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We describe a hybrid modeling approach where the parameters of a 
model are calculated and modulated by another model, typically a neu- 
ral network (NN), to avoid both overfitting and underfitting. We de- 
velop the approach for the case of Hidden Markov Models (HMMs), 
by deriving a class of hybrid HMM/NN architectures. These architec- 
tures can be trained with unified algorithms that blend HMM dynamic 
programming with NN backpropagation. In the case of complex data, 
mixtures of HMMs or modulated HMMs must be used. NNs can then 
be applied both to the parameters of each single HMM, and to the 
switching or modulation of the models, as a function of input or con- 
text. Hybrid HMM/NN architectures provide a flexible NN parameter- 
ization for the control of model structure and complexity. At the same 
time, they can capture distributions that, in practice, are inaccessible to 
single HMMs. The HMM/NN hybrid approach is tested, in its simplest 
form, by constructing a model of the immunoglobulin protein family. 
A hybrid model is trained, and a multiple alignment derived, with less 
than a fourth of the number of parameters used with previous single 
HMMs. 

1 Introduction: Hybrid Modeling 

One fundamental step in scientific reasoning is the inference of param- 
eterized probabilistic models to account for a given data set D. If we 
identify a model M(B) ,  in a given class, with its parameter vector 0, then 
the goal is to approximate the distribution P(QlD), and often to find its 
mode maxHP(BID). Problems, however, arise whenever there is a mis- 
match between the complexity of the model and the data. Too complex 
models result in overfitting; too simple models result in underfitting. 

The hybrid modeling approach attempts to finess both problems. 
When the model is too complex, it is reparameterized as a function of 
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a simpler parameter vector w, so  that H = f(i[)\ .’  When the data are too 
complex, short of resorting to a different model class, the only solution 
is to model the data with several M(H)s, with H varying discretely or 
continuously across different regions of data space. Thus the parame- 
ters must be modulated as a function of input, or context, in the form 
/i -~ f ” ) .  In the general case, both may be desirabicl, so that H - f i ic i . I ) .  
This approach is hybrid, in the stmse that the functionf can belong t o  
a different model class. Since neural networks (NN) have well-known 
universal approximation properties, a natural approach is t o  compute f 
lvith an  NN, but other representations are possible. Phis approach is also 
hierarchical because model reparameterizations can easily be nested at 
s r \wal  levels. Here, for simplicity, MY confine ourselves to a single level 
of reFarameteriraticin. 

For concreteness, we focus on a particular class o f  probabilistic mod- 
cds, namely Hidden Markov Models (HMMs), and their application in 
molecular biology. To ol’ercome the limitations of simple HMMs, we 
propose to use hybrid HMM/NN architectures’ that combine the ex- 
pressive power of artificial NNs with the sequential time series aspect o f  
HMMs. It is, of course, not the first time HMMs and NNs are combined. 
Hybrid architectures have been used both in speech and cursive hand- 
writing recognition (Bourlard and Morgan 1994; Cho and Kim 1995). In 
man!- of these applications, however, NNs are used as front end pro- 
cc’ssors to extract features, such as strokes, characters, and phonemes. 
HMMs are then used in higher processing stages for word and language 
modeling.’ The HMM and NN components are often trained separately, 
although there are some exceptions (Bengio r t  171. 1995). A different type 
of hybrid architecture is also described in Cho and Kim (1995), where the 
NK component is used to classify the pattern of likelihoods produced by 
several HMMs. Here, in contrast, the HMM and NN components are 
inseparable. This yields, among other things, unified training algorithms 
where the HMM dynamic programming and the NN backpropagation 
blend together. 

In what follows, we first brieflv review HMMs, how they can be used 
to model protein families, and their limitations. In Section 3, we develop 
HMM/NN hybrid architectures for single models, to address the problem 
of parameter complexity and control or olwfitting. Simulation results are 
presented in Section 4 for a simple HMM/NN hybrid architecture used 

‘Classical Bayesian hierarchical modeling relies on the description ot a parameterized 
prior P,,  I W ) ,  where ( I  are the hyperparanieter>. This is relateci to the present situation 
f! :- f (i(xt, provided a prior P(;oi is defined on the neu’ parameters. 

’HMM/NiY architectures v,wc tirst described ‘it a NIPS44 workshop (Vail, CO) and  
at thc lntcrnational Symposium 0 1 1  Fifth Generation ConipLiter Systems (Tokyo, Japan), 
in December 1994. Preliminary versions ivere published in the Proceedings of the 
Srmiposium, a n d  in the I’roceedings o f  the ISM695 Conference. 

’In the nicrlcndar biology applications to  be considercd, NNs could conceivably he 
uwd to interprct the analog output of t-arious sequencing machines, hut this is definitely 
not tht, focus here. 
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to model a particular protein family (immunoglobulins). In Section 5, we 
discuss HMM/NN hybrid architectures for multiple models, to address 
the problem of long-range dependencies or underfitting. 

2 HMMs of Protein Families 

Many problems in computational molecular biology can be cast in terms 
of statistical pattern recognition and formal languages (Searls 1992). The 
increasing abundance of sequence data creates a favorable situation for 
machine learning approaches, where grammars are learned from the data. 
In particular, HMMs are equivalent to stochastic regular grammars and 
have been extensively used to model protein families and DNA coding 
regions (Baldi et al. 1994a,b; Krogh ef al. 1994a; Baldi and Chauvin 1994a; 
Krogh et al. 1994b). 

