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The responses of visual cortical neurons during fixation tasks can be significantly modulated by stimuli 

from beyond the classical receptive field. Modulatory effects in neural responses have also been recently 

reported in a task where a monkey freely views a natural scene. In this paper, we describe a hierarchical 

network model of visual recognition that. explains these experimental observations by using a form of 

the extended Kalman filter as given by the Minimum Description Length (MDL) principle. The model 

dynamically combines input-driven bottom-up signals with expectation-driven top-down signals to predict 

current recognition state. Synaptic weights in the model are adapted in a Hebbian manner according to a 

learning role also derived from the MDL principle. The resulting predictionJIearning scheme can be viewed 

as implementing a form of the Expectation-Maximization (EM) algorithm. The architecture of the model 

posits an active computational role for the reciprocal connections between adjoining visual cortical areas in 

determining neural response properties. In particular, the model demonstrates the possible role offeedback 

from higher cortical areas in mediating neurophysiological effects due to stimuli from beyond the classical 

receptive field. Simulations of the model are provided that help explain the experimental observations 

regarding neural responses in both free viewing and fixating conditions. 

1 Introduction 

Much of the infonnation regarding the response properties of cells in the primate visual cortex has been obtained 

by displaying visual stimuli within a cell's receptive field while a monkey fixates on a blank screen and observing, 

via microelectrode recordings, the neuronal responses elicited by the displayed stimuli [Hubel and Wiesel, 1968; 

Zeki, 1976; Baizer et ai., 1977; Andersen et ai., 1985; Maunsell and Newsome, 19871 The initial assumption 

was that the responses thus recorded are not substantially different from those generated in a more natural setting, 

but later experiments showed that the responses of many visual cortical neurons can be significantly modulated 

by stimuli from beyond the classical receptive field [Nelson and Frost, 1978; Zeki, 1983; Allman et ai., 1985; 

Desimone and Schein, 1987; Gulyas et ai., 1987; Muller et ai., 1996]. Modulatory effects in neural responses 

have also been recently reported by [Gallant et al., 1994; 1995; Gallant, 1996] in a task where a monkey freely 

views a natural scene. In these experiments, responses from the visual areas VI, V2, and V4 were recorded while 

a monkey freely viewed natural images. The image subregions that fell within a cell's receptive field during free 

viewing were then extracted from the images and flashed within the cell's receptive field while the monkey fixated 

on a blank screen. Surprisingly, the responses obtained when the stimuli were flashed during the fixation task were 

found to be generalIy much larger than when the same stimuli entered the receptive field during free viewing. 

In this paper, we describe a hierarchical network model of dynamics and synaptic learning in the visual cortex 

that provides explanations for the above experimental observations by exploiting two fundamental properties of 

• To appear in Neural Computation. A preliminary account of this work appeared as [Rao and Ballard, 1995b]. 



the cortex: (a) the reciprocity of connections between any two connected areas [Rockland and Pandya, 1979; 

Van Essen, 1985; Felleman and Van Essen, 199 I], and (b) the convergence of inputs from lower area neurons to a 

higher area neuron, resulting in larger receptive field sizes for neurons in the higher area [Van Essen and Maunsell, 

1983; Desimone and Ungerleider, 1989]. The reciprocity of connections allows feedback pathways to convey 

top-down reconstructed signals that serve as predictions for lower level modules, while the feedforward pathways 

convey the residuals between current recognition state and the top-down predictions from the higher level. The 

larger receptive field size of higher level neurons allows them to integrate information from a larger spatial extent, 

which in tum pennits them to influence, via feedback pathways, lower level units operating at a smaller spatial 

scale. 

The model acknowledges the fact that vision is an active, dynamic process subserving the larger cognitive 

goals of the organism that the visual system is embedded in. In particular, the dynamics of a cortical module at 

a given hierarchical level is shown, using the Minimum Description Length (MDL) principle [Rissanen, 1989; 

Zemel, 1994], to assume the form of an extended Kalman filter [Kalman, 1960; Kalman and Bucy, 1961; 

Maybeck, 1979] which optimally estimates current recognition state by combining information from input-driven 

bottom-up signals and expectation-driven top-down signals. The dynamics also allows a nonlinear prediction 

step that facilitates the processing of time-varying stimuli, and helps to counteract the signal propagation delays 

introduced by the different hierarchical levels of the network. Prediction is mediated by a set of units whose 

weights can be adapted in order to minimize the prediction error. The transformation of signals from lower, less 

abstract areas to higher, more abstract areas is achieved via synaptic weights in the feed forward pathway while the 

transformation back is achieved via the feedback weights, both of which are learned during exposure to natural 

stimuli. This learning is mediated by a Hebbian learning rule also derived from the MDL principle. The weights 

are shown to approach the transposes of each other which in tum allows the fast dynamics of the Kalman filter to 

be efficiently implemented. The combined prediction/learning scheme can be viewed as implementing a form of 

the Expectation-Maximization (EM) algorithm [Baum et aI., 1970; Dempster et aI., 1977]. 

We first verify the hypothesis that reciprocal connections between different hierarchical levels can mediate 

robust visual recognition by assessing the model's performance on a small training set of realistic objects. The 

model is shown to recognize objects from its training set even in the presence of partial occlusions and maintain a 

fine discrimination ability between highly similar visual stimuli. By exposing the network to natural images, we 

show that the receptive fields developed at the lowest two hierarchical levels are comparable to those of cells at the 

corresponding levels in the primate visual cortex. We then describe simulations of the model in both free viewing 

and fixating conditions and show that the simulated neural responses are qualitatively similar to those observed 

in the neurophysiological experiments of [Gallant et aI., 1994; 1995; Gallant, 1996J. We conclude by describing 

related work on cortical modeling, Kalman filters, and learning/parameter estimation techniques (including the 

relationship to the EM algorithm), and discuss the use of the model as a computational substrate for understanding 

a number of well-known psychophysical/physiological phenomena such as illusory contours, bistable percepts, 

amodal completions, visual imagery, end-stopping, and other effects from beyond the classical receptive field. 

