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As a simple model of the cortical sheet, we study a locally connected net 
of spiking neurons, Refractoriness, noise, axonal delays, and the time 
course of excitatory and inhibitory postsynaptic potentials are taken 
into account explicitly. In addition to a low-activity state and depend- 
ing on the synaptic efficacy, four different scenarios evolve sponta- 
neously, viz., stripes, spirals, rings, and collective bursts. Our results 
can be related to experimental observations of drug-induced epilepsy 
and hallucinations. 

1 Introduction 

What do spontaneous coherent excitations in the primary visual cortex 
look like in time and-that is what we are interested in h e r e i n  space? 
This is a fascinating question whose solution is, to some extent, now 
within reach of computational neuroscience. It is generally believed that 
this kind of excitation occurs in drug-induced epilepsy and, presumably, 
also in hallucinations. 

Hallucinations (Kliiver 1967; Siegel and West 1975; Siegel 1977; Cowan 
1985) are perceptions in the absence of a visual stimulus. They can occur 
even in subjects that have been completely blinded by a retinal disease 
(Zeki 1993). It was Kluver (1967) who in the twenties started exper- 
iments to classify what he called ”form constants,” which meanwhile 
have turned out to be universal characteristics of the first stage of drug- 
induced imagery, most notably LSD. There are at least four categories 
of form constant, such as grating and filigree, spiral, tunnel and funnel, 
and cobweb. The imagery of the second stage is much more complex 
and, without any doubt, involves several areas of the brain. We men- 
tion two key questions: Are the form constants generated in the primary 
visual cortex (areas V1 and V2) or are they due to functional feedback, 
i.e., feedback from other areas with different functions? Second, can we 
understand the form constants theoretically? 
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There exists a mathematically very elegant analysis of Ermentrout and 
Cowan (1979). Their main hypothesis, which we will adopt as well, is 
that the form constants can be modeled as elementary excitations in the 
primary visual cortex. The model uses a rate coding and takes the com- 
plex logarithm (Schwartz 1977) as the retinocortical map. The patterns 
follow from a bifurcation analysis in a neighborhood of the homogeneous 
low-activity state, a linear theory. A final result is that parallel stripes 
of active and quiescent neurons constitute elementary excitations of the 
model. Due to the retinocortical map, some of the cortical stripe patterns 
should appear as spirals on the retina. One may wonder, though, what 
are the spontaneous excitations in a "realistic" nonlinear cortical network 
of spiking, noisy neurons? This is the question we will focus on. In so 
doing we can, and will, verify the above hypothesis. In the context of 
our model we conclude that several, but not all, form constants occur as 
spontaneous excitations. Furthermore, we do encounter spatiotemporal 
activity patterns as found experimentally in drug-induced epilepsy. 

At the same time as us but in a network of integrate-and-fire neurons 
without delays, local inhibition, and noise, Milton et al. (1993) found 
spirals as elementary excitations that evolve out of a fixed excitation 
center. Spirals are inconsistent with the parallel stripes referred to above. 
Below we will clear the situation and show that there is in fact a sequence 
of at least four scenarios. In so doing we will avoid any external input 
and exploit several neural characteristics which have been incorporated 
into our own spike response model. 

2 Spike Response Model 

The essentials of neuronal behavior are the absolute and relative refrac- 
tory period, the response at the soma resulting from synaptic input (usu- 
ally described by an alpha function), the omnipresent delays, and noise. 
All these ingredients have been incorporated in the spike response model 
(Gerstner and van Hemmen 1992, 1993; Gerstner et al. 1993). It presents 
a faithful but simplified description of the neurons themselves without 
taking recourse to differential equations. This is essential since we have 
to study the spatial activity of a large system of neurons (say N 2 20,000) 
over a long period of time. 