Proteins consist of polymer chains of amino acids. There are 20 im- 
portant amino acids, so that proteins can be viewed as strings of letters, 
over a 20-letter alphabet. Protein sequences with a common ancestor 
share functional and structural properties, and can be grouped into fam- 
ilies. Aligning sequences in a family is important, for instance to detect 
highly conserved regions, or motifs, with particular significance. Multi- 
ple alignment of highly divergent families where, as a result of evolu- 
tionary insertions and deletions, pairs of sequences often share less than 
20"/0 amino acids, is a highly nontrivial task (Meyers 1994). 

A first-order discrete HMM can be viewed as a stochastic genera- 
tive model defined by a set of states S, an alphabet A of M symbols, a 
probability transition matrix T = (f,,), and a probability emission matrix 
E = ( e , x ) .  The system randomly evolves from state to state, while emit- 
ting symbols from the alphabet. When the system is in a given state i, it 
has a probability t,, of moving to state j, and a probability eJX  of emitting 
symbol X .  As in the application of HMMs to speech recognition, a family 
of proteins can be seen as a set of different utterances of the same word, 
generated by a common underlying HMM. One of the standard HMM 
architectures for protein applications (Krogh et al. 1994a), is the left-right 
architecture depicted in Figure 1. The alphabet has M = 20 symbols, 
one for each amino acid (M = 4 for DNA or RNA models, one symbol 
per nucleotide). In addition to the start and end state, there are three 
classes of states: the main states, the delete states, and the insert states 
with S = {s tar t .  ml . .  . . . i n N .  i,. . . . . iN+l .  d l . .  . . . d N .  end} .  N is the length of 
the model, typically equal to the average length of the sequences in the 
family. The main and insert states always emit an amino-acid symbol, 
whereas the delete states are mute. The linear sequence of state transi- 
tions start i tT11 + r n 2 . . .  i t n N  i end is the backbone of the model. 
For each main state, corresponding insert and delete states are needed to 
model insertions and deletions. The self-loop on the insert states allows 
for multiple insertions at a given site. 
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Figure 1: Example of HMM architecture used in protein modeling. S is the 
start state, E the end state. d,, ni,, and i, denote delete, main, and insert states, 
respectively. 

2.1 Learning Algorithms. Given a sample of K training sequences 
0 1 .  . . . . OR, the parameters of an HMM can be iteratively modified, in an 
unsupervised way, to optimize the data fit according to some measure, 
usually based on the likelihood of the data. Since the sequences can be 
considered as independent, the overall likelihood is equal to the product 
of the individual likelihoods. Two target functions, commonly used for 
training, are the negative log-likelihood: 

k I( 

Q = - c Q k  = - 1 InP(0k) (2.1) 
k- 1 k = l  

and the negative log-likelihood based on the optimal paths: 
h h 

Q =  - x & =  - ~ l n P [ . r r ( O ~ . ) ]  (2.2) 
k= 1 k= 1 

where ~ ( 0 )  is the most likely HMM production path for sequence 0. 
~(0) can be computed efficiently by dynamic programming (Viterbi al- 
gorithm). Depending on the situation, the Viterbi path approach can be 
considered as a fast approximation to the full maximum likelihood, or 
as an algorithm in its own right. This can be the case in protein model- 
ing where, as described below, the optimal paths play an important role. 
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When priors on the parameters are included, one can also add regular- 
izer terms to the objective functions for maximum a posteriori (MAP) 
estimation. 

Different algorithms are available for HMM training, including the 
Baum-Welch or expectation-maximization (EM) algorithm, and different 
forms of gradient descent and other generalized EM (GEM) (Dempster 
et al. 1977; Rabiner 1989; Baldi and Chauvin 1994a) algorithms. In the 
Baum-Welch algorithm, the parameters are updated according to 

(2 .3)  

where m, = C v m , ~  (respectively n, = C,M,,) and mix  (respectively iz,,) 

are the normalized4 expected emission (respectively transition) counts, 
induced by the data, that can be calculated using the forward-backward 
dynamic programming procedure (Kabiner 1989), or the Viterbi paths in 
Viterbi learning. As for gradient descent, and other GEM algorithms, a 
useful reparameterization (Baldi and Chauvin 1994b), in terms of nor- 
malized exponentials consists of 

(2.4) 

with w;, and Z J , ~  as the new variables. This reparameterization has two 
advantages: (1) modification of the 70s and us automatically preserves 
normalization constraints on emission and transition distributions; and 
( 2 )  transition and emission probabilities can never reach the absorbing 
value 0. The on-line gradient descent equations on the negative log- 
likelihood are then 

where 11 is the learning rate. The variables n,,, n,, mix, nz, are again the 
expected counts derived by the forward-backward procedure, for each 
single sequence if the algorithm is to be used on-line. Similarly, in Viterbi 
learning, at each step along a Viterbi path, and for any state i on the path, 
the parameters of the model are updated according to 

Ti, = 1 (respectively E,x = 1) if the i + j transition (respectively emission 
of X from i) is used, and 0 otherwise. The new parameters are therefore 
updated incrementally, using the discrepancy between the frequencies 
induced by the training data and the probability parameters of the model. 

?Unlike in Baldi and Chauvin (1994b), throughout this paper we use the more clas- 
sical notation of (Rabiner 1989) where the counts, for a given sequence, automatIcallv 
incorporate a normalization by the probability P ( 0 )  of the sequence itself. 
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Regardless of the training method, once an HMM has been success- 
fully trained on a family of sequences, it can be used in a number of 
tasks. For instance, for any given sequence, one can compute its most 
likely path, as well as its likelihood. A multiple alignment results im- 
mediately from aligning all the optimal paths. The likelihoods can be 
used for discrimination tests and data base searches (Krogh et al. 1994a; 
Baldi and Chauvin 19941). In the case of proteins, HMMs have been suc- 
cessfully applied to several families such as globins, immunoglobulins, 
kinases, and G-protein-coupled receptors. In most cases, HMMs have 
performed well on all tasks yielding, for instance, multiple alignments 
that are comparable to those derived by human experts. 

