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Abstract

This paper demonstrates that much of the visual motion coding in the primary visual
cortex can be understood from a theory of efficient motion coding in the multiscale rep-
resentation. The theory predicts that cortical cells can have a spectrum of directional
indices, are tuned to different directions of motion, and their receptive fields (RF) can
be spatio-temporally separable or inseparable. The predictions also include the following
correlations between the motion coding and spatial, chromatic, and stereo codings: the
preferred speed is larger when the cell receptive field sizes are larger, the color channel
prefers smaller speed than the luminance channel, both the optimal speeds and the pre-
ferred directions of motion can be different for the two eyes in the same neuron. These
predictions agree with experimental observations. In addition, this theory makes predic-
tions that have not been experimentally investigated systematically and provides testing
ground for the efficient multiscale coding framework. These predictions are: (1) nearby
cortical cells of a given preferred orientation and scale are to prefer opposite directions
of motion, have the same directional index, and are of quadrature spatio-temporal phase
relationships with each other; (2) a single neuron can have different optimal motion speeds
for opposite motion directions of monocular stimuli to a given eye, and (3) a neuron’s oc-
ular dominance may change with motion direction if the two eyes prefer opposite motion

directions.



1. Introduction

Primary visual cortical cells sensitive to motion and selective to motion directions
have been observed physiologically since the works of Hubel and Wiesel (1959, 1962).
Simple cells are found to be tuned to directions of motion to various degrees in addition
to their selectivities to orientations, spatial frequencies, and ocular origins etc ( Holub
and Morton-Gibson 1981, Foster, Gaska, Nagler, and Pollen 1985, Reid, Soodak, Shapley
1991, DeAngelis, Ohzawa, and Freeman 1994). This paper demonstrates that many of
the motion sensitive/directional selective properties in the cortical simple cells can be
understood as consequences of efficient coding of visual inputs in the multiscale framework.
Such an understanding provides detailed predictions of the simple cell spatio-temporal
receptive field (RF) properties. These predictions can be compared with the known
observations or experimentally tested.

Efficiency of information presentation has long been advocated as the coding principle
for early stages of sensory processings (Barlow 1961). This is because the natural signals
have structure and regularity. Visual inputs, for example, have correlated signals in image
pixels, making some input signals predictable to some extent from the others. Such
regularities make pixel-by-pixel input representation highly redundant or inefficient, in
the sense that the same information is signalled more than once through different neural
channels. An efficient code with reduced redundancy not only gives coding and neural
implementation economy, but also arguably provides cognitive advantages (Barlow 1961)
by the input statistical knowledge, which has to be inherent in the code to reduce the
redundancy.

One of the most noticable input redundancies is the pairwise pixel correlations in the



visual inputs. Concentrating on such redundancy, several recent works have formulated
efficient coding in the language of information theory or decorrelation/factorial codes
modified appropriately under noise (Linsker 1989, Atick and Redlich 1990, 1992, Bialek,
Ruderman, and Zee 1991, Nadal and Parga 1993). In particular, efficient coding has pro-
vided a theory of retinal processing and predicted the spatio-chromatic receptive fields of
the retinal ganglion cells agreeing with those observed physiologically (Atick and Redlich
1990, 1992 Atick, Li, and Redlich 1992).

There are other types of regularities in natural images that we believe the visual system
beyond the retina takes advantage of. One such regularity is the translation and scale
invariance, namely, the image of an object at one location or distance can predict much
of the image of the same object at another location or distance. It is recently proposed
that one of the preprocessing goals of the early visual cortex is, without compromising
coding efficiency, to produce a representation where actions of translation and scaling is
manifested or factored out towards object invariance (Li and Atick 1994a). The resulting,
so-called multiscale, representation remaps the visual field into multiple retinotopic maps
identical in all respects except for the densities and RF sizes of their sampling nodes.
This representation is also a step towards redundancy reduction when it is followed by
attentional mechanisms to compensate the manifested translation and scaling changes to
produce object invariant neural activity patterns (see Li and Atick 1994b for discussions).

Efficient coding in the multiscale representation has predicted many of the simple cell
RF properties in spatial, chromatic, and stereo domain (Li and Atick 1994ab). These
predictions include the simple cell selectivities to orientation, spatial frequencies, color,

ocular origins, disparities, as well as the particular frequency tuning bandwidth, phase



quadrature structures between neighboring cells, and spatio-chromatic-stereo interactions
in cell selectivities observed experimentally. The theoretical understanding further aids
the study of the visual system by motivating experimental tests of some predictions which
had not been investigated experimentally (Li, 1995a, Anzai, DeAngelis, Ohzawa, and
Freeman 1994). However, the temporal input dimension was ignored in these earlier the-
oretical works (Li and Atick 1994ab, Li 1995a). The current work demonstrates that (Li
1995b) including the temporal dimension enables the same framework to additionally pre-
dict motion sensitivity and directional selectivities in simple cells that have been observed
experimentally or can be experimentally tested.

Various neurophysiological, psychophysical, and computational motion models have
been proposed (e.g., Reichardt 1961, Torre and Poggio 1978, Marr and Ullman 1981, van
Santen and Sperling 1984, Adelson and Bergen, 1985, Watson and Ahumada 1985). They
are mostly designed to model the neuronal mechanisms underlying directionality or to
provide computational algorithms for visual motion detection and computation. Some of
them (e.g., Reichardt 1961, Torre and Poggio 1978, Marr and Ullman 1981, van Santen
and Sperling 1984) have highly non-linear components at an early stage, either to ensure
directionality or to compute motion velocity. Physiological observations, however, reveal
significant or essentially linear mechanisms underlying directionality in simple cells (Reid,
Soodak, and Shapley, 1991, Jagadeesh, Wheat, Ferster 1993). Motion models of Adelson
and Bergen (1985) and Watson and Ahumada (1985) do include linear components before
the non-linearity at a later stage and are designed for motion sensing or detection within
the constraints of known physiological and psychophysical observations. The current

work derives the visual motion coding in a linear mechanism from the requirement of



efficient coding in a multiscale representation, without a priori specifying a purpose of
visual motion computation or selectivity. Its predictions include those that have not been
experimentally investigated in addition to the ones that agree with known observations.
A special case out of the derivations will be shown to resemble the linear components in
the models of Adelson and Bergen (1985) and Watson and Ahumada (1985).

