probability. The uncertainty of which class an event 
belongs to can be incorporated with a mixture distribution (Duda and 
Hart 1973). 

The probability of a particular event, D,, given all spike models, MI K ,  

is 
K 

P(Dn I V I K ? A ~ g q ~ M I K )  = xTkp(Dn I Vkrgq,Mk) (3.1) 
k=l  

where Tk is the a priori probability that a spike will be an instance of 
Mk (C Tk = 1). The joint probability for DIN = {D1 . . . DN} is simply the 
product 

N 

L:=P(DiN I~iK,r,gqtMiK)= nP(Dn Iv iK,r ,~q>Mi~)  ( 3 4  
n = l  

The posterior for multiple spike models is then 
P(vlK,r I DiN,.q,uw,MiK) 

- - P(DiN I V I K ~ r , ~ ~ ~ M I K ) P ( V I K  I uW,'IK)P(r I M I K )  (3.3) 
P(Dn I 071 Uw, MI K )  

We use P(vIK I u~,MIK) = &P(Vk I awk,Mk) and take P ( r  I MIK) to be flat 
over [O, 1IK subject to the constraint Ck Tk = 1. 

Note that we have implicitly assumed that the spike occurrence times 
are Poisson in nature with mean firing rates proportional to Tk. This 
assumes as little as possible about the temporal structure of the spikes. A 
more powerful description, for example, modeling the distribution of the 
interspike interval, would be obtained by incorporating this information 
into 3.2. 

3.1 Maximizing the Posterior. We proceed as before to find the max- 
ima of the posterior that will give us the most probable values for the 
whole set of spike models. The conditions satisfied at the maxima of L 
given in 3.2 are obtained by differentiating logL with respect to vk and 
equating the result to zero, 

= o  (3.4) 
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where 7, is the occurrence time of D,l. Thus we obtain a soft clustering 
procedure in which the error for each event, D,,, is weighted by the 
probability that it is an instance of Mk: 

(3.5) 

Although 3.4 can be solved exactly, it is still expensive to compute, be- 
cause it uses all of the data. We adopt the approach of estimating each 
vk by fitting each model to a reduced event list allowing the possibil- 
ity of an event being in the lists of multiple models. These lists are 
obtained by sampling events from the whole data set and including an 
event in a model’s reduced event list with probability proportional to 
P(Mk I D,, Vk, K ,  o,,). We apply the techniques used in the previous sec- 
tion to determine the values for a, and in turn the most probable values 
of V , K .  

Differentiating 3.2 and finding the condition satisfied at the maximum, 
we obtain the re-estimation formula 

(3.6) 

For each model, u7 can be estimated using the methods of the previous 
section. The mixture model estimate for g7 is obtained by a weighted 
average of the individual estimates using weight r k .  

3.2 Selecting Events from the Data. For these demonstrations, any 
peak in the waveform that deviated from DC level by more than 4 times 
the estimated RMS noise level was labeled as an event, D,. Once an 
event is located, it is important to obtain accurate estimates of the occur- 
rence time (with each spike model) by maximizing 2.4 over 7,. For the 
largest models, deviations from the optimal value as little as one-tenth 
the sampling period will introduce misfit errors greater than 4. The 7,’s 
must be re-estimated as the spike models change for optimal results. An 
efficient way to perform this optimization is to use the k-d trees discussed 
in Section 5. 

3.3 Initial Conditions. Since the re-estimation formulas derived here 
will find local maxima, it is critical to use good initial conditions for the 
spike models. Poor fits will result if there are too few spike models 
representing what are in fact several distinct APs. Conversely, if there 
are more spike models than distinct APs, not only will there be excess 
computational overhead, but there is no guarantee that each AP will be 
represented, since some spike functions may converge to represent the 
same AP class. Ideally, we want all potential spike shapes to be rep- 
resented in the initial spike function set, ~ , : ~ ( t ) .  One approach toward 
obtaining an even representation of the AP shapes is to initialize each 
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spike function to single events so that maxt s ( t )  - mints(t) is evenly dis- 
tributed with a separation proportional to the estimated waveform RMS 
noise. This approach works well for present purposes, because the height 
of an AP captures much of the variability among classes. By erring on 
the side of starting with too many spike models, we can obtain a good 
initial representation of the AP shapes. There is still a need to decide if 
two different models should be combined and if one class should be split 
into two. How to choose the number of spike models objectively will be 
demonstrated in the next section. 