2.2 Limitations of HMMs. In spite of their success in various appli- 
cations, HMMs can suffer from two weaknesses. First, they often have a 
large number of unstructured parameters. In the case of protein models, 
the architecture of Figure 1 has a total of approximately 49N parameters 
(40N emission parameters and 9N transition parameters). For a typical 
protein family, N is of the order of a few hundreds, resulting imme- 
diately in models with over 10,000 tree parameters. This can lead to 
orwfitting when only a few sequences are available,5 not an uncommon 
situation in early stages of genome projects. Second, first-order HMMs 
are limited with respect to dependencies between hidden states, found in 
most interesting problems. Proteins, for instance, fold into complex 3D 
shapes, essential to their function. Subtle long-range correlations in their 
polypeptide chains may exist that are not accessible to a single HMM. 
For instance, assume that whenever X is found at position i, it is gener- 
ally followed by Y at position j; and whenever X' is found at position i, 
I t  tends to be followed by Y' at j .  A single HMM has typically twofisrd 
emission vectors associated with the i and j positions. Therefore it cannot 
capture such correlations. Related problems are also the nonstationarity 
of complex time series, as well as the variability often encountered in 
"speaker-independent" recognition problems. Only a small fraction of 
distributions over the space of possible sequences, essentially the facto- 
rial distributions, can be represented by a reasonably constrained HMM." 

3 HMM/NN Hybrid Architectures: Single Model Case 

3.1 Basic Idea. In a general HMM, an emission or transition vector 
H is a function of the state i only: H =f(i) .  The first basic idea is to have 

~ ~~ 

51t should be noted, however, that a typical sequence provides on  the order of 2N 
constraints, and 25 sequences or so provide a number of examples in the same range 
as the number of HMM parameters. 

'Any distribution can be represented by a single cxyorirritial s i x  HMM, with a start 
state connected to different sequences of deterministic states, one for each possible 
alphabet sequence, with a transikm probability equal to  the probability o f  the s ~ q ~ w i ~ c c  
i tse I f. 
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a NN on top of the HMM, for the computation of the HMM parame- 
ters, that is for the computation of the functionf. NNs are universal 
approximators, and, therefore, can represent any f. More importantly 
perhaps, NN representations enable the flexible introduction of many 
possible constraints. For simplicity, we discuss emission parameters only, 
but the approach extends immediately to transition parameters as well. 

In the reparameterization of 2.4, we can consider that each one of the 
HMM emission vectors is calculated by a small NN, with one input set 
to one (bias), no hidden layers, and 20 softmax output units (Fig. 2a). 
The connections between the input and the outputs are the Z J , ~ .  This can 
be generalized immediately by having arbitrarily complex NNs, for the 
computation of the HMM parameters. The NNs associated with different 
states can also be linked with one or several common hidden layers, the 
overall architecture being dictated by the problem at hand. In the case 
of a discrete alphabet however, such as for proteins, the emission of 
each state is a multinomial distribution, and, therefore, the output of the 
corresponding network should consist of M softmax units. 

As a simple example, consider the hybrid HMM/NN architecture of 
Figure 2b consisting of the following: 

1. Input layer: one unit for each state i. At each time, all units are set 
to 0, except one which is set to 1. If unit i is set to 1, the network 
computes E , X ,  the emission distribution of state i. 

2. Hidden layer: H hidden units indexed by h, each with transfer 
functionfi, (logistic by default) with bias bl, (H < M). 

3. Output layer: M softmax units or weighted exponentials, indexed 
by X, with bias bx. 

4. Connections: ( t  = ( 0 1 , ~ )  connects input position i to hidden unit 11. 
!I = (.jx,l) connects hidden unit h to output unit X. 

For input i, the activity in the 11th unit in the hidden layer is given by 

f i l ( 0 i l l  + be) (3.1) 

The corresponding activity in the output layer is 

For hybrid HMM/NN architectures, a number of points are worth notic- 
ing: 

0 The HMM states can be partitioned into different groups, with dif- 
ferent networks for different groups. In protein applications, for 
instance, one can use different NNs for insert states and for main 
states, or for different groups of states along the protein sequence 
corresponding, for instance, to different regions (hydrophobic, hy- 
drophilic, alpha-helical, etc.). 
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Output emission distributions 

Input: HMM states 

Fig. 2a 

Output emission distribution 

m 

L 
input: HMM states 

Fig. 2b 

Figure 2: (a) Schematic representation of siniple HMM / N N  hybrid architecture 
used in Baldi Pt 171. (1994h). Each HMM state has its own NN. Here, the NNs are 
extremely simple, with no hidden la!*er, and an output layer of softmax units 
computing the state emission, or transition, parameters. Only ou tpu t  emissions 
are represented for  simplicit!: (b) Schematic representation of an HMM/NN 
xchitecture Lvhere the NNs associated with different states (or different groups 
o f  states) are connected via m e  o r  several hidden layers. 
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0 HMM parameter reduction can easily be achieved using small hid- 
den layers with H hidden units, and H small compared to N or 
M. In the example of Figure 2b, with H hidden units and consid- 
ering only main states, the number of parameters is H(N + M) in 
the HMM/NN architecture, versus NM in the corresponding sim- 
ple HMM. For protein models, this yields roughly HN parameters 
for the HMM/NN architecture, versus 20N for the simple HMM. 
H = M is equivalent to 2.4. 

0 The number of parameters can be adaptively adjusted to variable 
training set sizes, merely by changing the number of hidden units. 
This is useful in environments with large variations in data base 
sizes, as in current molecular biology applications. 