The next section presents the theoretical formulation of the efficient motion coding in
the multiscale representation. Section 3 illustrates the predicted spatiotemporal RF and
correlations between motion coding and codings in the space, color, and stereo domains,
to compare them with the experimental observations. Section 4 summarizes the results

and discusses the limitations and desired experimental tests of the theory.
2. Efficient motion coding in a multiscale representation

The visual input is inefficient because the input S(«,,t) at retina location x, and time

t is correlated with S(x,,,t") by the amount

Rxn7t;xm7t/ =< S(xn,t)S(xm,t') >, (1)

where the bracket denotes ensemble average. Without loss of generality, the retina is taken
as one-dimensional. Visual inputs are assumed to be statistically translation invariant
and reflection symmetric, such that Ry, 0, = R tattremtattr = B2, — 2p, 1 —1) =
R(£(z, — ), £(t — ¢')). Then R can also be characterized by its Fourier transform!

R(fj,w) = &=, [dtR(z,,t)e”H™n =l = R(+f;,+w), which is also the average input

!The same symbol R is used for the correlation function R(z,t) as well as its Fourier Transform
R(f,w). The arguments (z,?) or (f,w) specifies the actual function concerned. Such practices are used
throughout the paper for some other functions and variables as well to avoid proliferation of notations.



power in frequency (f;,w).

Under noiseless conditions, a more efficient code O(j,%) can be constructed within
the linear coding scheme by a transform O(j,t) = >, [dt'K(j,t;2,t')S(x,1') such that
the outputs are decorrelated < O(j,1)O(j',t") >= 6;;6(t — t'). 1If higher order input
correlations are ignored, such decorrelated outputs O(j,t) imply that no information is
redundantly sent through different output units or at different times. The code O(j, 1) is
thus efficient. One should note that we require both spatial and temporal decorrelation,
in contrast to the mere spatial decorrelation when the temporal dimension was ignored
(Li and Atick 1994a). The temporal dimension cannot be treated similarly as the spatial
dimension because of causality. In addition, the scale invariance property, and hence the
multiscale coding, in the spatial domain is not applied temporally.

A special efficient code is the one when O; is obtained by passing S(x,t) through a

spatial filter K3’ and a temporal filter thj, namely

S(a,t) — S(f,t) =D KP(2)S(x,t) — O(f;,1) = /dt’[{fﬂ(t—t’)S(fj,t’) (2)

1 .
Khi(z) = ——eth® each 7 has a different spatial frequency f: 3
2 () Vi J p quency f; (3)
1 o] . N
thj(t—t’) = 2—/ dwR™Y2(f;, w)emiwlt=t)=ielf ) (4)
T J—o0
K(j,t,z,t') = KV =Kl —1\KD(2) (5)

where N is the total number of input units, ¢(f;,w) = —é(f;, —w) is chosen such that

~fy

the temporal filter K;’ (¢t — ') is causal ( K;’(t < 0) = 0) and have minimum temporal

spread? for each j.

?Define Afi(t) = 1 fooo dwR_l/z(fj,w)e‘iw(t_tl)_i‘z’(fj’w), taking envelop() and phase(t) as the ampli-
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Decorrelation in O(j,t) can be verified as follows. The signal S(f;,t) is the spatial
Fourier transform of S(x,1) for spatial frequency f;. Accordingly, S(f;,t) and S*(f;, )

should be decorrelated in a translationally invariant system

1 e
< S(fi, )8 ([, t') > = WZ < S(z,1)S(a!, ) > e amtilye

1 ; I ; I
— ﬁ ; R(l’ _ l’/,t . t/)e—zfj(ac—x )e—z(fj—f]/)ac
= R(fj,t =) (6)

where superscript * denotes complex conjugate. This ensures the decorrelation between
O(f;,t) and O*(f;r,t) for f; # f;r. Each O(f;,1) is in addition temporally decorrelated by

the temporal whitenning filter thj, which has Fourier transform K}’ (w) = R™'V2(f;,w):

< O(f;, )0 (f;,1") >
- / drdr' K (1 — 7 — 7\ K (1 = 7)R(J;,7")
RN
2

= % / dwe™ ) = (1 — ') (7)

The spatio-temporal receptive fields K/ for this efficient code O; = K/ S is however
not spatially local or retinotopic, simply because K% contains a spatial Fourier wave K’

which is non-local®. In addition K7’ is unique for each output j with its unique frequency

tude and phase of A/i(t), then K;’(t) = envelop(t) cos(phase(?)). The minimum temporal spread of K;’
is defined as when [ dt(t —t)%envelop(t), where { = [ dtenvelop(t), is minimum

3The RF’s for this code is not real, but this representation is used for mathematical convenience and
it does not affect the final results.



fj, requiring a unique RF for each output cell. However, other efficient codes can be
constructed from this one by (Li and Atick 1994a) any unitary transform U (where the
bold-faced U denotes a matrix, UUT = 1, and Ut = (U*)T) with O; — > U;Op and
K& — > Ujj/[(fﬂl. Decorrelation is preserved in the new code since Y. Us;(Uyj)* <
OjO]*, >= 0;7. As noted in the introduction, the cortex is to construct a multiscale
representation, which is also spatially local, retinotopic, and translationally invariant (in
a sense detailed later) within each scale. An efficient code of the multiscale nature is
achieved (see Li and Atick 1994a for details) by combining the original filters K% or
outputs O(f;,t) within each frequency band f* < |f;| < f**! by a unitary transform U?

in that band:

O(fi, 1) — Ont)y= > U*,0(f;,1) (8)

FeL|fil< fatt
K\ — K= Y  U*;K) (9)
fe<ifil<fott

where @ indicates the spatial scale or frequency band, and K? is the spatiotemporal RF

for the n'® output unit in that scale, fot! = 3f¢, f*¢ = %, and N oc (f*T! — f*) is the

number of units in that scale. The required N* x N* matrix transform U? has elements

(Li and Atick 1994a):

_1_ilfyzp—mn/2+0) if f; >0

a

Ue = (10)

nj

ﬁe—i(lfjlx%—m/ﬂﬁ) if f; <0



for n =1,2,...., N* and arbitrary . Combining (10), (9), (3), (4), and (5), we have

2 fa-l-l
Kg(:zji,t;x,t’)oc\/m p

df /OO dwK (f,w)cos(f(zt—x)—mn/240) cos(w(t—t")+o( f,w))
0
(11)
where K(f,w)= R™'?(f,w) denotes the spatio-temporal sensitivity.