2 A Simple Input Encoding Example 

We begin by examining a simple input encoding problem. In particular, consider the problem of encoding a 

collection of inputs 11,12, ... using a single-layer recurrent network (Figure I) with linear activation units where 
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Figure 1: A Simple Input Encoder Network. The goal is to optimally encode inputs I by finding best estimates fJ, W, 
and r for the network parameters U, W, and r. Optimality is defined in terms of least squared reconstruction error where the 

reconstruction of the input is given by I' = Ur. 

the goal is to minimize the reconstruction error. In other words, for a given n x 1 input vector I, we would like to 

minimize the sum of component-wise squared errors as given by: 

J(U,r) = (I - Urf(I - Ur) (1) 

where U denotes the n x k feedback matrix, the rows of which correspond to the synaptic weights of units in the 

feedback pathway, r denotes the current k x I activation (or internal state) vector and T denotes the transpose 

operator. The vector Ur corresponds to the network's reconstruction I' of the input I. 

Note that the optimization function J is modulated by two sets of parameters U and r. We can thus minimize 

J by performing gradient descent with respect to both of these parameters. For a given value of U, we can obtain 

the optimal estimate f of the state vector r according to: 

;.. _ k} aJ _ k UT(I U-)r - --- - I - r (2)
2 ar 

where k l > 0 determines the adaptation rate for r. The above equation can be equivalently expressed in its discrete 

form as: 

(3) 

Similarly, for a given value of r, we can obtain the optimal estimate Dof the generative weight matrix U 

according to: 

tJ = _k2 aJ =k
2 
(I _ Dr)rT (4)

2 au 
where k2 > 0 determines the learning rate. Equivalently, 

(5) 

It is interesting to note that the above rule can be regarded as a form of Hebbian learning, with presynaptic 

activity r and postsynaptic activity (I - Dr). The difference in the latter term can be computed, for instance, via 

inhibitory feedback. Typically, for a given input I during learning, r = f is allowed to converge to a stabilized 

value before the weights Dare updated. These new values for Dare subsequently used for computing the state f 

for the next input. The resulting scheme can thus be regarded as implementing an on-line form of the well-known 
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Expectation-Maximization (EM) algorithm [Dempster et ai., 1977] (see Section 9.5 for a discussion). Note that for 

appropriately small positive values of k" the quadratic form of J assures convergence of r to the global minimum 

of J for a given input I. 

An important feature of the above estimation scheme is that the dynamics in Equation 3 can be readily 

implemented in the network of Figure I if we make the feedforward weight matrix W = UT . By using a learning 

rule for U and W T identical to Equation 5 but with a linear weight decay term, it can shown that W converges 

approximately to DT even when initialized to arbitrary random values (see, for example, [Williams, 1985]). 

A number of variants of the estimation scheme sketched above have previously appeared in the literature in 

various guises. For example, [Daugman, 1988] proposes a gradient descent rule for estimating the coefficients of 

a fixed basis set of non-orthogonal Gabor filters (see also [Pece, 1992]). Daugman's scheme can be seen to be 

essentially identical to Equation 2 where the rows of UT comprise the Gabor filter set. On the other hand, rather 

than fixing the basis set of filters to be Gabor functions, one can attempt to learn the basis set for some fixed state 

vector r. In particular, if we let r = UTI (the feedforward response assuming W = UT ), Equation 4 reduces 

to Oja's subspace network learning algorithm [Oja, 1989] and Williams' symmetric error-correction learning rule 

[Williams, 1985], both of which were shown to generate orthogonal weight vectors that span the principal subspace 

(or dominant eigenvector subspace) of the input distribution. Thus, the purely feed forward form of the network 

performs an operation equivalent to principal component analysis (PCA) [Chatfield and Collins, 1980]. More 

recently, learning schemes similar to the one we presented above have been proposed independently by [Olshausen 

and Field, 1996] and [Harpur and Prager, 1996]. As above, these schemes combine the dynamics of the state 

vector r with the learning of the weights U. By additionally adding an activity penalty (derived from a "sparseness 

function") to the dynamics of the state vector r, [Olshausen and Field, 1996] demonstrate the development of 

non-orthogonal and localized basis filters from natural images. 

In the following sections, we show that the above framework can be regarded as a special case of a more 

general estimation and learning scheme that has its roots in stochastic modeling and Kalman filter theory. In 

particular, using a hierarchical stochastic model of the image generation process, we formulate an optimization 

function based on the minimum description length (MDL) principle. In the MDL formulation. the activity penalty 

of [Olshausen and Field, 1996] arises as a direct consequence of the assumed model prior. As we show in 

the following sections, the resulting learning/estimation scheme allows the modeling of the visual cortex as a 

hierarchical Kalman predictor. 

3 The Architecture of the Model 

The model is a hierarchically organized neural network wherein each intermediate level of the hierarchy receives 

bottom-up information from the preceding level as well as top-down information from a higher level (see Figure 2). 

At each level, the output signals of spatially adjacent modules, each processing its own local image patch, are 

combined and fed as input to the next higher level, whose outputs are in turn combined with those of its neighbors 

and fed into yet another higher level, until the entire visual field has been accounted for. As a result, the receptive 

fields of units become progressively larger as one ascends the hierarchical network in a manner similar to that 

observed in the occipitotemporal pathway (VI 4 V2 4 V4 4 IT) of the primate visual system [Van Essen 

and Maunsell, 1983; Desimone and UngerJeider, 1989]. At the same time, feedback pathways allow top-down 

influences to modulate the output of noisy lower level modules. From a computational perspective, such an 
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Figure 2: The Architecture of the Model. The feedforward pathways for the first two levels are shown in the top half 

of the figure while the bottom half represents the feedback pathways. Each feedforward weight matrix W is approximately 

the transpose of its corresponding feedback matrix TJ. The feedback pathways carry top-down reconstructed signals rtd that 

serve as predictions for the lower level modules. The feedforward pathways carry residuals between the current state and the 

top-down predictions, and these residuals are filtered through the feed forward weight matrix W at the next level. The current 

state prediction F(t) is computed from the previous state estimater(t - I) using the prediction weights V and the activation 

function f. The current state estimate r(t) at each level is continually updated by combining the top-down and bottom-up 

residuals with the current state prediction according to the extended Kalman filter update equations derived in the text. The 

figure illustrates the architecture for the simple case of four level I modules feeding into a level 2 module. However, this 