0 The entire bag of connectionist tricks can be brought to bear on these 
architectures, such as radial basis functions, multiple hidden layers, 
sparse connectivity, weight sharing, gaussian priors, and hyperpa- 
rameters. Several initializations and structures can be implemented 
in a flexible way. For instance, by allocating different numbers of 
hidden units to different subsets of emissions or transitions, it is 
easy to favor certain classes of paths in the models, when needed. 
In the HMM of Figure 1, for instance, one must introduce a bias 
favoring main states over insert states, prior to any learning. It is 
easy also to tie different regions of a protein that may have sim- 
ilar properties by weight sharing, and other types of long-range 
correlations. By setting the output bias to the proper values, the 
model can be initialized to the average composition of the training 
sequences, or any other useful distribution. 

0 Classical prior information in the form of substitution matrices, 
for instance, is easily incorporated. Substitution matrices (Altschul 
1991) can be computed from data bases, and essentially produce a 
background probability matrix P = ( p x y ) ,  where p x y  is the proba- 
bility that X be changed into Y over a certain evolutionary time. P 
can be implemented as a linear transformation in the emission NN. 

0 HMMs with continuous emission distributions are also easy to in- 
corporate in the HMM/NN framework. The output emission dis- 
tributions can be represented, for instance, in the form of samples, 
moments, and/or mixture coefficients. In the classical mixture of 
gaussians case, means, covariances, and mixture coefficients can be 
computed by the NN. Likewise, additional HMM parameters, such 
as exponential parameters to model the duration of stay in any 
given state, can be calculated by a NN. 

With hybrid HMM/NN architectures, in general the M step of the 
EM algorithm, cannot be carried analytically. One can still use, however, 
some form of gradient descent using the chain rule, by computing the 
derivatives of the target likelihood functions 2.1 or 2.2 with respect to 
the HMM parameters, and then the derivatives of the HMM parameters 
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with respect to the NN parameters. For completeness, a derivation of  
the learning equations for the HMM/NN architecture described above 
is given in the Appendix. In the resulting learning equations (A.3 and 
A.7), the HMM dynamic programming and the NN backpropagation 
components are intimately fused. These algorithms can also be seen as 
GEM (generalized EM) (Dempster ct 01. 1977) algorithms. They can easily 
be modified to MAP optimization with inclusion of priors. 

3.2 Representation in Simple HMM/NN Architectures. Consider the 
particular HMM/NN described above, where a subset of the HMM states 
are fully connected to H hidden units, and the hidden units are fully 
connected to M softmax output units. The hidden unit bias is not really 
necessary in the sense that for any HMM state i, any vector of biases b,,, 
and any vector of connections ()I,,, there exists a new vector of connec- 
tions o;,, that produces the same vector of hidden unit activations with 0 
bias. This is not true in the general case, for instance, as soon as there are 
multiple hidden layers, or if the input units are not fully interconnected 
to the hidden layer. We have left the biases for the sake of generality, 
and also because even if the biases do not enlarge the space of possible 
representations, they may still facilitate the learning procedure. Similar 
remarks hold more generally for the transfer functions. With an input 
layer fully connected to a single hidden layer, the same hidden layer acti- 
vation can be achieved with different activation functions, by modifying 
the weights. 

A natural question to ask is what is the representation used in the 
hidden layer, and what is the space of emission distributions achievable 
in this fashion? Each HMM state in the network can be represented by 
a point in the [-l.l]" hypercube. The coordinates of a point are the 
activities of the H hidden units. By changing its connections to the H 
hidden units, an HMM state can occupy any position in the hypercube. 
So, the space of achievable emission distributions is entirely determined 
by the connections from the hidden to output layer. If these connections 
are held fixed, then each HMM state can select a corresponding optimal 
position in the hypercube, where its emission distribution, generated by 
the NN weights, is as close as possible to the truly optimal distribution, 
for instance in cross-entropy distance. During on-line learning, all pa- 
rameters are learned at the same time so this may introduce additional 
effects. 

To further understand the space o f  achievable distributions, consider 
the transformation from hidden to output units. For notational conve- 
nience, we introduce one additional hidden unit numbered 0, always set 
to 1, to express the output biases in the form: bx = , lxo. If, in this ex- 
tended hidden layer, we turn a single hidden unit to 1, one a t  a time, we 
obtain H +  1 different emission distributions in the output layer P" = [ p i )  
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(0 5 h 5 H) with 

Consider now a general pattern of activity in the hidden layer of the 
form (1. i l l . .  . . . / i l l ) .  Using 3.2 and 3.3, the emission distribution in the 
output layer is then 

After simplifications, this yields 

(3.4) 

(3.5) 

Therefore, all the achievable emission distributions by the NN have the 
form of 3.5, and can be viewed as ”combinations” of H + 1 fundamental 
distributions P” associated with each single hidden unit. In general, this 
combination is different from a convex linear combination of the P”s. 
It consists of three operations: (1) raising each component of P” to the 
power ir,,, the activity of the hth hidden unit, (2) multiplying all the 
corresponding vectors componentwise, and (3) normalizing. In this form, 
the hybrid HMM/NN approach is different from a mixture of Dirichlet 
distributions approach. 