@ t;x,t'), the spatiotemporal RF of the n' unit in the ¢’ scale.

g
Let us examine K2(x2,1;

It is selective to spatial frequencies f € (f*, f*T') and all temporal frequencies w with a
sensitivity K(f,w). The spatial and temporal part of the filter at each ( f,w) are embodied
in the expressions cos( f(x% —x)—7wn/24+60) and cos(w(t—1")+¢(f,w)), respectively. When
x = 27, the spatial phase of the RF is —7n/240 for all f, implying % as the center of the
receptive field. This RF center phase —7n/2 + 0 states that neighboring units (n'* and
(n+1)") have a quadrature phase difference, e.g., § = 0 gives edge and bar detectors (odd
and even RF) for the two neighboring units, respectively. The choices of the RF centers
2% for an efficient code (i.e., a unitary U?) are* 2 = (N/N*)n or 2% = (N/N*)(n +n%2)
where n%2 is (n mod 2) and is equal to 0 or 1 when n is even or odd, respectively. This
means, the RF centers of the units in the code are located at, in units of N/N® (roughly
half a grating period of the preferred spatial frequency of the cells), (0,1,2,..., N* — 1) or
(0,0,2,2,4,4,..., N* =2, N* — 2) in the two cases, respectively, to cover the visual space
with two units every two sampling intervals 2N/N¢. The (n + 2) unit has a spatial
phase —7n/2 — 7 + 0 at its RF center and hence the same spatial RF as the n'* filter up

to a polarity change and a spatial translation by a distance Az = 2N/N®. All the units

“Here both choices, z¢ = 2% = (N/N%)n and z¢ = (N/N%)(n + n%2), are valid. In Li and Atick
1994a however, only the first choice is given.



however have the same temporal RF properties. A finite bandwidth (f*, f**t'), by the
uncertainty principle, gives spatially local receptive fields with a spatial extent roughly
Az ~ 1/(f**r — f*) ~ N/N® on the order of magnitude, comparable to the displacement
between the RF centers of the neighboring units in this code. One should distinguish
the neighboring units (whose RF centers may be displaced by a distance comparable
to their RF width) in this efficient code from the anatomical neighboring cells in the
cortex. This is because we are concentrating here on one scale and one orientation (one-
dimension) only at a time, while in the cortex, the anatomical neighboring cell could be
tuned to another optimal spatial frequency and orientation and there are other factors
that have to be considered (see discussions). From here on, % — & — «, t — ' — ¢, and
Ki(al t;x,t) — K2(x;t) are taken for simplicity.

In fact, there can be different but equivalently efficient multiscale representations by
different choices of §. The specific 8 dictates whether the receptive field K?(x;1) is even
and odd for neighboring units (when 6 is a multiple of 7/2) or of any phase as long as
the quadrature phase relationship between the neighboring units is preserved. Similarly,
one can show that decorrelation is preserved by the phase change in the temporal filter
o(fj,w) — o(fj,w)+ B for any 3, without compromising causality, temporal translation
invariance (i.e., Ky(t,t') = Ki(t + 7,t' + 7)) as a physical system, and the minimum

temporal latency spread of the filter. The general description for this class of filters is:

fa-l-l 0
Ki(x,t) o< 2 df/ dw
Je 0

K(f,w)cos(fr —mn/2+ 0)cos(wt + o(f,w)+ ) (12)



fati oo
= /fa df/o dwK (f,w)(cos(fr —mn/2+ 04+ wt+ ¢(f,w)+ F)

+cos(fe —mn/24+0 —wt — ¢(f,w) — 3)) (13)

Ko(t) = [ dwK(fre* w)cos(wt peak
Kp(x,t) ~ Kj(x)K*(t) =) ) Y Jeostt + 9lf )()14)

fa+1

Ki(z) = \/JQW o dfcos(fx—rmn/2490)

where fP**% = \/fo fo+T_ If one notes that a drifting grating cos(fz +spatial phase = (wt +
temporal phase)) indicates a drifting velocity v = +w/f, then equation (13) states that
this class of filters are non-directionally selective, since the first term makes it respond to
motion in one direction and the second term to the opposite motion direction with the
same amplitude. This is also intuitively expected from equation (14) which approximates
the filter as spatiotemporally separable from equation (12), which is strictly speaking
not spatio-temporally separable. This approximation is valid when K (f,w) is a smooth
function of f and changes little within a limited band (f*, f**!) (see next section). From
here on, such filters will be viewed as separable.

However, as is shown in the Appendix, the general class of efficient codes in the

multiscale framework is in fact®,

K§ = K3(0,8) + (=1)"¢K (0", 3) (15)

for any ¢ < 1, 0 # 6, and ' — 3 = 7/2. Here, 0, 0, and 3 ('), in addition to ¢, are

explicitly written as parameters for the representation and other arguments are omitted

>This is true up to a factor 1/(1+ ¢?), which I am ignoring for clarity. ¢ < 1 is taken without loss of
generality.
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for clarity. One could recognize from this that a sum of two different spatiotemporally

separable filters can give spatiotemporal inseparability and hence directionality in the

new filter. This is indeed what happens. The bold-faced K% is to distinguish the general

composite code from the spatio-temporally separable ones. ¢ = 0 simply gives equation
(12) as a special case. The other special case, when ¢ =1 and ' — 0§ = 7/2, gives

fat1 o

K2 « . df/o dwK (f,w)cos(fr —wn/2+ 0)cos(wt + ¢(f,w) + )

+(—=1)"K(f,w)sin(fe — mn/2 + 0)sin(wt + (f,w) + )

7 [ Ry cos( s = mf24 0 (U + 6 F.0)+ ) (1)

This (the n'™) unit thus responds to only one direction of motion, and is composed of a

fa+1

pair of spatio-temporal separable filters, [7. = df [;° dwK(f,w)cos(fo—mn/2+0) cos(wt+
6(f.w) + B) and [L7df [ dw(=1)"K (f,w)sin(fz — 7n/2 + 0)sin(wt + 6(f,w) + B),
with quadrature phase relationship between the two components in both the spatial and
temporal dimensions. Such neurons have been proposed as the first stage components
in the motion models of Adelson and Bergen (1985) and Watson and Ahumada (1985).
Furthermore, the factor (—1)" in K2 states that neighboring units (the n'* and (n + 1)
units) respond to the opposite directions of motion, and the term —zn/2 in the spatial

phase again leads to a quadrature phase relationship between the neighboring units.