4 Determining the Number of Spike Models 

If we were to choose a set of spike models that best fit the data, we would 
wind up with a model for each event in the waveform. We might think 
of heuristics which would tell us when two spike models are distinct 
and when they are not, but ad hoc criteria are notoriously dependent 
on particular circumstances, and it is difficult to state precisely what 
information the rules take into account. A solution to this dilemma is 
provided by probability theory (Jeffreys 1939; Jaynes 1979; Gull 1988). 

To determine the most probable number of spike models, we need to 
derive the probability of a set of spike models, denoted by S, = {M$!}, 
conditioned only on the data and information known a priori, which we 
denote by H. From Bayes’ rule, we obtain 

The only data dependent term is P(DIN I S,,H), which is called the 
evidence for S,. If we assume all the hypotheses S,, under considera- 
tion are equally probable, P(DIN 1 S,,H) ranks alternative spike sets, 
since it is proportional to P(S,  I D,N,H). With equal priors, the ratio 
P(D I S,,H)/P(D I S,,H) is equal to the Bayes factor in favor of hy- 
pothesis S, over hypothesis S,, which is the standard way to compare 
hypotheses in the Bayesian literature. 

The evidence for S, is obtained by integrating out the nuisance pa- 
rameters in 3.3: 

P(D, N I s,) = fi.1 Kdrdcqduw W, N I K )  nj 0.7 sj) 

x p ( v I K  I sJ) p(n I sJ) p(Dq> I ’ J )  (4.2) 

This integral is analytically intractable, but it is often well-approximated 
with a gaussian integral which for a functionf(w) is given by 

Sdwf(w) M f ( W )  (27r)d’2 I-vv logf(w)~-”’ (4.3) 

where d is dimension of w, w is a (local) maximum off(w), J A J  denotes 
the determinant of A, and the derivatives are evaluated at w. With this 
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we obtain the evidence for spike set S,, 

I S j , H )  = P(DiN I +iK,*,cq,S,)p(+iK I u w , S , )  

p(* 1 s,) p(eWwl 8J 1 s J )  

-112 
x (2~)~’~I-vVlogP(Di.  1 ~iKrrlgqrSj) 1 
x A log &,A log Cq (4.4) 

where Alog&, = nk 2 / ( N I  - T), and d = KR + K + 1. 

can be thought of as the number of parameters that are well-determined 
by the data. y = Ckyk. P ( u w , o ;  1 S,) is assumed to be separable and 
flat over log uw and log q. Since the labeling of the models is arbitrary, 
an additional factor of 1/K! must be included to estimate the posterior 
volume accurately. The Hessian -VV logP(DIN I v, K ,  x ,  c,,, S,) (with re- 
spect to vl and r) was evaluated both analytically and using a diagonal 
approximation. Both methods produced similar results, and the latter, 
being much faster to compute, was used for these demonstrations. No- 
tice that the approximation for the evidence decomposes into the best-fit 
likelihood for the best fit parameters times the other terms, which collec- 
tively constitute a complexity penalty called the Ockham factor (MacKay 
1992). Since this factor is the ratio of the posterior accessible volume in 
parameter space to the prior accessible volume, it is smaller for more 
complicated models. Overly broad priors will introduce a bias toward 
simpler models. Unless the best-fit likelihood for complex models is suf- 
ficiently larger than the likelihood for simple ones, the simple models 
will be more probable. 

A convenient way of collapsing the spike set is to compare spike 
models pairwise. Two models in the spike set are selected along with a 
sampled set of events fit by each model. We then evaluate P(D I S1) and 
P(D I S2). S1 is the hypothesis that the data are modeled by a single spike 
shape, S2 says there are two spike shapes. Included in the list of spike 
models should be a “null” model which is simply a flat line at DC. This 
hypothesis says that there are no events and that the data are a result of 
only the noise. Examples of this comparison are illustrated in Figure 3. 
If P(D I S1) > P(D I S p ) ,  we replace both models in SZ by the one in 
S1. The procedure terminates when no more pairs can be combined to 
increase the evidence. 