4 Simulation Results 

Here we demonstrate a simple application of the principles behind 
HMM/NN hybrid architectures on the immunoglobulin protein family. 
Immunoglobulins, or antibodies, are proteins produced by B cells that 
bind with specificity to foreign antigens in order to neutralize them, or 
target their destruction by other effector cells. The various classes of im- 
munoglobulins are defined by pairs of light and heavy chains that are 
held together principally by disulfide bonds7 (Fig. 3).  Each light and 
heavy chain molecule contains one variable (V) region, and one (light) 
or several (heavy) constant (C) regions. The V regions differ among im- 
munoglobulins, and provide the specificity of the antigen recognition. 
About one-third of the amino acids of the V regions form the hyper- 
variable sites, responsible for the diversity of the vertebrate immune 
response. Our data base is the same as the one used in Baldi r t  1 1 1 .  

(1994b), and consists of human and mouse heavy chain immunoglob- 
ulin V region sequences, from the Protein Identification Resources (PIR) 
data base. It contains 224 sequences, with minimum length 90, average 
length N = 117, and maximum length 254. 

’Disulfide bonds are covalent bonds between two sulfur atoms in different amino 
acids (typically cysteines) of a protein that are important in determining secondary and 
tertiary structure. 
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Figure 3: A model of the structure of a typical human antibody molecule, 
composed of two light and two heavy polypeptide chains. Interchain and in- 
trachain disulfide bonds are indicated. Cysteine (C) residues are associated 
with the bonds. Two identical active sites for antigen binding, corresponding 
to the variable regions, are located in the arms of the molecule. (From Makc- 
rrlor Biology of fhr  Crrir. Vol. 11. Fourth Edition, by Watson et ol. Copyright @ 
1987 by James D. Watson. Published by The Benjamin/Cummings Publishing 
Company.) 

For the immunoglobulin V regions, our results (Baldi et al. 199413) 
were obtained by training a simple HMM, similar to the one in Fig- 
ure 1, containing a total of 52N + 23 = 6107 adjustable parameters. Here 
we train a hybrid HMM/NN architecture with the following character- 
istics. The basic model is a n  HMM with the architecture of Figure 1. 
All the main state emissions are calculated by a common NN, with 2 
hidden units. Likewise, all the insert state emissions are calculated by 
a common NN, with one hidden unit only. Each state transition distri- 
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bution is calculated by a different softmax network, as in our previous 
work. With edge effects neglected, the total number of parameters of 
this HMM/NN architecture is 1507 (117 x 3 x 3 = 1053 for the transitions, 
(117x 3+3+3x 20+40) = 454 for the emissions, including biases). This ar- 
chitecture is not at all optimized: for instance, we suspect we could have 
significantly reduced the number of transition parameters. Our goal at 
this time is only to demonstrate the general HMM/NN principles, and 
test the learning algorithm. 

The hybrid architecture is then trained on-line, using both gradient 
descent (A.3), and the Viterbi version (A.7). The training set consists 
of a random subset of 150 sequences, identical to the training set used 
previously. There, emission and transition parameters were initialized 
uniformly. Here, the input-to-hidden weights are initialized with inde- 
pendent gaussians, with mean 0 and standard deviation 1. The hidden- 
to-output weights are initialized to 1. This yields a uniform emission 
probability distribution on all the emitting states.8 Notice also that if all 
the weights are initialized to 1, including those from input to hidden 
layer, then the hidden units cannot differentiate from each other. The 
transition probabilities out of insert or delete states are initialized uni- 
formly to 1/3. We introduce, however, a small bias along the backbone 
that favors main to main transitions, in the form of a Dirichlet prior. This 
prior is equivalent to introducing a regularization term in the objective 
function, equal to the logarithm of the backbone transition path. The reg- 
ularization constant is set to 0.01, and the learning rate to 0.1. Typically, 
10 training cycles are more than sufficient to reach equilibrium. 

In Figure 4, we display the multiple alignment of 20 immunoglobulin 
sequences, selected randomly from both the training and validation sets. 
The validation set consists of the remaining 74 sequences. This align- 
ment is very stable between 5 and 10 epochs.’ It corresponds to a model 
trained by A.7 for 10 epochs. While there is currently no universally 
accepted measure of the quality of an alignment, the present alignment 
is similar to the previous one, derived with a simple HMM with more 
than four times as many parameters. The algorithm has been able to 
detect most of the salient features of the family. Most importantly, the 
cysteine residues (C) toward the beginning and the end of the region 
(positions 24 and 100 in this alignment), which are responsible for the 
disulfide bonds that hold the chains, are perfectly aligned. The only ex- 
ception is the last sequence (PH0097), which has a serine (S) residue in 
its terminal portion. This is a rare but recognized exception to the con- 
servation of this position. Some of the sequences in the family came with 
a ”header” (transport signal peptide). We did not remove the headers 

XWith Viterbi learning, this is probably better than a nonuniform initialization, such 
as the average composition. A nonuniform initialization may introduce distortions in 
the Viterbi paths. 

YDifferences with the alignment published in the 1SMB95 Proceedings result from 
differences in regularization, and not in the number of training cycles. 



1554 Pierre Baldi and Yws Chauvin 

prior to training. The model is capable of detecting and accommodating 
these headers, by treating them as initial repeated inserts, as can be seen 
from the alignment of three of the sequences (S09711, A36194, S11239). 
This multiple alignment contains also a few isolated problems, related in 
part to the overuse of gaps and insert sates. Interestingly, this is most 
evident in the hypervariable regions, for instance at positions 30-35 and 
50-55. These problems should be eliminated with a more careful selec- 
tion of hybrid architecture and/or regularization. Alignments did not 
improve using A.3 and/or a larger number of hidden units, up to 4. 