In general when ¢ <1 and A = 6" — 0, equations (15) and (13) lead to

K& (z;t) o /fim df/ooodw[((f,w)(A"'cos(fx—7rn/2—|—0—|—wt—|—q§(f,w)—|—ﬂ—|—0+)

+A  cos(fae —mn/240 —wt —¢(fow)—B+67)) (17)

11



_ /ff+ df /OOO dwkK (f,w)
(AT + A7) cos(p(x)) cos(¢(t)) + (AT — AT)sin(¢(x)) sin(4(1)) (18)
Ateif* — ] + (—1)”qei(i”/2+M) (see Figure 1) (19)
dlr) = fa—mn/24+0+ 1/2((9"' +67)

$(t) = wt+o(f,w)+B+1/2(07 —07) (20)

From equation (17), the neuron responds to the two directions of motion with relative
amplitudes AT and A~, respectively, and has a directional index ﬁ:—iﬁ:l' Equation (19)

states that the n'* and the (n £1) units have A} = A, 0F = 0,,,. Consequently, the
neighboring units prefer opposite motion directions, have the same directional index, and
are again in phase quadrature of each other due to the —zn/2 term in ¢(x). The neurons
are non-directional when ¢ = 0 and becomes more directional as ¢ — 1 and A§ — = /2.
One should note that in extending this analysis from 1-dimension to 2-dimension in space,
these neighboring neurons prefer the same spatial orientation. Since the centers of the
RF's in the code is spaced by 2% = (N/N®)n or 2 = (N/N*)(n+n%2) forn =1,2,..., N,
one has the following observation. Given any scale and orientation, there is no need to
have two filters tuned to opposite directions at each spatial location in order to have a
complete representation. An efficient code needs an average of only one filter tuned to
one direction per sampling interval — a pair of quadrature filters for every two sampling

intervals of the scale, tuned to opposite directions and their RF centers superposed or

displaced by one sampling interval of the scale (see discussion).

12



Figure 1: Demonstration of the vector construction of AT from ¢ and A#

Equation (18) writes the filter again as a spatio-temporal quadrature pair with unequal
amplitudes |AT £ A~|. This is similar to the model by Hamilton, Albrecht, and Geisler
(1989), except that each term in the current theory is only strictly separable for one
frequency component (f,w) only. Note that this expression does not mean that the
general equation (15) can be written with 8" — 6 = 7/2 since ¢(t) changes with n in

general because 61 £ 6~

3 Theoretical spatiotemporal filters and comparison with the experimental

observations

To illustrate the spatiotemporal RF, we need the knowledge of K(f,w) and ¢(f,w).
Although ¢(f,w) depends ultimately on K(f,w) to ensure causality, the spatiotemporal
locality of the filter implies a phase coherence, fx, + wt, + ¢(f,w) &~ ¢. = constant for
all (f,w), at some location (¢ = x,,t = t,) where the amplitude of the receptive field

reaches its peak and quickly decays as (x,t) moves away from it®. Taking x, = 0 and

6As we stated earlier, ¢(f,w) is chosen to make th (t) causal and have minimum temporal spread,
implying the temporal coherence wr, + ¢(f,w) & constant for all w given a f. A change ¢(f,w) —
é(f,w) + o still satisfies the requirement; and ¢(f,w) — ¢(f,w) —wr for 7 > 0 merely prolongs the filter

13



The construction of the filter sensitivity function
T T

r-V2

10

sensitivity

—
O\

1075

c/deg

Figure 2: Demonstration of the construction of the receptive field sensitivity K and K¢ from the power
spectrum R and noise smoothing (and retinal MTF) function M. The temporal dimension is ignored for
clarity in this figure.

B+ ¢, — B, we have ¢(t) = w(t —t,) + S+ 1/2(0T — 07) in equation (20), and ¢, > 0
can be viewed as the latency of the filter. Similar temporal phase structures have been
observed in experiments (Hamilton et al 1989).

The exact K(f,w) depends on R(f,w) and should be modified under noise. Differ-
ent measurements have suggested that R(f,w = 0) o 1/f* (Field 1987) and R(f =
0,w) o< 1/w? (Dong and Atick 1994). Without additional knowledge, this paper mod-
els R(f,w) o (f* 4+ £w?)™!, where £ = 0.4 cycle-second/degree. The qualitative re-
sults do not depend crucially on the exact R(f,w) as long as R(f,w) decays with in-

creasing f and w. The complete decorrelation requires (see equation (11)) K(f,w) =

latency 7, — 7, + 7. Although the minimum latency 7, = TZ:’”” depends on f, it is possible to choose ¢,
as the largest TZ:’”” within a limited band (f%, f**1), such that fz, + wt, + ¢(f,w) & constant can be
satisfied for #, = 0 or any z, without compromising causality. Since K(f,w) varies very little within the
limited band (see later), ¢, can be very close to the shortest latency for every spatial frequency component

f in the band.
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(R(f,w))~"? and causes K(f,w) to increase with (f,w) to amplify inputs of low signal
power R(f,w). This is undesirable in reality since the low input signal-to-noise ratio
at high (f,w) would give unacceptably amplified noise levels. A noise smoothing strat-
egy K(f,w) = M(f,w)K(f,w)|noiseless (following Atick and Redlich 1992, Li and Atick
1994b, and noise smoothing also follows from information theoretical arguments), where
M x R(f,w)/(R(f,w)+ Ry) and Ry is the noise power, is utilized to lower the amplitude
of K(f,w) whenever the signal-to-noise R(f,w)/Ry is small” especially at high (f,w). Let

the noise power Ry be constant for all f,w, the generic feature of K(f,w) is (Figure 2):

K(f,w) increases with f,w when R(f,w) > Ry at small (f,w) (21)

K(f,w)  decreases with f,w when R(f,w)/Ry is small at large (f,w) (22)

K(f,w) reaches its peak at some intermediate value (f,w), where the signal R(f,w) starts
to be overwhelmed by noise. Hence, K(f,w) will peak at smaller (f,w) for smaller signal
R. In particular, the temporal sensitivity curve th(w) = K(f,w) for each spatial fre-
quency f also peaks at some w = wP**( f), and wP***( ) decreases if B(f,w) — R(f,w)—A
where A > 0. This fact will lead to many motion coding features presented below, when
spatio-temporal sensitivities K (f,w) will be derived for channels tuned to different spatial
frequencies, to luminance or chrominance, and to different ocular origins.