Alogii, = 
yk is the number of good degrees of free i-- om for Mk (MacKay 1992), which 

5 Decomposing Overlapping Events 

The method of inferring the spike models we have discussed thus far is 
valid if the event occurrence times can be accurately determined and if 
the noise is gaussian and stationary. Often these conditions cannot be 
met without identifying and decomposing overlapping events. Even if 
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Sz :  {Model  I ,  Model 2) ,S,: {Model  1 t 2) 

a - l  0 1 2 3 4 b . l  0 I 2 3 4 e l  0 I 2 3 4 
nm imq 6rm (mr) nm (ma) 

Sz: {Model 3 ,  Model 4 )  41: {Model  3 t 4 )  

d l  0 1 2  3 r e ’  0 1 2  3 4 f l O  1 2  3 4 
nm (my) nme (mr) 6rm (mr) 

Figure 3: The most probable number of distinct spike models is determined 
by evaluating the evidence for alternative hypotheses for a given set of data. 
Simple hypotheses are generated by selecting similar shapes in a spike set. S2 

is the hypothesis that there are two distinct spike models; the fits of two such 
models two a sampled set of data are shown in a and b. S1 is the hypothesis 
that there is only one spike model; the fit of this model is shown in c. In 
this case, even though the total misfit is less for S2, the simpler hypothesis, 
SI, is more probable by exp(ll1) to 1. In the second row, S2 (d and e) is 
more probable than S1 (f) by exp(343) to 1. Note the increase in residual error 
with the model shown in f. The difference between models 3 and 4 is better 
illustrated in Figure 8 (where they are labeled M2 and MJ, respectively). The 
large log probability ratios reported here result mainly from the abundance of 
data and the nongaussian outliers in the noise. A more realistic noise model, 
such as heavy-tailed gaussian, would result in more accurate estimates of the 
true probability ratios. 

the spike models are good, overlap decomposition is necessary to detect 
and classify individual events with accuracy. 

For a given sequence of overlapping A h ,  there are potentially many 
spike model sequences that could account for the same data. An example 
is shown in Figure 4. We can calculate the probability of each alternative, 
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b . i  a i z i 
Ttm (mi) 

Figure 4: Overfitting also occurs in the case of decomposing overlapping 
events. Shown are three of many well-fitting solutions for a single region of 
data. Thick lines are drawn between the data samples. The thin lines are the 
spike functions (note that these examples were taken from the first iteration of 
the algorithm, so the spike functions are noisy estimates of the underlying AP 
shapes). The best-fitting overlap solution in this case is not the most probable: 
the solution with four spike functions shown in a is more than eight times 
more probable than either b (five spike functions) or c (six spike functions) 
even though these fit the data better. The simple approach of using the best- 
fitting overlap solution actually increases the classification error especially in the 
number of false positives for the smaller models. To minimize classification 
error, it is necessary to find the most probable overlap solution. 

but there are an enormous number of sequences to consider, not only 
all possible models for each event but also all possible event times. A 
brute-force approach to this problem is to perform an exhaustive search 
of the space of overlapping spike functions and event times to find the 
sequence with maximum probability. This approach was used by Atiya 
(1992) in the case of two overlapping spikes with the times optimized 
to one sample period. Unfortunately, for many realistic situations this 
method is computationally too demanding even for off-line analysis. For 
overlap decomposition to be practical, we need an efficient way to fit and 
rank a large number of model potential spike sequences. In addition, we 
would like to state precisely what hypothesis subspace is searched, so 
we can say what model combinations cannot account for a given region 
of overlapping events. 

We can obtain a more efficient decomposition algorithm by employing 
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Figure 5: As the peaks of two action potentials get closer together, it becomes 
more difficult to classify either one with accuracy. It is necessary in this case (b 
and c) to fit multiple models simultaneously. 

two techniques. The first is to consider only AP sequences that occur 
with non-negligible probability. This allows us to obtain a large, but 
manageable hypothesis space in which to search. The second is to make 
the search itself efficient using appropriate data structures and dynamic 
programming. 

5.1 Restricting the Overlap Hypothesis Space. The main difficulty 
with overlapping APs is that there is no simple way to determine the 
event times. For many overlaps, such as the one in Figure Sa, the event 
times can be determined directly, because the APs are separated enough 
so that the models can be fit independently. As the degree of over- 
lap increases, as in Figure 5b and c, accurate classification of one event 
depends on accurate classification of the surrounding events. In this 
case, the overlapping models must be fit simultaneously. Moreover, since 
small misalignments of the model with respect to the event can introduce 
significant residual error, each model in the overlap sequence must be 
precisely aligned. 