In Figure 5, we display the activity of the two hidden units associ- 
ated with each main state (see 3.2). For most states, at least one of the 
activities is saturated. The activities associated with the cysteine residues 
responsible for the disulfide bridges (main states 24 and 100) are all sat- 
urated, and in the same corner (-1. +l). Points close to the center (0.0) 
correspond to emission distributions determined by the bias only. For the 
main states, the three emission distributions of equation 3.3, associated 
with the bias and the two hidden units, are given by 

P" = (0.442.0.000.0.005.0.000.0.001.0.000.0.004.0.002.0.133. 
0.000.0.000.0.000.0.000.0.113.0.195.0.000.0.104.0.001. 
0.000.0.000) 

P' = (0.000.0.000.0.000.0.036.0.000.0.Y00.0.000.0.000.0.000. 
0.000.0.000.0.000.0.037.0.000.0.000.0.000.0.000. 
0.000.0.027) 

and 

P.' = (0.000.0.040.0.000.0.000.0.000.0.000.0.000.0.000.0.000. 
0.942.0.001.0.000.0.016.0.000.0.000.0.000.0.000.0.001. 
0.000.0.000) 

using alphabetical order on single-letter amino acid symbols. 

5 Discussion: The Case of Multiple Models 

The hybrid HMM/NN architectures described address the first limitation 
of HMMs: the control of model structure and complexity. No matter how 
complex the NN component, however, the final model so far remains a 
single HMM. Therefore the second limitation of HMMs, long-range de- 
pendencies and underfitting, remains. This obstacle cannot be overcome 
by simply resorting to higher-order HMMs. Most often these are com- 
putationally intractable. 

A possible approach is to try to introduce a new state for each relevant 
context. This requires a systematic method for determining relevant con- 
texts of variable lengths, directly from the data. Furthermore, one must 
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Figure 4: Multiple alignment of 20 immunoglobulin sequences, randomly ex- 
tracted from the training and validation data sets. Validation sequences: F37262, 
GlHUDW, A36194, A31485, D33548, 511239, 127888, A33989, A30502. Align- 
ment is obtained with a hybrid HMM/NN architecture trained for 10 cycles, 
with two hidden units for the main state emissions, and one hidden unit for 
the insert state emissions. Lower case letters correspond to emissions from in- 
sert states. Notice the initial header (transport signal peptide) on some of the 
sequences, captured as repeated transitions through the first insert state in the 
model. The cysteines (C), associated with the disulfide bridge, in columns 24 
and 100, are perfectly aligned (PH0097 is a known biological exception). 
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Figure 5: Activity of the two hidden units associated with the emission of the 
main states. The two activities associated with the cysteines (C) are in the upper 
left corner, almost overlapping, with coordinates (-1, +l). 

hope the number of relevant contexts remains small. An interesting ap- 
proach along these lines can be found in Ron et al. (1994), where English 
is modeled as a Markov process with variable memory length of up to 
10 letters or so. 

To address the second limitation without resorting to a different model 
class, one must consider more general HMM/NN hybrid architectures, 
where the underlying statistical model is a set of HMMs. To see this, 
consider again the X - Y/X’ - Y’ problem. To capture such dependencies 
requires mriable emission vectors at the corresponding locations, together 
with a linking mechanism. In this simple case, four different emission 
vectors are needed: e,, e,, e: and e;. Each one of these vectors must 
assign a high probability to the letters X, Y, X’, and Y’, respectively. 
More importantly, there must be some kind of memory, so that el and 
e, are used for sequence 0, and e: and e( are used for sequence 0’. The 
combination of el and e,l (or e: and e,) should be rare or not allowed, 
unless required by the data. Thus el and e, must belong to a first HMM, 
and e: and el to a second HMM, with the possibility of switching from 
one HMM to the other, as a function of input sequence. Alternatively, 
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there must be a single HMM, but with variable emission distributions, 
modulated again by some input. 

In both cases then, we consider that the emission distribution of a 
given state depends not only on the state itself, but also on an additional 
stream of information I. That is now H = f ( i . I ) .  In a multiple HMM/NN 
hybrid architecture, f can be computed again by a NN. Depending on 
the problem, the input I can assume different forms, and may be called 
”context” or ”latent variable.” When feasible, I may even be equal to 
the currently observed sequence 0. Other inputs are, however, possible, 
over different alphabets. An obvious candidate in protein modeling tasks 
would be the secondary structure of the protein (rv-helices, J-sheets, and 
coils). In general, I could also be any other array of numbers representing 
latent variables for the HMM modulation (MacKay 1994). We shall now 
describe, without any simulations, two simple but somewhat canonical 
architectures of this sort. Learning is briefly discussed in the Appendix. 

5.1 Example 1: Mixtures of HMM Experts. A first possible approach 
is to put an HMM mixture distribution on the sequences. With M HMMs 
M I . .  . . .M,,, 

where C, A, = 1, and As are the mixture coefficients. Similarly, the Viterbi 
likelihood is max, A , P [ T M ,  (O)]. In generative mode, sequences are pro- 
duced at random by each individual HMM, and MI is selected with 
probability A,. Such a system can be viewed as a larger single HMM, 
with a starting state connected to each one of the HMMs M, ,  with tran- 
sition probability A, (Fig. 6). This type of model is used in Krogh ef 
al .  (1994a) for unsupervised classification of globin protein sequences. 
Notice that the parameters of each submodel can be computed by an 
NN to create an HMM/NN hybrid architecture. Since the HMM ex- 
perts form a larger single HMM, the corresponding hybrid architecture 
is also identical to what we have seen in the section on single HMMs. 
The only peculiarity is that states have been replicated, or grouped, to 
form different submodels. One further step is to have variable mixture 
coefficients that depend on the input sequence, or some other relevant 
information. These mixture coefficients can be computed as softmax out- 
puts of an NN, as in the mixture of experts architecture of Jacobs rt nl. 
(1991). 