We discretize time by units At = 1 msec, the width of a spike, and 
label the neurons on a two-dimensional square lattice by the index i. The 
state of a neuron is described by S, E {O, l} .  If the potential h; at the 
hillock of neuron i reaches the threshold 6, then the neuron is expected 
to fire. We describe this stochastic behavior through a noise parameter ii;l 
in the transition probability 

1 
2 

Prob{S,(t + At) = 1 I hi ( t ) }  = -{1 + tanh[@;(t) - 6 ) ] }  (2.1) 
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This is the conditional probability that neuron i fires at time t + At given 
hi(t). In the noise-free limit ,8 -+ co we get Si(t + At) = O[h,(t) - d ]  where 
0 is the Heaviside step function: O ( x )  = 1 for x 2 0 and O(x)  = 0 for 
x < 0. In the numerics to be described below we have taken ,8 = 25 and 
6 = 0.12. 

The spike response model describes the response of a neuron-both 
the sender and the receiver-to a spike. If a neuron has fired a spike, 
it exhibits refractory behavior for a while, i.e., it cannot or can hardly 
spike. This is taken care of by the refractory function 7, which is -co 
during the absolute refractory period and negative but increasing to zero 
thereafter, 

h;'f'(t) = c V ( T ) S j ( t  - T )  
r>o 

(2.2) 

Here we take a(.) = --oo for T = 1 and zero elsewhere. 
The spike travels along an axon and reaches a synapse on the dendritic 

tree of neuron i after Ai msec. Let the synaptic strength be J i j  and denote 
the alpha function by E.  Then we obtain for the total input at the hillock 
of neuron i 

(2.3) 

where E ( T )  = T/T,' exp( -T/T,) so that C,  E ( T )  = 1; here T~ = 2 msec. For 
the sake of computational simplicity we have assumed that the delays 
A, depend on i (instead of, say, j ) .  In this work the A, are taken from 
(0 ,  1,2) with equal probability. Furthermore, Jr l  always vanishes. 

The neurons considered so far are pyramidal cells. The stellate cells 
are modeled by an inhibitory loop, which is assigned to each neuron, 

hYh(t) = C ~ " ' ~ ( 7 )  S,(t  - T - AYh) (2.4) 

where P h ( 7 )  first assumes a strongly negative value during 5 msec 
(shunting inhibition) and then decays exponentially with a time constant 
TInh = 6 msec. Moreover, E {3,4,5} is a uniformly distributed ran- 
dom variable. It is known that stellate cells operate locally. This we have 
simplified to a strictly local interaction; for details, see Gerstner et al. 
11993). Putting things together we find 

T>O 

h, ( t )  = h:'f'(t) + h y y t )  + h:"h(t) (2.5) 

which is to be substituted into 2.1. What is left is specifying the Jl, in 2.3. 
Since we are concerned with visual percepts such as hallucinations it 

seems natural, even imperative (Zeki 1993), to model the primary visual 
cortex. We will work with a simplified model of cortical connectivity. 
Inside a column the pyramidal cells experience an excitatory interaction. 
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Different columns with strongly different direction preferences are ex- 
pected to inhibit each other. The upshot is a "mexican hat,"' 

Jij =Aexp(-6/Ai) - Bexp(-r;?,/A2) (2.6) 

with XI << A2 and A >> B. Here rg is the Euclidean distance between i 
and j. A second possibility, which has also been studied, is 

J; j  = A for r,, 5 ro and - s for ro < r;, I rmax (2.7) 

with rmax 5 30 and, again, A >> B. We use free boundary conditions. In 
our numerical simulations we have seen no difference between 2.6 and 
2.7. Alternatively and giving rise to the very same scenarios, one can 
replace Ill in 2.3 by OKl where El = 1 with probability exp[-(r, - l)/Aex,,)] 
or exp - [ ( rr ,  - ~ ) / A G ~ " ~ ~ ) ] ~ ;  otherwise i, vanishes. Typical values for the 
As are in the range between 2 and 5. The probabilities have been chosen 
in such a way that nearest neighbors (r, ,  = 1) are always connected. D is 
a drug parameter. 

Summarizing, we have explicitly modeled the various interactions 
including the stellate cells, the delays that are abundantly present in the 
cortex, and the noise. We now turn to the network behavior itself. 