The continuum of possible event times is the major factor contribut- 
ing to the multitude of potential overlap models. We can reduce this 
space significantly if we consider to what precision the T,,’s must be opti- 
mized. For a given spike model, sk( t ) ,  the maximum error resulting from 
a misalignment of & is given by2 

From this we obtain the precision necessary to ensure that the error intro- 
duced by the model alone is less than E and only need to choose among 
a discrete set of  point^.^ 

2We ignore the discontinuities in the derivative of the piece-wise linear model. 
3For these demonstrations we use 6 = 0.50,, which results in 6,s ranging from 0.05 

to 0.3 sampling periods. 
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Even with this reduction, the number of possible sequences is still 
exponential in the number of overlapping models. This space can be 
reduced by considering only sequences that are likely to occur. For ex- 
ample, if there are five units with a Poisson firing rate of 20 Hz, the 
probability of observing three events within 0.5 msec is about 0.1%. Elim- 
inating sequence models with more than two peaks within 0.5 msec of 
each other will introduce about 0.1% error. In this manner, the desired 
trade-off between classification accuracy and computational cost can be 
determined. In practice, however, spikes often do not fire in a Poisson 
manner but fire in bursts. The firing rate model in this case should be 
adapted accordingly so that the expected number of missed events is 
estimated accurately. 

5.2 Searching the Overlap Hypothesis Space. Let us first outline 
the decomposition algorithm. To fit general model sequences, we use 
the methodology of dynamic programming. The event data is fit in sec- 
tions from left to right. At every stage, a list is maintained of all plausible 
sequences4 from the restricted hypothesis space determined by the meth- 
ods described above. The length of data fit is extended by computing for 
each sequence on the list all plausible models that result by fitting the 
residual structure in the next region. The probabilities for all sequences 
are then recomputed, discarding any sequences below the probability 
threshold. The search terminates when no further overlaps are encoun- 
tered in the most probable sequence model. 

We now discuss each step in more detail. The primary operation in 
the algorithm is that of determining the most probable sequence models 
for a region of data. For efficiency, we precompute all possible waveform 
segments and store the set in a k-d tree (gently 1975) with which a fixed- 
radius nearest-neighbor search can be performed in time logarithmic in 
the number of models (Friedman et al. 1977; Ramasubramanian and Pali- 
wal 1992). O(N log N )  time is required to construct the tree, but once it 
is set up, each nearest-neighbor search is very fast. The set of overlap 
functions for a region from II to b around the spike peak is defined by 

L 

Ak,L,,,(t) = C~k,(f - ncik,), /c/ = 1,. . . , K ,  kl < . . . < kL, 

a < t - n6k. < b, n integer 

where L is the maximum number of overlapping spike function segments 
in the peak region [a, b], and is the 7-resolution for sk(f) defined in 5.1. 
The size of the peak region is somewhat arbitrary; the larger the region, 
the larger the number of waveform segments that must be considered, 
but the smaller the number of plausible overlap sequences found. In 
practice, the size of the peak region is largely limited by the memory 

(5.2) 
/=I 

4By plausible sequences we mean sequences with probability greater than a specified 
threshold. 
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required for the k-d tree. For these demonstrations, we take L = 2 (up to 
two overlapping spike function segments within a peak region) with a 
peak region of 0.25 msec and include a “noise” model A0 that has constant 
value equal to the DC voltage level. The number of waveform segments 
in the set can be reduced by eliminating overlapping spike functions for 
which the peak would have been (with high probability) detected at a 
sample position other than that of the data. Even with this reduction, an 
11-model spike set results in about 50,000 waveform segments. 

Once the best-fitting waveform segments for the first peak region are 
obtained, each segment is extended up to the next peak in the residuals 
for that segment. This peak is then fit using the k-d tree, which in turn 
generates additional overlap sequences. As long as the introduction of 
new waveform segments does not alter our conclusions about the order- 
ing sequence list, for example, by fitting structure in a preceding region, 
we ensure either that one of the overlap sequences is true or that the 
sequences we are considering cannot account for the data. 