5.2 Example 2: Mixtures of Emission Experts. A different approach 
is to modulate a single HMM by considering that the emission parameters 
e,x should also be function of the additional input I. So eIx = P( i. X. I ) .  
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s * 

. 
- E  

Figure 6: Schematic representation of the type of multiple HMM architecture 
used in Krogh et d. (1994a) for discovering subfamilies within a protein family. 
Each "box," between the start and end states, corresponds to an HMM with the 
architecture of Figure 1 .  

Without any loss of generality, we can assume that P is a mixture of I I  

emission experts P,: 
11 

P( i .  X. I )  = C A,( i .  X. I)P,ji. X. I )  
/ = I  

(5 .2 )  

In many interesting cases, A, is independent of X ,  resulting in the prob- 
ability vector equation, over the alphabet: 

(5.3) 

If n = 1 and P( i. I )  = P( i), we are back to a single HMM. An important 
special case is derived by further assuming that A, does not depend on 
i, and PI (i. X. I) does not depend on I explicitly. Then 

(5.3) 

This provides a principled way for designing the top layers of general 
hybrid HMM/NN architectures, such as the one depicted in Figure 7. 
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Control 

Emlsslon 

experts 

I 
Input: HMM states 
I 
Input: external or context 

network 

Figure 7: Schematic representation of a general HMM/NN architecture, where 
the HMM parameters are computed by an NN of arbitrary complexity, that op- 
erates on state information, but also on input or context. The input or context 
is used to modulate the HMM parameters, for instance, by switching or mixing 
different parameter experts. For simplicity, only emission parameters are rep- 
resented, with three emission experts, and a single hidden layer. Connections 
from the HMM states to the control network, and from the input to the hidden 
layer, are also possible. 

The components P, are computed by a NN, and the mixture coefficients 
by another gating NN. Naturally, many variations are possible and, in 
the most general case, the switching network can depend on the state i, 
and the distributions P, on the input 1. In the case of protein modeling, 
for instance, if the switching depends on position i, the emission experts 
could correspond to different types of regions, such as hydrophobic and 
hydrophilic, rather than different subclasses within a protein family. 

6 Conclusion 

A large class of hybrid HMM/NN architectures has been described. 
These architectures improve on single HMMs in two complementary di- 
rections. First, the NN reparameterization provides a flexible tool for the 
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control of overfitting, the introduction of priors, and the construction of 
an input-dependent mechanism for the modulation of the final model. 
Second, modeling a data set with multiple HMMs allows for the cover- 
age of a larger set of distributions, and the expression of non-stationarity 
and correlations inaccessible to single HMMs. We recently found out that 
related ideas have been proposed independently in Bengio and Frasconi 
(1995), but from a different viewpoint in terms of input/outyut HMMs. 
Not surprisingly, these ideas are also related to data compression, infor- 
mation complexity, factorial codes, autoencoding and generative models 
[for instance, Dayan ct al. (1995), and references therein]. 

The concept of hybrid HMM/NN architecture has been demonstrated, 
in its simplest form, by providing a model of the immunoglobulin family. 
The HMM/NN approach is meant to complement rather than substitute 
many of the already existing techniques for incorporating prior informa- 
tion in sequence models. Additional work is required to develop optimal 
architectures and learning algorithms, and to test them on more challeng- 
ing protein families and other domains. 

Two important issues for the success of a hybrid HMM/NN archi- 
tecture on a real problem are the design of the NN architecture, and the 
selection of the external input or context. These issues are problem de- 
pendent and cannot be dealt with generally. We have described some 
examples of architectures using mixture ideas for the design of the NN 
component. Different input choices are possible, such as contextual in- 
formation or latent lwiables, sequences over a different alphabet (for 
instance strokes versus letters in handwriting recognition), or just real 
vectors, in the case of manifold parameterization (MacKay 1994). 

As pointed out in the introduction, the ideas presented here are not 
limited to HMMs, or to protein or DNA modeling. They can be viewed 
in a more general framework, where a class of parameterized model is 
first constructed for the data, and then the parameters of the models are 
calculated, and possibly modulated, by one or several other NNs (or any 
other flexible reparameterization). I n  fact, several examples of simple 
hybrid architectures can be found scattered throughout the literature. A 
classical case consists of binomial (respectively multinomial) classification 
models, where membership probabilities are calculated by a NN with a 
sigmoidal (respectively normalized exponential) output (Rumelhart ef nl. 
19%). Other examples are the rnaster-sla\Te approach of Lapedes and 
Farber (1986), and the sigrnoidal belief networks in Neal (1992), where 
NNs are used to compute the weights of another NN, or the conditional 
distributions of a belief network. Although the principle of hybrid mod- 
eling is not new, by exploiting it systematically in the case of HMMs, 
we have generated new classes of models. There are other classes where 
the principle has not been applied systematically yet. As an example, 
it is well known that HMMs are equikralent to stochastic regular gram- 
mars. The next level in the Chomsky hierarchy is context-free grammars 
(SCFGs). One can consider hybrid SCFG/NN architectures, where a NN 
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is used to compute the parameters of a SCFG, and/or to modulate or mix 
different SCFGs. Such hybrid grammars might be useful, for instance, in 
extending the work of Sakakibara et al. (1994), on RNA modeling. Find- 
ing optimal architectures for molecular biology applications and other 
domains, and developing a better understanding of how probabilistic 
models should be "-modulated as a function of input or context, are 
some of the main challenges for hybrid approaches. 

7 Appendix 

7.1 Learning for Simple HMM/NN Architectures. Here we give on- 
line equations (batch equations can be derived similarly). For a sequence 
0, we need to compute the partial derivatives of lnP(O), or l n P [ ~ ( 0 ) ] ,  
with respect to the parameters ci, $, and b of the network. 