. arrangement can be easily generalized in a recursive manner to the case of an arbitrary number of lower level modules feeding 

into a higher level module, whose outputs are in tum combined with those of its neighbors and fed into yet another higher level 

and so on, until the entire visual field has been covered. 

arrangement allows a hierarchy of abstract internal representations to be learned while simultaneously endowing 

the system with properties essential for dynamic recognition such as the ability to form pattern completions during 

occlusions. From a neuroanatomical perspective, such an architecture falls well within the known complexity 

of cortico-cortical and intracortical connections found in the primate visual cortex [Rockland and Pandya, 1979; 

Gilbert and Wiesel, 1981; Lund, 1981; Jones, 1981; Douglas et al., 1989; Felleman and Van Essen, 199 IJ. 
At the lowest level, the input image is processed in parallel by a large number of identical network modules 

which tessellate the visual field. For a given module, the local image patch can be considered an n-dimensional 

vector I, which is linearly filtered by a set of k modifiable filters as represented by the rows of a k x n feedforward 

matrix W of the synaptic weights of units. The synaptic weights comprising W are initialized to small random 

values and adapted in response to input stimuli according to the synaptic learning rules derived below. The image 

representation I in our model roughly corresponds to the representation at the LGN while the filters defined by 

the rows of weight matrix W perform an operation similar to that carried out by simple cells in layer IV of VI. 

The filtered image is defined by a response vector y given by: 

y=WI (6) 

The response vector y is fed into k (possibly nonlinear) "state" units which compute running estimatesr of current 

internal state and predict the state r for the next time instant using their synaptic weights V (see Figure 2). There 

also exist n backprojection or feedback units with an associated n x k matrix of "generative" weights U which 

allow reconstruction of the input at the lower, less abstract level from the current internal state at the higher, more 
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abstract level. Their output is given by: 

I' = Uf (7) 

In addition to bottom-up input I, each level in the hierarchical network (except the highest level) also receives a 

top-down signal rtd from a higher level module. The signal rtd acts as a prediction of the lower level module's 

current state vector f, as estimated by a higher-level module after taking into account, for example, information 

from a larger spatial neighborhood in conjunction with the past history of inputs. 

Note that while the above equations were defined for the first hierarchical level, where the bottom-up input 

consisted of the image I(t), the same analysis can be applied to all levels of the network where the bottom-up 

input is simply the vector obtained by combining the output vectors of several neighboring lower-level modules 

as illustrated in Figure 2 for the second level. 

Given the above architectural setting, we are now left with the problem of prescribing the dynamics for the 

internal state vectors rand f, as well as appropriate learning rules for the synaptic weights U, V, and W. In 

the previous section, we achieved our objective by simply minimizing the reconstruction error. As we shall see, 

a more general statistical approach is to model the inputs to the system as being stochastically generated by a 

hierarchical image generation process that can be characterized as follows. First, we assume that images are being 

generated by a linear imaging model of the form: 

I(t) = U(t)r(t) + nbu(t) (8) 

where U is a generative matrix (corresponding to the generative feedback weights in the network) and r is a 

hidden state vector. We assume the mean of the bottom-up noise process E(nbu(t)) = O. The corresponding 

noise covariance matrix ~bu at time t is given by 

(9)
 

where 6 is the Kronecker delta function equaling 1 if t = sand 0 otherwise. 

We model the difference between the top-down prediction rtd from a higher level and the actual state vector r 

at the current level by another stochastic noise process ntd: 

(10) 

with E(ntd(t)) = O. The top-down noise covariance matrix ~d at time t is given by: 

(II) 

Given the current state r(t), the transition to the state r(t + I) at the next time instant is modeled as: 

r(t + 1) = f(V(t)r(t)) + n(t) (12) 

where f is a (possibly nonlinear) vector-valued activation function, V is the state transition matrix (corresponding 

to the "prediction" weights in the network), and n is a stochastic noise process with mean and covariance: 

E[n(t)] = n(t) (13) 

E[(n(t) - n(t))(n(s) - n(s)f] = ~(t)6(t, s) (14) 
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For the derivations below, we assume that the three stochastic noise processes introduced above are uncorrelated 

over time with each other and with the initial state vector. 

It is convenient to view the n x k generative weight matrix U and the k x k prediction weight matrix V as an 

nk x I vector u and a k2 x I vector v respectively, where the vectors are obtained by collapsing the rows of the 

matrix into a single vector. For example, 

( 15) 

where Ui denotes the ith row of U. We characterize the evolution of the different unknown weights we used in 

the hierarchical imaging model above by the following dynamic equations: 

u(t + I) u(t) + llu(t) (16) 

v(t+ I) v(t) + llv(t) (17) 

where llu and llv are stochastic noise processes with mean and covariances given by: 

E[nu(t)] = llu(t) (I 8) 

E[nv(t)] = llv(t) (19) 

E[(nu(t) - llu(t))(nu(s) - llu(s)f] = Lu(t)<5(t, s) (20) 

E[(llv(t) - nv(t))(llv(S) - nv(s)f] = Lv(t)<5(t, s) (21 ) 

In summary, Equations 8 through 21 reflect our assumed hierarchical model of how visual inputs are being 

stochastically generated. The goal of a given cortical module is thus to estimate, as closely as possible, its 

counterpart in the input generation model as characterized by the system of equations above. I It does so by 

minimizing a cost function based on the Minimum Description Length principle. 

4 The Minimum Description Length Based Optimization Function 

In order to prescribe the dynamics of the network and derive the learning rules for modifying the synaptic weight 

matrices, we make use of the Minimum Description Length (MOL) principle [Rissanen, 1989; Zemel, 1994], a 

formal information-theoretic version of the well-known Occam's Razor principle commonly attributed to William 

of Ockham (13th-14th century A.D.) [Li and Vitanyi, 1993]. Briefly, the goal is to encode input data in a way that 

balances the cost of encoding the data given the use of a model with the cost of specifying the model itself. The 

underlying motivation behind such an approach is to accurately fit the model to the input data while at the same 

time avoiding overfilling and allowing generalization. 