After each sequence from the original list has been extended, the 
probability of each sequence model, c;, is recomputed. The exact relation 
is given by 

(5.3) 

where D is the subset of data common to all sequences, and S = {v , :~ ,  T,  

4, The form of the probability density function, P(D I c;, T;), is the 
same as 2.4. Equation 5.3 can be approximated with a gaussian integral 
by treating each peak region as a separable component, 

P(D 1 c;, 3;, S) ( 2 ~ ) ~ / *  nj d,:’” P(c;  I S )  P(T; I S )  
I (5.4) 

P(D I S) P(c;  I D,S) z 

where C is the number of total number of spike functions in the sequence, 
and dj is the determinant of Hessian of the 7’s for the jth peak region. The 
values needed to compute the Hessians can be obtained directly from the 
k-d tree. Note that integrating over T; performs the function of Ockham’s 
Razor by penalizing sequences with many spike models. Omitting this 
would reduce the solution to one of maximum likelihood, which chooses 
the sequence that best fits the data. For example, the solutions shown in 
Figure 4b and c both fit the data better than in 4a, but by 5.4,4a is more 
than eight times more probable than the others. Use of the best-fitting 
solutions would result in an increase in the classification error due to the 
introduction of too many models. Classification error is minimized by 
using the most probable overlap sequences. 

P(c ; ,  T; I S) describes the a priori probability of the sequence of models 
in c; with associated occurrence times 7;. For this discussion, we assume 
P(c;  I S) to be Poisson with rate proportional to (q) and P(T; I S) to be 
proportional to l / ( r k ) .  Useful alternatives for P(c; ,  T; 1 S )  include models 
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Figure 6: Example overlap solutions. Thick lines are drawn between the data 
samples. The thin lines are the spike models. The overlap sequence in (a) has 
three spike functions, (b) contains four spike functions, and (c) contains five 
spike functions. 

which take into account a refractory period or describe different types of 
spiking patterns. 

Once the probabilities for the sequence models have been computed, 
the improbable models are discarded. The decomposition algorithm iter- 
ates until no overlapping structure is found in the most probable model. 
The search can fail if an outlier is encountered or if the true sequence 
is outside the hypothesis space. Otherwise, upon termination the search 
results in a list of all plausible sequence models of the given data along 
with their associated probabilities. Example decompositions are shown 
in Figure 6 .  

6 Performance on Real Data 

The algorithm was first tested on real data, a section of which was shown 
in Figure 1. The whole waveform consisted of 40 sec of data, filtered from 
300 to 7000 Hz and sampled at 20 kHz. Three iterations of the algorithm 
were performed with overlap decomposition after the second (with L = 1) 
and third (with L = 2) iterations. Spike models that occurred fewer 
than 10 times were discarded for efficiency, and the remaining events 
were reclassified. The inferred spike models are shown in Figure 7. The 
residuals indicate that these spike models account for almost all events 
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in the 40 sec waveform. Out of about 1500 total events, only 6 were 
not fit to within 50,. By eye, these events looked very noisy and had no 
obvious composition in terms of the spike models. One possibility is that 
they resulted from animal movement. Such events were not present in 
the synthesized data set described in Section 7 where all the events were 
fit with the inferred spike models. 

By eye, all the models look distinct except perhaps for M2 and M3. 

One way to see the difference between these two models is to fit the 
data from model 3 with model 2 as shown in Figure 8. With a single 
electrode it is difficult to determine whether or not these two shapes result 
from different neurons, but they are clearly two types of events. One 
possibility is that these are different states of the same neuron; another 
is that the shape in model 3 results from a tight coupling between two 
neurons. Recording with multiple electrodes from a local region of tissue 
would help resolve issues like this. 

In spite of all the math, the algorithm is fast. Inferring the spike 
set with overlap decomposition takes a few minutes on a Sun Microsys- 
tems Sparc IPX. Classification of the 40 sec test waveform with overlap 
decomposition (using L = 1) takes about 10 sec. 

7 Performance on Synthesized Data 

The accuracy of the algorithm was tested by generating an artificial data 
set composed of the six inferred shapes shown in Figure 7. The event 
times were Poisson distributed with frequency equal the inferred firing 
rate of the real data set. Gaussian noise was then added with standard 
deviation equal to 0,. The algorithm was run under the same conditions 
as above. 

The algorithm chose 14 initial spike models, which were subsequently 
collapsed to 6 using the methods discussed in the previous section. Note 
that in this case, the number of inferred models matches the number of 
true models, but this need not be the case if some true models are too 
similar to be resolved, or if there are insufficient data to identify two 
distinct classes. The six-model spike set was preferred over the most 
probable five-model spike set by exp(34) : 1 and over the most probable 
seven-model spike set by exp(l9) : 1. A summary of the accuracy of the 
spike shapes is shown in Table 1. 