7.1.2 Gradient LearningonFullLikelihood. Let Q ( 0 )  = lnP(0) .  If m l x ( 0 )  
is the normalized count for the emission of X from i for 0, derived using 
the forward-backward algorithm (Baldi and Chauvin 1994b) then 

so that 

The partial derivatives with respect to the network parameters (r,  ;I, and 
b can be obtained by the chain rule, that is by backpropagating through 
the network for each i. For each 0 and i, the resulting on-line learning 
equations are 

with h,, = 1, and hi, = 0 for j # i. The full gradient results by summing 
over all sequences, and all main states. For instance, 

and similarly for ,j, and the biases. It is worth noticing that these equa- 
tions are slightly different from those obtained by gradient descent on the 
local cross-entropy between the emission distribution eIx and the target 
distribution mlxlm, .  



1562 Pierre Baldi and Yves Chaurin 

7.1.2 VitrrbiLcnrning. Here Q ( 0 )  = lnP[T(O)]. The component of this 
term that depends on emission from main states, and thus on O ,  , j ,  and 
b, along the Viterbi path T = 7r(O), is given by 

('4.5) 
1'1 Y fly 

- C Inelx = - C ~ i x  ln 2 = - C 1 ~ , y I n  - 
( 1 . X ) E n  ( I  X)EX T a  l ea  Y T I Y  

where TIx is the target: Tlx = 1 if X is emitted from main state i in T ( O ) ,  
and 0 otherwise. Thus computing the gradient of Q ( 0 )  = - lnP[x(O)] 
with respect to o, {j, and b is equivalent to computing the gradient of the 
local cross entropy 

between the target output and the output of the network, over all i in T. 
This cross-entropy error function, combined with the softmax output unit, 
is the standard NN framework for multinomial classification (Rumelhart 
c't 01. 1995). In summary, the relevant derivatives can be calculated on- 
line both with respect to the sequences 01. . . . . OK and, for each sequence, 
with respect to the Viterbi path. For each sequence 0, and for each main 
state i on the Viterbi path T = T ( O ) ,  the corresponding contribution to 
the derivative can be obtained by standard backpropagation on H ( T , .  e l ) .  
The Viterbi on-line learning equations, similar to (A.3), are given by 

A ) j \ ~ i  
Ah, = T/(TI> - f i , )  

AOll, = h,&(WIl + bl l ) [CY '47l(TlY - f l 1  11 

//(Ti, - ~ 7 i ~ f i i ( ~ ~ ~ l l  + 6\1) 

(A.7) I Ah = y c ( o l , !  + h l ) " ~ X I l ( 1  - f1x)  - Cr+x ' ~ , l l f l Y l  
for (i. X )  E T ( O ) ,  with = 1, and TIY = 0 for Y # X. The full gradient 
is obtained again by summing over all sequences, and all main states 
present in the corresponding Viterbi paths. For instance, 

and similarly for t j  and the biases. 

7.2 Learning for General HMM/NN Architectures. For a given set- 
ting of all the parameters, for a given observation sequence, and for a 
given input vector I, the general HMM/NN hybrid architectures reduce 
to a single HMM. The likelihood of a sequence, or some other measure 
of its fitness, with respect to such HMM, can be computed by dynamic 
programming. As long as it is differentiable in the model parameters, we 
can then backpropagate the gradient through the NN, including through 
the portion of the network depending on I ,  such as the gating network 
of Figure 4. With minor modifications, this leads to learning algorithms 
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similar to those described above. This form of learning encourages coop- 
eration between the emission experts of Figure 7. As in the usual mixture 
of experts architecture of Jacobs ef al. (1991), it may be useful to intro- 
duce some degree of competition between the experts, so that each one 
of them specializes, for instance, on a different subclass of sequences. 

When the relevant input or hidden variable I is not known, it can be 
learned together with the model parameters using Bayesian inversion. 
Indeed, consider for instance the case where there is an input I associated 
with each observation sequence 0, and a hybrid model with parameters 
10, so that we can compute P ( 0  I 1 . z ~ ) .  Let P ( I )  and P(zu) denote our 
priors on 1 and UJ.  Then 

P ( 0  I I .  zu)P(I)  
P ( 0  I 70) 

P ( I  I 0.zo)  = 

with 

P ( 0  I w) = / P (  0 I I .  zu)P(I)  dI  (A.10) 

The probability of the model parameters, given the data, can then be 
calculated, using Bayes theorem again: 

(A.ll)  

assuming the observations are independent. These parameters can be 
optimized by gradient descent on - logP(zu I D ) .  The main step is the 
evaluation of the likelihood P ( 0  I zu) (A.10), and its derivatives with 
respect to zo, which can be done by Monte Carlo sampling. The distribu- 
tion on the latent variables I is calculated by A.9. The work of MacKay 
(1994) is an example of such a learning approach. The density network 
used for protein modeling can be viewed essentially as a special case 
of HMM/NN hybrid architecture, where each emission vector acts as 
a softmax transformation on a low-dimensional real "hidden" input I, 
with independent gaussian priors on 1 and zu.  The input 1 modulates the 
emission vectors, and therefore the underlying HMM, as a function of 
sequence. 

7.3 Priors. There are many ways to introduce priors in HMMs. Ad- 
ditional work is required to compare them to the present methods. For 
instance, it is natural to use Dirichlet priors (Krogh et al. 1994a) on multi- 
nomial distributions, such as emission vectors over discrete alphabets. It 
is easy to check that if a multinomial distribution is calculated by a set of 
normalized exponential output units, a gaussian prior on the weights of 
these units is in general not equivalent to a Dirichlet prior on the outputs. 
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