Suppose that we have already computed a prediction r of the current state r based on prior data. In particular, 

let r be the mean of the current state vector before measurement of the input data at the current time instant. The 

corresponding covariance matrix is given by: 

E[(r - r)(r - rf] M (22) 

I By convention. each estimate that the cortical module maintains will be differentiated from its counterpart in the input generation model 

by the occurrence of the hat symbol. For example, the mean of the current cortical estimate of the actual state vector r will be denoted by r. 
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Similarly, let u and v be estimates of the current weights u and v calculated from prior data with: 

E[(u - u)(u - u)T) = S (23) 

E[(v - v)(v - v)T) = T (24) 

Given a description language £, data V and model parameters M, the MDL principle advocates minimizing the 

following cost function [Zemel, 19941 

J(M, V) = I£(M, '0)\ = I£('OIM)I + I£(M)I (25) 

I . Idenotes length of the description. In our case, V consists of the current input image I(t) and top-down input 

rtd(t), and M consists of the parameters U, V, and r that can be modulated.2 Thus, 

I£('OIM)I = 1£(1 - Ur)1 + I£(rtd - r)1 (26) 

The two tenns on the right hand side of the preceding equation are simply the bottom-up and top-down recon­

struction errors. The cost of the model is given by: 

I£(M)I = 1£(r)1 + 1£(u)1 + 1£(v)1 (27) 

In a Bayesian framework, the above equation can be regarded as taking into account the prior model parameter 

distributions while Equation 26 represents the negative log-likelihood of the data given the model parameters. 

Minimizing the complete cost function J is thus equivalent to maximizing the posterior probability of the model 

M given data V. 

Given the true probability distribution (over discrete events) of the various tenns in the above equations, the 

expected length of the optimal code for each tenn is given by Shannon's optimal coding theorem [Shannon, 1948]: 

1£(x)1 = -logP(X = x) (28) 

where P(X = x) denotes the probability of the discrete event x. Since the true distributions are unknown, we 

appeal to the Central Limit Theorem [Feller, 1968] and use multivariate Gaussians as the prior distributions for 

coding the various tenns above. However, encoding from a continuous distribution requires the calculation of 

the probability mass of a particular small interval of values around a given value for use in Equation 28 above 

[Nowlan and Hinton, 1992; Zemel, 1994]. Using a trapezoidal approximation, we may estimate the mass under a 

continuous (in our case, Gaussian) density p in an interval of width w around a value x to be P(X = x) == p(x)w. 

For encoding the errors (Equation 26), we assume w to be a constant infinitesimal width which yields (using 

Equation 28 and ignoring the constant tenns due to the coefficients of the multivariate Gaussians): 

(29) 

For encoding the model tenns (Equation 27), a constant infinitesimal width w may be inappropriate since some 

values of the parameters may need to be encoded more accurately than others. For example, the network may be 

2The feedforward weight matrix W does not appear among the modeltenns since !his matrix can be constrained to be the transpose of the 

feedback weight matrix U as a result of the synaptic learning rules described in Section 6. 
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more sensitive to smalI changes in some parameter values than others [Nowlan and Hinton, 1992]. One solution, as 

suggested by [Nowlan and Hinton, 1992], is to make w inversely proportional to the curvature of the cost function 

surface, but this may be computationalIy very expensive. A simpler alternative, which favors smalI values for 

the parameters given the choice between smalI and large values, is to let w be a zero mean radialIy symmetric 

Gaussian for each of the model terms u, v, and r with variances inversely proportional to a, {3, and "I respectively. 

Using Equation 28, the model cost then reduces to (ignoring the constant terms): 

1.c(M)1 =	 (r - ffM- 1(r - f) + (u - u)TS-1 (u - u) + (v - v)TT- 1(v - v) + 
"IrTr + auTu+ (3vTv (30) 

The first three terms in the sum above arise from the prior Gaussian densities for r, u, and v as given by G(f, M), 

G(u, S), and G(v, T) while the latter three terms are derived from the zero mean Gaussians associated with w. 

Note that the above equation implements an intuitively appealing trade-off between achieving a good fit with 

respect to prior predictions (1', U and v) and simultaneously penalizing large values for the parameters (activities 

r and weights u and v). One may also view the latter three terms as regutarizers [Poggio et at., 1985] that help 

prevent overfitting of data, thereby increasing the potential for generalization.3 

Network Dynamics and Optimal Estimation of Recognition State 

The derivation of the estimation algorithm for recognition state is analogous to that for the discrete Kalman filter 

as given in standard texts such as [Bryson and Ho, 1975] (the continuous case folIows in a straightforward fashion 

by applying a few limits to the difference equations in the discrete case [Bryson and Ho, 1975]). Given new input 

1 and top-down prediction rtd, the optimal estimate of current state r after measurement of the new data is a 

stochastic code whose mean f and covariance P can be obtained by setting: 

oJ(M,V) = 0 
(31)or 

which implies 

(32) 

After some algebraic manipulation, the above equation yields the folIowing update rule for the mean of the optimal 

stochastic code at time t: 

f(t) = f(t) + PUTL;;~ (I - Uf(t)) + PLtc} (rtd - f(t)) - "IPf(t) (33) 

where the prediction l' is given by: 

f(t + 1) = j(V(t)f(t)) + n(t) (34) 

It folIows that the covariance matrix P at time t is given by the update rule: 

P(t) = (M- 1(t) + UTL;;~ (t)U + Ltc} (t) + "11)-1 (35) 

where I is the k x k identity matrix. The prediction error covariance matrix M is updated according to: 

M(t+ I) = ~~P(t) (~~) T +L(t) (36) 

3The variance-related regularization parameters Q, (3, and 'Y may be chosen according to a variety of techniques (see [Girosi et al., 1995] 

for references) but for the experiments in this paper, we used appropriately small but arbitrary fixed values for these parameters. 
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with the partial derivative being evaluated at r = r(t). The partial derivatives arise from a first-order Taylor 

series approximation to the activation function f around r(t). The above set of equations can be regarded as 

implementing a form of the extended Kalman filter [Maybeck, 1979]. 