The results of inferring and classifying the synthesized data set are 
shown for the nonoverlapping spikes in Table 2 and for the overlapping 
spikes in Table 3. An event was considered an overlap if the extent5 
overlapped the extent of another event. Perfect performance would have 
all zeros in the off-diagonal entries and no undetected events. An event 
can be missed if it is not detected in an overlap sequence or if all its 

5The extent of a event is defined as the minimum and maximum values in time at 
which the best-fitting spike function differs from DC by more than 0 . 5 ~ ~ .  
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Figure 7: The results of applying the algorithm to a real data set. The solid lines 
are the inferred spike models. The data overlying each model are a sample of 
at most 40 events. The residual errors are plotted below each model. 
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Figure 8: One way to see the difference between the spike models M2 and M3 
is to fit the data from M3 (points) with M2 (solid line). The residual errors are 
plotted below. All the data from both spike models are plotted. If the noise 
level is constant throughout the duration of the AP, the large deviation in the 
residuals indicates that there are two distinct classes. 

Table 1: Results of the Spike Model Inference Algorithm on the Synthesized 
Data Set." 

Model 

1 2 3 4 5 6 

Arnax/LT, 0.44 0.36 1.07 0.78 0.84 0.40 
maxt Sdf)/G1 17.9 11.1 10.6 7.4 4.4 5.0 

Number of occurrences 39 63 45 238 155 1055 

'Both the form and number of spike models were determined by the algorithm. The 
inferred number of spike models matched the true number (six models). The second 
row is the maximum absolute difference between the true spike model and the inferred 
model normalized by uq. The third row is the normalized peak of the inferred spike 
models, which is an indication of how far each type of AP is above the noise level. The 
last row shows the number of times each model occurred in the synthesized data. 

sample values fall below the threshold for event detection ( 4 4 .  The 
tables indicate that for the largest four spikes, the performance is nearly 
perfect, even including the overlapping cases. 

Performance is worst in the two smallest spike models where there 
are a large number of missed events. For these models, there are typ- 
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Table 2: Classification Results for the Nonoverlapping Events of the Synthesized 
Data Set.” 

True Inferred models Missed Total 

models 1 2 3 4 5 6 events events 

1 17 0 0 0 0 0 0 17 
2 0 25 1 0 0 0 0 26 
3 0 0 15 0 0 0 0 15 
4 0 0 0 116 0 0 1 117 
5 0 0 0 0 56 0 17 73 
6 0 0 0 0 0 393 254 647 

OEach matrix component indicates the number of times true model i was classified as 
inferred model j .  Events were missed if the true spikes were not detected in an overlap 
sequence or if all sample values for the spike fell below the event detection threshold 
(40,). There was one false positive for M5 and seven for Mg. See text for additional 
comments. 

Table 3: Classification Results for the Overlapping Events of the Synthesized 
Data Set! 

True Inferred models 

models 1 2 3 4 5 6 

1 22 0 0 0 0 0 
2 0 36 1 0 0 0 
3 0 0 20 0 0 0 
4 0 1 0 116 0 1 
5 0 0 0 1 61 1 
6 0 0 0 3 2 243 

Missed Total 

events events 

0 22 
0 37 
0 20 
3 121 

19 82 
160 408 

‘Each matrix component indicates the number of times true model i was classified as 
inferred model j .  Events were missed if the true spikes were not detected in an overlap 
sequence or if all sample values for the spike fell below the event detection threshold 
(40,). There was one false positive for M5 and seven for Mg. See text for additional 
comments. 

ically only two or three samples that would be expected to exceed the 
noise level. As the threshold for event detection is lowered, there is a 
trade-off between the number of real spikes missed and the number of 
false positives resulting from common instance of when the noise con- 
tains a spike-like shape. The number of below threshold missed events 
can be minimized (with additional computational expense) by comput- 
ing the probabilities at every sample point instead of only those that 
cross threshold. It is worth noting that this situation often does not pose 



Bayesian Modeling and Classification of Neural Signals 1025 

a problem in practice, since observed spikes just above the noise level 
frequently correspond to many different neurons. 

8 Comparisons with Other Approaches 

It is instructive to contrast the spike sorting algorithm presented here with 
other methods by comparing their performances on the synthesized data 
set used in the previous section. The most common method of classify- 
ing APs is through use of a hardware level detector, which detects an 
AP if the voltage exceeds a user-determined level. For the synthesized 
data set, a level detector is sufficient only to classify the largest AP (M1) 
with accuracy. Another common hardware approach is a window dis- 
criminator with which APs are detected only if the peak value is within a 
voltage window. A window discriminator can classify M1 accurately and 
classify Mq with some error since the distribution of the M4 peak voltages 
overlaps somewhat with other models, but it is not sufficient to discrim- 
inate between M2 and M3 or between M5 and Mg. These discriminations 
demand more sophisticated methods. 