3 Drug-Induced Collective Excitations ___ 

As in the experiments (Siegel and West 1975; Siegel 1977), we study a 
network without external input. In its normal state we then encounter 
spontaneous activity in the form of incoherent low-frequency firing. Fix- 
ing B (or b) and increasing the excitatory A, A, or D, so as to model the in- 
fluence of hallucinogens, we find four successive scenarios (see Figs. 14).  
We always start with random initial conditions, unless stated otherwise, 
and find depending on A, A, or D: 

1. Stripes. Once A (or A, or D )  has become large enough, say A > A!'), 
an excitation can propagate through the lattice. Just above A!') the stripes 
are relatively short but they become longer with increasing A (see Fig. 1). 
As time proceeds, the stripes propagate. Their length does not grow but 
they get slightly curved (the more so with increasing A) as the neurons 
in the center of a line segment are stimulated more strongly than those 
at the ends and, hence, their propagation is faster. Behind a stripe the 
neurons experience inhibition due to the stellate cells which get activated 
a bit later. 

2. Spirals. As A (or D) increases further, the stripes get longer and 
more curved so that for A > A:') they regroup and build a spiral (see 

'Interestingly, Hebbian learning of random contours gives rise to the very same 
form. It is plain that Dale's law is inconsistent with a Mexican hat but this form has 
been very popular. It is a simple matter, though, to redefine the sign of the bonds and 
at the same time shift the threshold 29. 
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a I 1 

Figure 1: Scenario 1-stripes. (a) 90 x 90 network with locally homogeneous 
couplings A = 0.16, B = 0.02, while ro = 15 and r,,, = 20; cf. 2.7. (b) 90 x 90 
network with locally sparse, excitatory couplings whose probability decreases 
with the distance; cf. Section 2. Here X G ~ ~ ~ ~  = 2 and D = 0.056. Note the 
similarity of the two figures despite their different microscopic structure. For 
all figures we have taken random initial conditions. 

b 

Figure 2: Scenario 2-spirals. (a) 90 x 90 network with A = 0.12, B = 0.02, 
XI = 15 and = 100; cf. 2.6. Two or more spirals may coexist as shown in (b), 
where we have a 90 x 90 network with excitatory couplings whose probability 
decreases with the distance; cf. Section 2. Here = 2.83 and D = 0.1. 
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a b 

Figure 3: Scenario &-rings. (a) 90 x90 network with A = 0.14, B = 0.02, XI = 15 
and A2 = 100; cf. 2.6. The two rings annihilate each other where they meet. 
New rings originate from the two centers. In (b) we show a 150 x 150 network 
with excitatory couplings whose probability decreases with the distance; cf. 
Figures l b  and 2b. Here Xcduss = 2.83 and D = 0.12. 

a 

Figure 4: Scenario &collective burst. (a) 90x90 network with A = 2.4, B = 0.02, 
A1 = 8.4 and A2 = 100; cf. 2.6. (b) 150 x 150 network with excitatory couplings 
whose probability decreases with the distance; cf. Figures lb-3b. Here we have 
an exponential distribution with Xexp = 3. Furthermore, D = 0.14. 
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Fig. 2). Plainly, spirals rotate. The number of their arms (1, 2, or 3) 
depends on the random initialization. Spirals are also extremely stable. 
Once they exist one can even increase A suddenly to a strength corre- 
sponding to scenario 4 but nevertheless the spirals survive. 

3. Rings (see Fig. 3). There may be several centers generating new 
rings all the time. These propagate outward. If two nonconcentric rings 
hit each other, they annihilate their common part while moving outward. 
The reason is simply the inhibition that follows a front. The thickness of 
a ring increases with A or D, respectively. 

4. Collective bursts. These are complex pulsating patterns. Here A 
(or D )  is so large that a few active neurons ignite the whole system in 
20-25 msec (cf. Fig. 4) after which inhibition takes over and a quiescent 
state sets in. The frequency is in a range between 10 and 20 Hz. The 
resulting activity pattern vaguely resembles an epileptic state. 

Interestingly, and in agreement with experiments (Siegel 1977), the 
”objects” in scenarios 2 and 3 have different length scales that vary from 
one scene to the next (even for the academic case of fixed parameter 
values). The width of the stripes in scenario 1 depends on A (or D).  
The patterns in scenario 4 have all length scales. Indirect experimental 
evidence confirming scenarios 2-3 has been found by Petsche et al. (1974) 
in the occipital cortex of a rabbit with penicillin-induced epilepsy. Quite 
surprisingly, even for the complex pattern of scenario 4 experimental data 
are available (cf. Siegel and West 1975, p. 123). 