During implementation of the algorithm, the covariance matrices k, kbu, and Ltd can be approximated by 

matrices ~, ~bu, and ~d estimated from sample data. Further, by appealing to a version of the EM algorithm 

(see Section 9.5), we may use U = U and V = V in the equations above, where U and V are learned estimates 

whose update rules are described in Section 6 and the appendix respectively. For neural implementation, the 

update equations above can be simplified considerably by noting that the basis filters that form the rows of 

the feedforward matrix W (e:! UT; see learning rule below) also approximately decorrelate their input, thereby 

effectively diagonalizing the noise covariance matrices (see also [Pentland, 1992] for related ideas). This allows 

the recursive update rules to be implemented locally in an efficient manner through the use of recurrent axon 

collaterals. 

Equation 33 forms the heart of the dynamic state estimation algorithm. Note that Equation 3 which was 

derived via gradient descent in Section 2 is actually a special case of Equation 33. More importantly, Equation 33 

implements an efficient trade-off between information from three different sources: the system prediction r(t), 

the top-down prediction rtd, and the bottom-up data I. Intuitively, the bottom-up and top-down gain matrices 

PUT~b~ and p~u.1 can be interpreted as signal-to-noise ratios. Thus, when the bottom-up noise variance ~bu is 

high (for instance, due to occlusions), the bottom-up term (I - Ur(t)) is given less weight in the state estimation 

step (due to a lower gain matrix) and the estimate r(t) relies more on the top-down term (rtd - r(t)) and the 

system prediction r(t). On the other hand, when the top-down noise variance ~td is high (for instance, due to 

ambiguity in interpretation by the higher-level modules), the estimate r(t) relies more heavily on the bottom-up 

term (I - Ur(t)) and the system prediction r(t). Finally, if the system prediction F( t) has a large noise variance, 

the matrix P assumes larger values which implies that the system relies more heavily on the top-down and 

bottom-up input data rather than on its noisy prediction r(t). The dynamics of the network thus strives to achieve 

a delicate balance between the current prediction and the inputs from various cortical sources by exploiting the 

signal-to-noise characteristics of the corresponding input channels. Note that by keeping track of the degree of 

correlations between units at any given level, the covariance matrices also dictate the degree of lateral interactions 

between the units as determined by Equation 33. 

In summary, the optimal estimate of the current state before measurement of current data is a stochastic code 

with mean r and covariance M. -After measurement and update as given by Equations 33 and 35, the mean and 

covariance become rand P respectively. The mean r is updated by filtering the current residuals or "innovations" 

[Maybeck, 1979J (I - Ur) and (rtd - r) using PUT~b~ and p~u.l respectively. Note that this requires the 
T

existence of the matrix U for filtering the bottom-up residual (I - Ur) that is being communicated from the 

lower level. This computation can be readily implemented if the feedforward weights W happen to be symmetric 

with the feedback weights U i.e. W = UT
. Therefore, we need to address the question of how such feedforward 

and feedback weights can be developed. 

6 Learning the Feedforward and Feedback Synaptic Weights 

The previous section described one method of minimizing the optimization function J(M, V): updating the 

estimate of the current state r as given by rand P in response to the input data. However, J can be further 
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minimized by additionally adapting the weights u, v, and the feed forward weights w as well. Here, we derive 

the learning rules for u and w. A possible learning procedure for the prediction weights v is described in the 

appendix. Note that in order to achieve stability in the estimation of state r, the weights need to be adapted at a 

much slower rate than the dynamic process that is estimating r. 

We first derive the weight update rule for estimating the backprojection (generative) weights u. Notice that: 

(I - Ur) = (I - Ru) (37) 

where R is the n x nk matrix given by: 

I] (38) 

o 

Differentiating J with respect to the backprojection weights u and setting the result to 0: 

aJ(M,V) = 0 (39)au 
we obtain, after some algebraic manipulation, the following update rule for the mean of the optimal stochastic 

weight vector at time t (note that we use r = r(t) as prescribed by a version of the EM algorithm - see Section 9.5): 

(40) 

where u(t + I) = u(t) + Du (t) and R(t) is the matrix obtained by replacing r with r( t) in the definition of R 

above. The covariance matrices are updated according to: 

Pu(t) = (S-l(t) + R(tfLb~(t)R(t) + 0:1)-1 (41 ) 

S(t + I) = Pu(t) + Lu(t) (42) 

where I is the nk x nk identity matrix. Note that Equation 40 is simply a Hebbian learning rule with decay, the 

presynaptic activity being the current responses R(t) and the postsynaptic activity being the residual (I - R(t )u(t)) 

(see feedback pathway in Figure 2). 

It is relatively easy to see that Equation 5 which we derived via gradient descent in Section 2 is in fact a 

special case of Equation 40 above. Thus, as we mentioned in Section 2, for the case of feed forward processing, 

where r = WI and U = W T
, this learning rule (without the covariance matrices) becomes identical to Williams' 

symmetric error-correction learning rule [Williams, 1985] and Oja's subspace network learning algorithm [Oja, 

1989], both of which perform an operation equivalent to principal component analysis (PCA) [Chatfield and 

Collins, 1980]. The more general form above which additionally incorporates dynamics for the state vector allows 

the development of non-orthogonal and local representations as well. Another interesting feature of the above 

learning rule is the transition from u(t) to u(t + I). This step allows the modeling of intrinsic neuronal noise via 

the term Du(t). By assuming a distribution for this noise term (for example, a zero-mean Gaussian distribution) 

and sampling from this distribution, the transition from u(t) to u(t + I) can be made stochastic. This helps the 

learning algorithm avoid local minima and facilitates the search for a global minimum. The weight decay term 
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-aPu u(t) (due to the model tenn 1£(u)1 in the MDL optimization function) penalizes overfitting of the data and 

helps increase the potential for generalization. 

Having specified a learning rule for the feedback weights, we need to fonnulate one for the feed forward 

weights such that the dynamics expressed by Equation 33 is satisfied. In other words, the feed forward weight 

matrix W should be updated so as to approximate the transpose of the feedback matrix U. One solution is to 

assume that the feed forward weights are initialized to the same random values as the transpose of the feedback 

weights, and then to apply the rule given in Equation 40. However, it is highly unlikely that biological neurons can 

have their synapses initialized in such a convenient manner. A more reasonable assumption is that the feed forward 

weights are initialized independently of the feedback weights. 