A common software-based method for spike sorting is a feature clus- 
tering algorithm such as the one used in the commercial physiological 
data collection system Brainwave. The synthesized waveform was clas- 
sified independently by an experienced Brainwave user (Matt Wilson). 
The features used to perform the classification were maximum spike am- 
plitude, minimum spike amplitude, and time from the spike maximum 
to the spike minimum. Brainwave generates a list of occurrence times for 
each cluster but not explicit spike functions, so it was not possible to see 
how close the ”inferred spike functions” were to the true spike functions. 
The occurrence times were compared to the known AP positions. Two 
separate classifications were performed (one using four clusters and an- 
other using six clusters), and the results of the most accurate classification 
(six clusters) are reported here. 

Tables 4 and 5 show the classification results for the synthesized data 
set for the nonoverlapping and overlapping action potentials, respec- 
tively. A total of six clusters were found, but not all of these correspond 
to the true underlying clusters. 

The tables show that true models M1 and M4 were accurately iden- 
tified and classified. True models M 2  and M3, however, were collapsed 
into a single cluster. This discrimination is difficult to make without ac- 
curately estimating the occurrence time of the APs. Brainwave uses the 
spike peak for the occurrence time, which is accurate to within 1 sample 
period and introduces a significant amount of noise into the features. In 
contrast, the Bayesian approach estimates the spike occurrence times with 
subsampling period accuracy. Note also that with no overlap decompo- 
sition, there are significantly more missed events for the larger APs. 
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Table 4: Brainwave Classification Results for the Nonoverlapping Events of the 
Synthesized Data Set.a 

True Cluster number Missed Total 

models 1 2 3 4 5 6 events events 

1 17 0 0 0 0 0 0 17 
2 0 26 0 0 0 0 0 26 
3 0 15 0 0 0 0 0 15 
4 0 0 116 0 0 0 1 117 
5 0 0 1 24 0 6 42 73 
6 0 0 0 22 13 188 424 647 

‘Each matrix component indicates the number of times true model i was classified 
as belong to Brainwave cluster j .  An event was missed if a true AP did not correspond 
to any of the APs identified by Brainwave. The false positives counts were 2, 3, 4, and 
2 for Brainwave clusters 3, 4, 5, and 6, respectively. 

True models M5 and M6 were described with three clusters, with clus- 
ters 4 and 5 roughly corresponding to M5 and cluster 6 corresponding to 
Mh. For these models, the features used make it difficult to choose the 
correct clusters, since the smaller models are not well separated in the 
three-dimensional feature space. There is less separation, because the 
occurrence times are not estimated accurately and no overlap decom- 
position is done. Even if the cluster centers were accurate, we would 
expect the Brainwave classification to be less accurate than the Bayesian 
approach. Using spike functions to perform the classification utilizes all 
significant sample points in the waveform, which for the smallest two 
models is between four and eight. In contrast, only three features are 
used by Brainwave. 

9 Extensions 

There are a number of possible directions for improvements to the gen- 
eral waveform model we have described. At the lowest level there are 
possibilities for alternative noise models. For example, real extracellular 
noise tends to be correlated and slightly nongaussian. Incorporating this 
information would make the probabilities more accurately reflect the real 
world. 

The piece-wise linear model we have described is general enough to 
fit almost arbitrary shapes, but that generality is also part of its short- 
coming. Since in the algorithm we have placed minimal restrictions on 
the form of the spike model, more data are required to infer the shape. 
Incorporating knowledge about the spike shapes would result in more 
accurate conclusions with the same amount of data. Overly weak spike 
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Table 5: Brainwave Classification Results for the Overlapping Events of the 
Synthesized Data Set.‘ 

True Cluster number Missed Total 

models 1 2 3 4 5  6 events events 

1 22 0 0 0 0  0 0 22 
2 0 34 1 0 0  0 2 37 
3 0 18 1 0 0  0 1 20 
4 0 3 106 3 0  2 7 121 
5 0 0 1 26 8 10 45 82 
6 0 3 9 15 2 108 264 408 

OEach matrix component indicates the number of times true model i was classified 
as belong to Brainwave cluster j .  An event was missed if a true AP did not correspond 
to any of the APs identified by Brainwave. The false positives counts were 2, 3, 4, and 
2 for Brainwave clusters 3, 4, 5, and 6, respectively. 

shape priors will also result in overly strong Occam factors, which will 
bias the results of model comparisons toward simpler models. 