4 Discussion 

The “wetware” of the primary visual cortex apparently allows a vari- 
ety of spontaneous excitations that are similar to patterns found in ex- 
citable media (Tyson and Keener 1988; Meron 1992; Cross and Hohenberg 
1993). They arise due to intrinsic nonlinearities of the neuronal dynamics 
and resemble experimental hallucinogen-induced activity patterns rather 
closely but not completely. These excitations, however, are in the cortex 
and it is a natural question what they would look like on the retina. To 
answer this question we have taken Figure 2a, positioned it extrafoveally 
so that the complex logarithm offers a fair description of the retinocortical 
map, and applied the inverse map. The result is shown in Figure 5 where 
the Archimedean spiral in the cortex reappears as a quasi-logarithmic spi- 
ral on the retina. In passing we note that we find several but not all four 
types of ”form constant” as described by Kliiver (1967). This may be 
due to the initial conditions that we had chosen, viz., random ones. It 
is an open problem, though, what are the generic initial conditions that 
generate, e.g., a hexagonal pattern. 

The performance of a large network does not depend on the details of 
the model once the neural essentials have been incorporated. An exam- 
ple is provided by the three different kinds of coupling that we assumed 
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Retina Cortex 

Figure 5: Retinal pattern (left) corresponding to the cortical activity pattern of 
Figure 2a (right). The retinal picture is the result of the inverse retinocortical 
map applied extrafoveally; cf. Schwartz (1977). If (x, y) is a point in the cortex 
and ( r ,  y )  is on the retina, then parameters have been chosen in such a way that 
r = expx and y = y. 

in the primary visual cortex, viz., the locally homogeneous ones (2.6) and 
(2.7) and the locally sparse, excitatory ones whose probability decreases 
with the distance (cf. Figs. 1-4). It has been stressed by Zeki (1993, 
pp. 324-326 and 342-343) that hallucinations do depend on reentry into 
area V1 or V2. On the basis of the present work and in agreement with 
Ermentrout and Cowan (1979) we tentatively suggest that the form con- 
stants are mainly generated in the primary visual cortex. Through func- 
tional feedback they may be, and we expect are, modified and combined 
with other objects, e.g., from memory. Under this proviso we are then led 
to the following interpretation. The scenarios 2 and 3 are in a one-to-one 
correspondence with the experimental hallucinatory spirals, tunnels and 
funnels-the more so since spirals are very stable and, thus, dominant. 
They also have been observed indirectly in drug-induced epilepsy. On 
the other hand, scenario 1 gives room to many interpretations. Scenario 4 
is a high-dose one and hard to reach since the system usually has to pass 
through the previous three scenarios, where it can get stuck. Neverthe- 
less, it has been "seen." One has to realize, though, that pictures drawn 
by patients may give rise to contradictory results as is illustrated nicely 
by Siege1 and West (1975, p. 135). Here both a quasi-logarithmic spi- 
ral, which is "seen" by most people, and a purely Archimedean one are 
shown; the two spirals were observed by two different persons under 
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the influence of ketamine and LSD, respectively. In fact, the two differ- 
ent pictures with Archimedean and logarithmic spirals would constitute 
a fascinating problem to theory, if they were reproducible. 

In summary, we have exhibited several scenarios that appear as the 
synaptic efficacy is increased in a locally connected neuronal network. All 
of them have been observed, some in the cortex, others through hallu- 
cinations. Our model reproduces some but not all of the form constants 
as  they are found in hallucinations. Hence it may well be that the basic 
hypothesis that they are generated in the primary visual cortex is too 
simple-minded in relation to cortical processing. There is little doubt, 
however, that all these spontaneous excitations with their typical spatio- 
temporal behavior do occur in the cortex. 

An analytic treatment of the model under consideration will be pre- 
sented elsewhere (Fohlmeister et al. 1995). 
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