In the multiscale representation, we further model (Figure 2) ff:H df K(f,w) by
[ AR (f.), where K*(fy0) = K(f,w)exp(—(loa(f/ /) o?/2) and & = log(v/3)

is to model a 1.6 octave bandwidth (Li and Atick 1994a) of the frequency selective chan-

In detail, what is used in the paper are: M(f,w) = (R/(R+1))exp[—(f/f:)**], K(f,w) ox M(M?*(R+
D+ 1)~ R=16.0/(f>+&w? + f2), f, = 0.3 ¢/deg, f. = 22 ¢/deg.

15



nel with optimal frequency fP*** = /fe fo+I. Collecting the parts together, the following

model is used for illustrative purpose:

K§(2;t) o /df/ooo dwK*(f,w)
(AT + A7) cos(g(x)) cos((t)) + (A7 — AT)sin(é(x)) sin(g(1))) (23)
dlr) = fae—mn/24+0 d(t) =wt + B+ 1/2(0% —67)

A:I:eiei - 1 + (_1)nqei(:|:7r/2+A€) (24)

Here 6 + 1/2(07 4+ 07) — 0 is taken for simplicity since 0% + 0~ does not change with
n; t —t, — 1 is taken so that all filter illustrations are centered around the latency {,
of the temporal impulse response and should not be mistaken as non-causal. Fig. 3
illustrates some examples of the spatio-temporal RF’s for different values of ¢, A#, 6,
and . In each case, the neighboring units have quadrature phase relationships with each
other, the opposite preferred directions of motion, the same optimal speed, and the same
directionality index. Physiologically, there is evidence that the neighboring cells tend to
prefer the same and sometimes opposite, but fewer times orthogonal, directions of motion
(Berman, Wilkes, and Payne 1987). It is desirable to test whether the neighboring cells
preferring opposite directions also have the same directionality index and are in quadrature
phase relationship. In this theory, changes of the parameters (¢, A8,0, 3) lead to a whole
spectrum of directionality indices and filter phases. The optimal speed and the quadrature
structure remain fixed for each spatial scale.
Correlation between spatial coding and motion coding

This theory predicts that the cell optimal speed decreases with increasing optimal
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g=1, A6 =90°, 6 =0, 3 =90° g = 0.5, A6 =90°, 6 =0, 3 =90° g =0, Agd =90°, 6 =0, 3 =90°

NS

g=1, A0 =45° 6 =0, 3 = 90° g=1, A0 =45° =0, 3 =0° g=1, A0 = 45°, § = 90°, § = 90°
1.5 degree

Figure 3: Examples of spatiotemporal RF’s for neighboring units, next to each other, under the pa-
rameter value set ¢, Af, 6,3 which generates them. The space and time are in horizontal and vertical
directions respectively. The picture gray levels depict the filter amplitudes, gray for near zero amplitudes
, white and black for larger positive and negative amplitudes respectively. The preferred spatial frequency
is fP¢%* = 1 cycle/degree. A perfectly oriented bar or edge in space-time implies complete cell direction-
ality, the slope and sign of the orientation correspond to the preferred speed and direction of motion, and
a spatiotemporal separability implies non-directionality. Note (1) the neighboring units have the quadra-
ture phase relationship and opposite preferred directions of motion, (2) the reduction of directionality in
the top row when ¢ = 1 — 0, (3) the bottom row cells have the same directionality but different recep-
tive field forms. These figures are obtained by the approximation K& (a: 1)~ (AT + A7) K () K (t) +
(A~ — A"’)f(x(x)f(t(t), where K(1 fdw[ (fPek w) cos(o(t)), At o [ dwK(free* w)sin(é(t)),

o [df K(f,wPe*) cos(¢(x )) o [dfK*(f,wPe**)sin(¢(x )) This approximation and figure

format are used in other figures of this paper as well.

spatial frequency, as observed in experiments (Holub and Morton-Gibson 1981, Foster,
Gaska, Nagler, and Pollen 1985). This is because for a neuron with optimal spatial fre-
quency fP°* and optimal temporal frequency wP®*, the preferred motion speed is roughly
wreak [ freak — Since the signal R(f,w) decreases with increasing f, so should w?*®* and
the prediction follows. The model R(f,w) used in this paper gives a slowly decreasing or
roughly constant optimal temporal frequency wP**( f) for a range of low spatial frequencies
f (Fig. 4), suggesting a roughly inverse relationship v ~ 1/f between optimal speed and
spatial frequency. At a higher frequency f, whose exact value depends on the signal-to-
noise, wP**( f) starts to decrease sharply with f, and temporal sensitivity K/ (w) becomes

significantly low-pass. The same trend of w?***( f) is observed physiologically (Holub and
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Temporal sensitivity curves for different f

\‘\3:;\ = 0.5 ¢/deg =1c/deg =2 c/deg =4 c/deg
-1¢fd eg
0.5 c/deg ! C/degz"i}\‘ / ’ } ’
150 ms
o . 1.5 degree

Figure 4: Changes of temporal sensitivities and spatiotemporal receptive fields with the optimal spatial
frequency f. The filter orientation in space-time has a steeper slope as f increases, implying decreasing
preferred motion speeds. Parameters used: ¢ = 1.0, § = 0°, Af = 90°, and § = 90°.