Let w represent the vectorized fonn of the matrix W T analogous to Equation 15. Consider the following 

weight modification rule for the feed forward weights at time t: 

(43) 

where we use w(t + 1) = w(t) + nw(t) with nw(t) assumed to be a zero-mean Gaussian noise process. This 

is again a fonn of Hebbian learning (with decay), the presynaptic activity this time being the residual image and 

the postsynaptic activity being the current 10 (see feedforward pathway in Figure 2). It is relatively easy to show 

that the above rule causes the fe·edforward matrix to approach the transpose of the feedback matrix, i.e. W ~ UT, 

even when they start from different initial conditions. Define a difference vector d as: 

d =u(t) - w(t) (44) 

Then, from Equations 40 and 43, 

d = (u(t) - w(t)) - aPu(u(t) - w(t)) (45) 

Asymptotically, as u(t) -+ u(t) and w(t) -+ w(t), (u(t) - w(t)) -+ d and Equation 45 reduces to: 

(46) 

Thus, given that a > 0 and Pu is positive definite, the expected value of d approaches zero asymptotically, which 

implies u ~ w. In other words (since w is W
T 

by definition), W ~ UT 
which satisfies the condition needed for 

the dynamics of the network (Equation 33) to converge to the optimal response vector for a given input. 

7 Experimental Results 

Before presenting simulation results for the free viewing and fixation experiments, we verify the viability of the 

model by describing results from two related experiments. 

7.1 Experiment 1: Learning and Recognizing Simple Objects 

The first experiment was designed to test the model's perfonnance in a simple recognition task. A hierarchical 

network as shown in Figure 2 was used with four level 1 modules, each processing its local image patch, feeding 

into a single level 2 module. The four level I feed forward modules each contained 10 units (rows of W) while 

the second level module contained 25. The constants a and 'Y that determine the variances of the MDL model 

tenns were set at 0.02 and 0.1 respectively. The feedforward and feedback matrices were trained by exposing the 
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network to grey scale images of five objects as shown in Figure 3 (A). Each input image was of size 128 x 128 

and was split into four equal subimages of size 64 x 64 that were fed to the four level I modules. The average 

grey level values were subtracted from each image and the resulting image normalized to unit length before being 

input to the network. For each input training image, the entire network was allowed to stabilize before the weights 

were updated. Since only static images were used, we used r(t + I) =r(t). Note that even without a non-linear 

prediction step, for an arbitrary set of possibly non-orthogonal weight vectors, the optimal response of the network 

at a given hierarchical level remains a highly non-linear function of the input image that cannot be computed 

by a single feedforward pass but rather must be recursively estimated by using Equation 33 until stabilization is 

achieved (cf. [Daugman, 1988]). Figure 3 (B) through (E) illustrate the response of the trained network to various 

input images. 

7.2 Experiment 2: Learning Receptive Fields from Natural Images 

The previous section demonstrated the model's ability to learn internal representations for various man-made 

objects and subsequently use these representations for robust recognition. In this section, we ask the question: 

what internal representations does the network develop if it is exposed to a sequence of arbitrary natural images? 

Note that this question becomes especially relevant if the network is to be used as a model of the visual cortical 

processing during, for example, free viewing of natural images and therefore the internal representations (such as 

the weights W) developed by the model will need to be at least qualitatively similar to corresponding representations 

in the cortex that have been reported in the literature. 

We once again employed a hierarchical network as shown in Figure 2 with four level I modules feeding into a 

single level 2 module. The four level I feed forward modules each contained 20 units (rows of W) while the level 

2 module contained 25. Eight grey scale images of natural outdoor scenes were used for training the network. 

However, unlike the previous experiment, the receptive fields of the four level I modules were allowed to overlap 

as shown at the right of Figure 4 in order to qualitatively model the overlapping organization of receptive fields of 

neighboring cells in the cortex [Hubel, 1988]. Thus, for each natural image, a 20 x 20 image patch was chosen and 

four overlapping 16 x 16 subimages, offset by 4 pixels horizontally and/or vertically from each other, were fed as 

input to the lower-level modules. Each of the subimages was preprocessed by subtracting the average grey level 

value from each pixel to approximate the removal of DC bias at the level of the LGN. The resulting subimage was 

windowed by a 16 x 16 Gaussian in order to prevent the spatial frequency biases introduced by a rectangular image 

sampling lattice. A total of 12114 image patches were used for training the hierarchical network. For each image 

patch, the network was allowed to converge to the different optimal response vectors r for the different modules 

at each level before the corresponding weights (W = UT
) were updated. The variance-dependent constants a 

and 'Y were set to 0.02 and 0.1 respectively and the temporal prediction step was simply r( t + I) =r( t) as in the 

previous section. 

Figure 4 shows feed forward synaptic weights W for the level I (equivalent to VI) and level 2 (V2) units 

that were learned using Equation 43. The level I receptive fields resemble non-orthogonal wavelet-like edgelbar 

detectors at different orientations similar to the receptive fields of simple cells in V I [Hubel and Wiesel, 1962; 1968; 

Palmer et at., 1991] (see also [Olshausen and Field, 1996; Harpur and Prager, 1996; Bell and Sejnowski, 1996]). 

These have previously been modeled as 2D Gabor functions [Daugman, 1980; Marcelja, 1980] or difference of 

Gaussian operators [Young, 1985]. The level 2 receptive fields were constructed by propagating a unit impulse 