For some types of neurons the shape of an action potential is not con- 
stant. Bursting neurons, for example, have spikes that decay dramatically 
during a burst. Modeling the resulting shape is complicated because the 
interspike intervals during a burst are not constant over different bursts, 
and the degree of attenuation depends on the intervals. Another way in 
which APs can change their shape is due to electrode drift, which results 
in a slow change of the spike shapes over time. This can be handled 
readily by the algorithms since re-estimating previously inferred shapes 
is very fast. 

Another limitation stems not from the algorithm but from the method 
of recording. Since a single electrode gives little information about a 
neuron’s position, decisions about whether two shapes constitute two 
neurons must be made based on shape and firing frequency alone. The 
use of multiple electrodes in a local area resolves this issue by record- 
ing the same group of neurons from different sites. Thus even if two 
neurons have identical shapes when recorded from electrode, it is m- 
likely that those two neurons will generate the same AP shape when 
observed simultaneously from a different electrode. A trivial extension 
of the algorithm would be to run it on each electrode and then look for 
cross-correlations in the event times, but better results could be obtained 
by incorporating the information about multiple electrodes into a single 
model. 

10 Discussion 

Formulating the task as the inference of a probabilistic model made clear 
what was necessary to obtain accurate spike models. Optimizing the r,’s 
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is crucial for both inference and classification, but this step is commonly 
ignored by algorithms which cluster the sample points or derive spike 
shapes from principal components. The soft clustering procedure makes 
it possible to determine the spike shapes with accuracy even when they 
are highly overlapping. Unless the spike shapes are well-separated, hard 
clustering procedures such as k-means will lead to inaccurate estimates 
of the spike shapes. 

Probability theory also provided an objective means of determining 
the number of spike models, which is an essential reason for the success 
of this algorithm. With the incorrect number of spike models, overlap 
decomposition becomes especially difficult. If there are too few spike 
models, the overlap data cannot be fit. If there are too many, decompo- 
sition becomes a very expensive computation. The evidence has proved 
to be a sensitive indicator of when two classes are distinct, as was shown 
in Figure 8. Previous approaches have relied on ad hoc criteria or the 
user to make this decision, but such approaches cannot be relied upon to 
work under varying circumstances since their inherent assumptions are 
not explicit. An advantage of probability theory is that the assumptions 
are explicit, and given those assumptions, the answer provided by the 
evidence is optimal. 

One might wonder if the user, having much more information than 
has been incorporated into the model, can make better decisions than the 
evidence about what constitutes distinct spike models. Probability theory 
provides a calculus for stating precisely what can be inferred from the 
data given the model. When the conclusions reached through probability 
theory do not fit our expectations, it is due to a failure of the model 
or a failure of the approximations (if approximations are made). From 
the performance on the synthesized data, however, the approximations 
appear to be reasonable. Thus when the conclusions reached through the 
evidence are at variance with the user’s, information is at hand about 
possible shortcomings of the current model. In this manner, new models 
can be constructed, and, moreover, they can be compared objectively 
using the evidence. 

Probability theory is also essential for accurate overlap decomposi- 
tion. It is not sufficient just to fit data with compositions of spike models. 
That leads to the same overfitting problem encountered in determining 
the number of spike models and in determining the spike shapes. The 
Ockham penalty introduced by integrating out the 7’s was a key to find- 
ing the most probable fits and consequently for achieving accurate clas- 
sification. Previous approaches have been able to handle only a limited 
class of overlaps, mainly due to the difficulty in making the fit efficient. 
The algorithm we have described can fit an overlap sequence of virtually 
arbitrary complexity in milliseconds. 

In practice, the algorithm we have described allows us to extract 
much more information from an experiment than with previous meth- 
ods. Moreover, this information is qualitatively different from a simple 
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list of spike times. Having reliable estimates of the action potential shapes 
makes it possible to study the properties of these classes, since distinct 
neuronal types can have distinct neuronal spikes (Connors and Gutnick 
1990). With stereotrodes this advantage would be amplified, since it is 
then possible to estimate somatic size, which is another distinguishing 
characteristic of cell type. Finally, accurate overlap decomposition makes 
it possible to investigate interactions among local neurons, which were 
previously very difficult to observe. 
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