Morton-Gibson 1981) and psychophysically (Kelly 1979). Fig.4 illustrates the changes of
neural spatio-temporal RF’s with their optimal spatial frequencies.
Another prediction is that the ratio, (best sensitivity to contrast reversal grating)
(sensitivity to drifting grating of preferred direction), is roughly one for neurons of
small directional indices, but decreases to 0.5 as the directionality increases. This stems
from equation (23), which suggests gains of o 1/2(]AT| +|A7]) and o< A%, respectively,
to the two grating types. Psychophysically, the detection threshold for counter-phased
gratings is almost twice of that for drifting gratings over a wide spatio-temporal frequency
range (Levinson and Sekular 1975, Watson, Thompson, Murphy, and Nachmias 1980).
These observations were explained by noting that two half-contrast drifting gratings of
opposite directions sum to a full contrast reversal grating (see Burr 1991). The current
prediction, however, is on a single cell level and relies on the assumed linear mechanisms.
Significant non-linearity in cortical neurons can lead to a quantitative difference between
the theory and the experiments (see Reid et al 1991). However, the trend of decreasing
ratio (sensitivity to contrast reversal) :( sensitivity to drifting grating) with increasing
directional index should still hold and can be tested.

Correlation between color and motion coding
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Temporal sensitivity curves

Luminan
Luminance channel Chrominance chanmnel
Chrominance /
. 150 ms
\ |
o = 1.5 degree

Figure 5: Temporal sensitivity and spatiotemporal RF’s for luminance and chrominance channels.
Parameters used ¢ = 1, Af = 90°, 3 = 90°, 8 = 0, f**** = 1c¢/deg, and the signal power in the chromatic
channel is 4% of that in the luminance channel. A smaller optimal motion speed in the chromatic channel
s apparent.

Since the signal power in the chromatic channel is smaller than that of the luminance
channel, the optimal temporal frequency w?** for the chromatic channel is also smaller
given an optimal spatial frequency. Hence the theory predicts a smaller optimal speed
for the chromatic channel (see Figure 5). Insensitivity to motion in the color channel has
long been observed psychophysically (see Nakayama 1985). However, at a single cortical
cell level, chromatic and luminance signals are multiplexed (see Li and Atick 1994a).
Accordingly, the actual motion sensitivity in a single color selective cell is complicated,
and should depend on whether the motion stimuli is of equal luminance or not.

Correlation between stereo and motion coding

Stereo coding (Li and Atick 1994b, Li 1995a) is composed of ocular summation (the
input summation from the two eyes) and ocular opponency (the input difference between
the two eyes) channels. The subscript s and o are used to denote the summation and
opponency channels respectively, the subscript n for the neuron and superscript a for
scale will be omitted for clarity. The signal power in these two channels are R, = (1 +

r)R(f,w)and R, = (1—r)R(f,w), respectively, where r < 1 is the input ocular correlation
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normalized by the self-correlation within a single eye®. The different signal powers R, >
R, suggest different spatiotemporal sensitivity functions K,(f,w) and K,(f,w) for the
two channels. In particular, K (f,w) ¢ K,(f,w) and the optimal speed in the opponency
channel should be smaller v, < vs. Let Kg(a,t) and Ko(z,t) be the RFs for the two
channels respectively, the binocular RFs in a cortical cell are (Li and Atick 1994b, Li
1995a) Ky(x,t) = Ke(x,t) + Ko(a,t) for the left and Ky(z,1) = Kg(x,t) — Ko(z, ) for

the right eyes. Writing the filters in the form

Ke(x,t) /df/dw[(c(f,w)(Aj' cos(fx + wt + ¢F) + AZ cos(fr —wt + ¢2)) (25)

Ke(z,1) /df/dw[&’j(f,w) cos(fa +wt + ¢F) + K (f,w)cos(fo — wt + ¢ §26)
for ¢ = s,0, and ¢ = [,r. Then if AL = Aice“‘sci and K& = &’eie“bei, we have

Ki(f,w) = K,(f.w)AF + K,(f,w)A$
(27)

KE(f,w)= K,(f,w)AT — K,(f,w)AZ
Here K1 (f,w) and K (f,w) are the spatiotemporal sensitivity functions for monocular
stimuli in opposite motion directions. One first notes that the optimal motion speed for
any direction presented to either eye is roughly v¥ ~ wPe*/ freak where (wPeek | freaky is
roughly where the sensitivity K*(f,w) reaches its peak. Since K,(f,w) o¢ K,(f,w), the
above equations give K1 (f,w) ¢ K- (w) and K¥(f,w) & KF(f,w), i.e., the sensitivity

changes with motion direction or eye origin can not be accounted for by a constant gain

8The temporal dimension of visual inputs was ignored in the earlier works (Li and Atick 1994b, Li
1995a) and the ocular signal powers were denoted as (1 & r(f))R(f). Here we simply assume that the
generalization (1 £ r(f))R(f) — (1 £ r(f,w))R(f,w) holds approximately.
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factor. Accordingly, the theory predicts that the optimal speed vE ~ wreak/ freak for
monocular stimuli can vary with the eye origin and the motion direction (even within
a single eye). In addition, since the preferred motion direction for any eye depends on
whether K+ > K, the fact KE(f,w) of K*(f,w) makes it possible to obtain neurons
whose preferred motion directions change with the ocular origin or whose ocular domi-

nances change with motion directions, as demonstrated below. A final straightforward

|[KI-KZ|

prediction is that, since K /K7 is not a constant of (f,w), the directional index Teed

for monocular motion stimuli can even vary with the frequency (f,w) of the drifting
grating presented, as observed physiologically (Reid et al 1991).