13 



A 

Input to Network Top-Down Prediction Residual 

B 

c 

D 

'<. -~ JI-~• . .. .~ '..... 
' ~ 

,. - .. - ' .. ,
E 

'........
 ~. ~ 
Figure 3: Results from Experiment 1: Recognition of Simple Objects, (A) The five objects used for training the 

hierarchical network, The first image additionally shows how a given image was partitioned into four local subimages that 

were fed to the four corresponding level I modules, (B) through (E) illustrate the response of the trained network to various 

input images, (B) When a training image is input, the network predicts an almost perfect reconstructed image resulting in a 

residual that is almost everywhere zero, which indicates correct recognition. (C) If a partially occluded object from the training 

set is input, the unoccluded portions of the image together contribute, via the level 2 module, to predict and fill in the missing 

portions of the input. (D) When the network is presented with an object that is highly similar to a trained object, the prediction 

is that of the closest resembling object (the car in the training set). However, the large residual allows the network to judge the 

input as a new object rather than classifying it as the training object and incurring a false positive error, an occurrence that is 

common in most purely feed forward systems. (E) shows that a completely novel object results in a prediction image that is an 

arbitrary mixture of the training images and as such, generates large residuals, The system can then choose to either learn the 

new object using Equations 40 and 43, or ignore the object if it happens to be behaviorally irrelevant. 
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Figure 4: Results from Experiment 2: Learning Receptive Fields from Natural Images. (A) Three of the eight images 

used in training the weights. The boxes on the right show the size of the first and second-level receptive fields respectively 

on the same scale as the images. Four overlapping Gaussian windowed image patches extracted from the natural image were 

fed to the level I modules as shown at the extreme left in Figure 2. The responses from the four level I modules were in tum 

combined in a single vector and fed to the level 2 module. The effective level 2 receptive field thus encompasses the image 

region spanned by the four overlapping level I receptive fields as shown on the right in (C). (B) Ten of the twenty receptive 

fields (or spatial filters) as given by the rows of W in a level I module. These resemble classical oriented edgelbar detectors, 

which have been previously modeled as difference of offset Gaussians or Gabor functions. (C) Six of twenty receptive fields 

as given by the rows of W at level 2. These show non-Iinearities that result from higher-order correlations captured by the 

level 2 units. 

response for each row of the weight matrix W at the second level to level O. These receptive fields appear to be 

tuned towards more complex shapes such as corners, curves, and localized edges. The existence of cells coding for 

features more complex than simple edges and bars have also been reported in several electrophysiological studies 

of V2 [Hubel and Wiesel, 1965; Baizer et at., 1977; Zeb, i978J. Thus, both the first and second level units in 

the model develop internal representations that are comparable to those of their counterparts in the primate visual 

cortex. 

8 Simulations of Free Viewing and Fixation Experiments 

The experimental results from the previous section suggest that the model may provide a useful platform for 

studying cortical function by (a) demonstrating the model's efficacy in a simple visual recognition task and (b) 

showing that the learning rules employed by the model are capable of developing receptive fields that resemble 

cortical cell receptive field weighting profiles. In this section, we return to the question posed in the introduction: 

why do the responses of some visual cortical neurons differ so drastically when the same image regions enter the 

neuron's receptive field in free viewing and fixation conditions [Gallant et at., 1994; 1995; Gallant, 1996]? 

A possible answer is suggested by the recognition results in Figure 3 (C). In particular, the figure shows that 

the responses of neurons depend not only on the image in the cell's receptive field but also on the images in the 

receptive fields of neighboring cells. This suggests that a cell's response may be modulated to a considerable 
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extent by the surrounding context in which the cell's stimulus appears, due to the presence of top-down feedback 

in conjunction with lateral interactions mediated by the covariance matrices P, I.i:':, and I.~dl (see Equation 33). 

For comparison with Gallant et at. 's electrophysiological recording results, we assumed that the cell responses 

recorded correspond to the residual (r - rtd) in the model (see Figure 2).4 Qualitatively similar results are obtained 

by measuring the fiilered bottom-up residual. For the simulation experiments, we modeled cells in V I and V2 as 

shown in Figure 2 (with four level I modules feeding into a single level 2 module) but the model can be readily 

extended to more abstract higher visual areas with a higher degree of convergence at each level. The parameters 

were set to the same values as in Section 7.2. The feed forward and feedback weights were set equal to the values 

learned during prior exposure to natural images as described in Section 7.2. The free viewing experiments were 

simulated by making random "eye-movements" to image patches within a given natural image and allowing the 

entire network to converge till all cell responses stabilized; the response values (as given by the residual) were 

then recorded. For determining the response of a cell during the fixation task, only the image region that fell 

in the cell's receptive field during free viewing was displayed and the cell's response noted. The cell responses 

recorded were numerical quantities that could be used to generate spikes in a more detailed neuron model. Since 

the eye-movements were assumed to be random, the temporal prediction step involving V was not used in these 

simulations but we nevertheless expect it to play an important role in future simulations that employ temporal as 

well as spatial context in predicting stimuli. 

Figure 5 shows the simulation results. As noted above, the response of a given cell at any level is determined 

not just by the image falling within its receptive field but also by the images in the receptive fields of neighboring 

cells since the neighboring modules feed into the higher level which conveys the appropriate top-down prediction 

back to the lower level: the betler the top-down prediction rtd, the smaller the residual (r - rtd) and hence, 

the smaller the response. In the case of free viewing an image, the neighboring modules play an active role in 

contributing to the top-down prediction for any cell and the existence of this larger spatial context allows for 

smaller responses in general. This is shown in Figure 5 (A) where the given cell's response initially increases until 

appropriate top-down signals cause the response to diminish to a stabilized level. On the other hand, in the fixation 

task, only the image subregion that fell in a cell's receptive field during free viewing is displayed on a blank 

screen. The absence of any contextual information results in a much less accurate top-down prediction due to the 

lack of contributions from neighboring modules and hence, a relatively larger response is elicited as illustrated in 

Figure 5 (B). The histograms of responses in the simulations of fixation and free viewing conditions are shown 

in Figure 5 (C). The results show that in most but not all cases the responses in free viewing are substantially 

reduced. This is consistent with the free viewing data [Gallant, 1996] and the data from accompanying control 

experiments (see below). Perhaps the most interesting feature of the free viewing versus fixation histograms is 

4 The primate visual cortex is a laminar structure that can be divided into six layers [Felleman and Van Essen, 1991}. The supragranular 

pyramidal cells (e.g. layer III) typically project to layer IV of the next higher visual area while infragranular pyramidals (e.g. layer VNI) send 

axons back to layers I, V and/or VI of the preceding lower area [Van Essen, 1985; Felleman and Van Essen, 1991}. The architecture of the 

model (Figure 2) suggests that the supragranular cells may carry the residual (I' - rtd) to the next level while the infragranular cell axons 

could convey the current top-down prediction'Vr (= ltd or rtd) to the lower level. The bottom-up residual (I - Ur) would then be filtered 

by layer IV cells (whose synapses encode W) with the help of intemeurons which implement the lateral interactions due to the covariances. 