To illustrate the predictions, consider first the example when AT = Al = A7 = —Aj

(Fig 6A, 6C). Both the ocular summation and opponency RFs are non-directional. Then

Kif(f,w) = AT(K,([f.w)+ K,(f.»)) (28)

Ki(f,w) = AI(E(f.@) F K(f,w) = K[ (f,w) (29)

This cell has a directional RF when considering either eye alone since K;* > K; and
K > KT, but the preferred direction changes with the eye. In addition, this cell changes
its ocular dominance with motion direction since K;* > K (left-dominant) but K" < K~
(right-dominant) by equation (29), which implies that a change of motion direction is
equivalent to a change of ocular origin for this cell. Furthermore, consider the left eye
for example, while the two motion directions have roughly the same preferred spatial
frequency f € (f*, f*1), the temporal sensitivity curves are different K;"(w) = K (w) +

K,(w) # K[ (w) = Ks(w) — K,(w). In fact, this example gives the positive motion
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direction a low-pass temporal sensitivity while the negative direction a band-pass (Fig.6A),
leading to a larger optimal speed for the negative direction, v;" > v;". Another example
(Fig. 6A, 6B)is when Af = A} =1 and A; = A; = 0. Both the ocular summation and
the opponency channels are completely directional with the same RF phase. By equation
(27) the ocular RFs are also completely directional with sensitivities K[j; = K; + K,.
This cells thus changes its optimal speed with ocular origin just as the cell in the previous
example does with motion direction (within a single eye). The predicted ocular differences
in preferred speed and directions of motion have been observed physiologically (Beverley
and Regan 1973, Poggio 1992, DeAngelis et al 1994), and such neurons can sense object
motion in depth. The predicted changes in the monocular optimal speed with motion
direction as well as the ocular dominance changes with direction can be experimentally

tested.
4. Summary and Discussion

This paper demonstrates that efficient coding in the multiscale representation can
account for many physiological observations of motion and directional sensitivity in simple
cells of the primary visual cortex. A whole spectrum of neural directionality indices are
predicted, some neurons have spatiotemporal filters that are spatio-temporally separable
and others do not. In addition, the cortical motion coding is predicted to correlate with
the codings in space, color, and stereo domain. Explicitly, the theory predicts that the
cell preferred speeds decrease with their increasing optimal spatial frequencies, can differ
for the two eyes in the same neuron, are much slower in the color sensitive channel, and

that the two eyes in the same neuron can prefer opposite directions of motion. These

22



Construction of binocular filter sensitivities
0.8 T T

Right eye

-

0.71 b

S

0.6

o
o

sensitivity
o
>

C
Left eye

"'

Right eye

e

1.0 degree

o
w

0.2

0.1

150 ms

Figure 6: Interaction between motion and stereo coding. A: Temporal sensitivity functions for the
ocular summation K, ocular opponency K, K, + K°, and |K; — K,| channels for spatial frequency
freak = 2 cycles/degree, which is used in B and C. Here the binocular correlation used is r(fP¢**) =

0.96e=/"*"/(15¢/deg) B An example of different preferred velocities for the two eyes (see text). C: An
example of different preferred directions of motion for the two eyes (see text). It is not difficult to see that
the optimal speeds for opposite directions of motion in the same eye are also different, and the ocular
dominance changes for this neuron with motion directions.

predictions agree with physiological or psychophysical observations (Beverly & Regan
1973, Holub and Morton-Gibson 1981, Foster et al 1985, Reid et al 1991, Poggio 1992,
DeAngelis et al 1994). Furthermore, the theory gives additional predictions that have not
been experimentally investigated systematically and can be tested. These predictions are:
(1) given the optimal spatial frequency and orientation, the neighboring neural units prefer
opposite directions of motion, have the same directional index, and have quadrature phase
relationship with each other; (2) a single neuron can have different optimal speeds for
opposite directions of motion presented monocularly; and (3) a neuron’s ocular dominance
may change with motion direction when the two eyes prefer opposite motion directions.
A special class of predicted neurons by this theory resembles the linear units in the

motion models by Adelson and Bergen (1985) and Watson and Ahumada (1985). While
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these computational models are constructed by the goal of motion or velocity computation
within the constraints of physiology and psychophysics, the present theory derives from
the efficient coding in the multiscale representation without a priori requiring motion
sensing or computation. The efficient coding framework provides the following additional
features not present in the previous models: (1) given spatial orientation and scale, a
requirement of only one pair of phase quadrature filters preferring opposite directions for
every two sampling intervals of the visual field in that scale, instead of the four filters —
a pair of phase quadrature filters for both motion directions — at each location (sampling
interval) to compute motion energy (Adelson and Bergen 1985); (2) a mechanism relating
RF properties to input signal powers, leading to additional predictions on the correlation
between the motion coding and the spatial, chromatic, and stereo coding.

A lack of precise knowledge of the natural input power spectrum in the temporal
domain makes most theoretical predictions non-quantitative. In any case, the quantitative
predictions would also depend on the signal-to-noise used in particular experiments. In
addition, the significant nonlinearity to facilitate the neural response in the preferred
motion directions (Reid et al 1991), although it originates mostly from the generations of
action potentials (Jagadeesh et al. 1993), can not be explained by this theory.

This theory has further considerable limitations. The assumption of efficient coding
implies that there should be no more cortical cells than the input (the retinal ganglion)
cells. An efficient representation (15) should have only one particular parameter set (q,
6, 3, 8"), permitting only one directional index for all cells and two receptive field phase
values in quadrature of each other (at least when considering cells preferring the same

orientation and scale). There can be, however, different, but equivalently efficient (up to
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the second order correlation), codes in different cortices, each with its own single direc-
tionality index and two quadrature filter phases. In reality, however, there are about 40
times as many cortical cells in V1 as retinal ganglion cells (Barlow 1981) and a spectrum
of directionality indices in a single cortex (Berman, Wilkes, and Payne 1987, although it is
not certain whether neurons tuned to one scale and orientation in a single cortex also have
varying directional indices). This theory provides no explanation for the proliferation of
cortical cells. In fact, the same limitation existed in earlier works of efficient coding in the
multiscale representation applied to spatial, chromatic, and stereo coding (Li and Atick
1994a, b). A single copy of efficient spatial and stereo coding, for instance, should have
only two choices of preferred orientations as well as one ocular dominance index and two
optimal disparity values for each spatial scale and orientation — this is not true in reality
(Hubel and Wiesel 1974, Berardi, Bisti, Cattaneo, Fiorentini, and Maffei 1982). Nev-
ertheless, many of the predictions by this framework, such as the cell quadrature phase
structures, the spatial frequency bandwidth, the color selective blob cells, and the correla-
tion between spatial and stereo coding, some of which rely heavily on the efficient coding
assumption, agree with experimental observations (see Li and Atick 1994ab and refer-
ences there in ). In addition, the theoretical framework has already provided predictions
which had not been experimentally investigated and have been subsequently confirmed in
experiments (Li 1995a, Anzai et al 1994). These facts give credibility to efficient coding
as a useful framework for understanding at least some of the primary visual cortical pro-
cessings. It is plausible that the primary visual cortex has many different representations,
each is itself efficient. Since each efficient representation is complete, it is possible to

construct different efficient representations from a single one when necessary. The current
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work, with some of its predictions not yet experimentally investigated, provides more
testing grounds to explore the strength and limitations of the efficient coding framework.
In particular, the test on the prediction of neighboring motion sensitive units is crucial to
the theory. This is because the confirmation of this prediction requires the neighboring
cells to (1) prefer the opposite motion directions, (2) have the same directional index,
and (3) to be in quadrature phase relationship, if they (4) have the same optimal spatial
frequency and orientation. To simultanously satisfy these conditions would be difficult
if the neural properties were randomly assigned. In addition, the probable need of more
filters to compute motion energy could provide one of the explanations for proliferation

of cortical cells.
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Appendix

We verify that the composite code (15) is indeed efficient, by proving that the output
O(t) = X, o Ki(20, 12, 4')S(2,1') is decorrelated < O (1)Oy, (1) >= 6,m6(t —t'). For

n?

clarity, the following short hand will be used sometimes in the proof: K as K*(0, /),
K" as K“(¢',p"), [as [[.., [df as f__f;l df + ff:H, and < SS > as the correlation
matrix between inputs. In addition, normalization constants are ignored when they are

not essential. Since K& = K, 4+ (=1)"¢K],

< OO (1) >= (K* < 55 > KT), (s
= (K<S8S>K") e+ (="K < SS> KT, 1o
+(=1)"g(K < S5 > K)o + (=1)"q(K' <SS > KTy e

= (14 ¢)bumbier + q((=1)™(K < S8 > K)o + (=1)"(K' < SS > KT, tomtr

where K (and similarly K’, K2) is seen here as a matrix with elements (K ), .0 =

Ko(xd, tya,t).

ny
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It will be shown below that

(K*(0,8) < 58 > K¢, 3" )

0 if n = m + 2[, where [ # 0 is an integer

cos(Af) cos(AB)  ifn=mand t =1

= { 2ncos(Af)sin(AB) ifn=mandt#£V (30)
2psin(A0) cos(AB)  if n # m + 21, where [ is an integer, and { = ¢/

4psin(AQ)nsin(AF)  if n # m + 21, where [ is an integer, and ¢ # ¢/

where A = 0" — 0 and AS = ' — 3, and p and 5 are constants depending on n,m,t,t'.
Note that A3 — —Af and A0 — —Af leads to (K < SS > K, 1y — (K' < SS >

[(T)n,t;m,t’ . Thus

< OR()05(1) >= (1 + ¢*)8mbre

0 if n = m + 2[, where [ # 0 is an integer
(—1)"2q cos(Af) cos(AB) ifn=m and t = ¢

+4 0 if n =m and t # ¢/
g(—1)"4psin(A0) cos(AB) il n#m+ 2l and t =1/

0 if n # m + 2[, where [ is an integer, and ¢t # ¢/

Decorrelation < O%(t)O% (t') >= 8, 6(t — t') is achieved with Af = +x/2.

To prove equation (30),

(K*(0,8) < S8 > K*(0', ') Dutimar = (K*(0,8) < S5 > K0/, 3) ) gom
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= /d:z:d:z:’deT’Kg(xffb — it —7)K* (2% — a5t — 7 YR(x — 2’ ;7 — 7')

= [ Ao (1) K (=, =) R(f, )ittt
K, (f,w) can be obtained from equation (12):
K&t — )t — ') / df / K ( f,w)e'tf (enme)=sgn()(mn/2=0)+ult—t)+( w)+s8n()5) (3])
where sgn(z) = 1 when @ > 0 and sgn(xz) = 0 otherwise. Hence

K, (f,w) = K(f,w)e =580 mn/2=0+é(fw)+sgn(w)s) (32)
for |f| € (f*, fo'), and similarly for K,,(f,w). Since K(f,w) = R™'%(f,w), we have

(K*(0,8) < 58 > K0, 3" )

/ df /U (@5 =e6) =Sgn(f)m(n=m)/2-5gn(1)A0) / dive @ t=t)=sgn(w)Ap)

To continue, we note the following. Since U?, as given in equation (10), is a unitary

matrix, hence, 3, U (Up )% = pm. Denoting complex conjugate by c.c.,

fa+1

/ df 'V @=ei)=sgn(D)m(n=m)/2) _ / =g (=)D e o6, (33)

a

Hence, ff:H ¢! len=en)=r(n=m)/2) = {5 is a pure imaginary number when n # m. Similarly
[° dwe"=") = ip is a pure imaginary number when ¢ # #'. The integration fffaaH df isin

fact a summation 3 facs < rat1. By the definition (Li and Atick 1994a) of U?, f; = 275 /N
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with j = j% + 1,77 +2,....,j*T, N* = 2(j2+! — j2). Then
fott .
/ df ' (@i=es) =r(n=m)/2)

Ne/2-1

= mim(n—m)/24ifa g0 (2h—af,) Z (exp(i(xz_x;)gﬂ/]v))f

=0

= T Len ) (1 — exp(in («f, — 25, )N /N)) /(1 = exp((i2m («}, — @3,)/N))
Noting that « = (N/N*)n or 2 = (N/N*)(n + n%2), we have

T
L/ df /U i) =m(n=m)/2

0 if n =m + 2[, where [ # 0 is an integer

1/2 (up to a normalization constant), if n = m,

tp  otherwise.

The proof is concluded that, for [ as a non-zero integer,

(K“(0,3) < 5S> K0, 8 )

- /#gﬂ@%%H@WWW%WH@WQ/&MWWWH@MW

fa+1

= (e—w/ e~ U lmmmam)bn(n=m)/2) 4 ¢ e )(e /Oo dwe™ =) 4 c.c.)
a 0

0 if n =m+ 2l
cos(Af) cos(AS) ifn=mandt="1
= 2n cos(Af)sin(AB)  ifn=mandt#¢t

2psin(Af)cos(AB)  ifn#m42landt =1

4pnsin(Af)sin(AB)  ifn#m+2], and t £
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