The estimate r( t) would presumably be computed by infragranular cells (whose synapses could encode V) during the course of predicting 

1'( t + I); the presence of recurrent axon collaterals [Lund, 19811 among these cells is especially suggestive of such a recursive computation. 

These functional interpretations of cortical circuitry are however speculative and require rigorous experimental confirmation. 
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Figure 5: Free Viewing and Fixation Simulation Results. (A) An example of the dynamic response of a cell to an image 

patch in the simulated case of free viewing. (B) The response of the same cell to the same image patch but under conditions 

of fixation. (C) The histograms of responses accumulated over 20 cells in a first level module for 500 image presentations, 

showing the fixation responses (light grey) compared to the free viewing responses (black). Responses obtained during free 

viewing were found to be in general much diminished than those obtained during the fixation task. As the graph depicts, more 

than 80% of the free viewing responses lie within the first bin in the histogram; the fixation distribution, on the other hand, has 

a much longer tail than the free viewing distribution. 
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that they overlap, suggesting that the reduction in responses is not a binary all or none phenomenon but rather one 

that is dependent on the specific ability of the higher level units to predict the current state at the lower level. 

Discussion 

In related experiments [Gallant et at., 1995], it was observed that responses were sometimes also suppressed 

by enlarging the stimulus beyond the cell's receptive field in the fixation task. More recently, Gallant has 

shown that in many cases, the response attenuation observed during free viewing can be duplicated in a static 

fixation task in which a review "movie" recreating the spatiotemporal sequence of image patches that entered the 

receptive field during free viewing is presented to the monkey, the review stimuli being three times the size of 

the classical receptive field [Gallant, 1996]. The results from both of these experiments, which do not involve 

any eye movements, lend support to our explanation of the suppression of responses as occurring largely due to 

contributions from neighboring modules in response to the global input stimuli, rather than being the result of 

oculomotor predictive mechanisms (such as the "shifter circuit" of [Andersen and Van Essen, 1987]). However, 

this does not preclude the possibility of suppression due to oculomotor predictions occurring in other visual 

cortical areas, especially those in the parietal cortex, which are connected to oculomotor structures and where such 

predictive remapping effects have been observed [Duhamel et at., 1992]. 

A number of neurophysiological effects due to stimuli from beyond the classical receptive field can be 

explained within the context of the present model as occurring due to the influence of top-down predictions. 

Take, for example, the classical phenomenon of end-stopping, or suppression of responses when the stimulus 

(e.g. a line) extends beyond the cell's receptive field [Hubel and Wiesel, 1965; 1968]. This is clearly a highly 

"nonlinear" property of the "hypercomplex" cell [Hubel and Wiesel, 1965] if one considers the cell in isolation; 

however, the model suggests that such "nonlinearities" may in fact arise due to cortico-corticaVgeniculo-cortical 

and intracortical interactions between linear cells as well. An example of this phenomenon is Figure 3 (C) 

where a neural unit participates in the completion of an occluded image: the unit's response appears to be a 

highly non-linear function of the input image patch even though its activation function is linear. In the case 

of end-stopping, the present model predicts that the ends are "stopped" via inhibitory feedback whenever the 

surrounding and encompassing receptive fields can predict the cell's local input. The behavior of the cell 

appears non-linear only if the cell is viewed in isolation without regard to possible interactions between its 

neighbors within a level and across levels (as suggested by the covariance terms and top-down feedback terms 

respectively in Equation 33).5 Indeed, experiments by [Murphy and Sill ito, 1987] confirm the contribution of 

cortical feedback in mediating end-inhibition in cells in the dorsal LGN. In addition, Bolz and Gilbert have shown 

that supragranular cells in the cat striate cortex (VI) lose the property of end-stopping when infragranular cells (in 

particular, cells in layer VI) are inactivated by using the inhibitory transmitter GABA [Bolz and Gilbert, 1986]. 

Since infragranular cells in VI receive feedback from higher extrastriate visual cortical areas [Van Essen, 1985; 

Felleman and Van Essen, 1991], it is reasonable to assume that inactivation of these cells prevents top-down 

feedback from influencing the supragranular cells, thereby causing them to lose their property of end-stopping. 

Note that other properties of the supragranular cells such as orientation selectivity were found to remain intact, 

5 Note that this does not preclude the existence of non-linear neurons in the conex. Non-Jinearities (within the dynamic range of a conical 

neuron) are accounted for in two ways by the present model: (a) single units in the model code both positive and negative quantities whereas 

the conex may employ multiple neurons for this purpose, thereby causing the appearance of a non-linearity; (b) the model allows for neurons 

with non-linear activation functions in the prediction step (Equation 34) at each hierarchical level. 

18 



which is in agreement with our model. Further evidence for the fundamental role of top-down feedback in 

influencing neural activity at lower corticaJ levels is provided by the work of [Mignard and Malpeli, 1991] who 

show that cells in the upper layers of VI can be driven in the absence of direct bottom-up input from the LGN. 

However, additionally destroying V2 profoundly reduced the upper layer neuraJ activity which led [Mignard and 

Malpeli, 1991] to conclude that the cause of the upper layer activity was in fact top-down feedback from V2. 

Given the above observations, it may be possible to attribute other types of "non-specific suppression" in V I 

cells (such as cross-orientation inhibition [DeAngelis et aI., 1992]) to bottom-up/top-down cortico-cortical and 

lateral interactions such as those occurring in Equation 33 rather than to purely nonnalization-based suppression 

mechanisms [Heeger et ai., 1996]. Also, in the light of the above discussion, the model predicts that much less 

response suppression should be observed in Gallant et al. 's free-viewing experiments if top-down feedback is 

precluded, for instance, by intracortical pharmacological means as in the experiments of [Bolz and Gilbert, 1986] 

or via destruction of higher cortical areas as in the experiments of [Mignard and Malpeli, 19911 

Suppression of neural responses has also been observed in higher visual cortical areas such as MT [Allman 

et aI., 1985], V4 [Desimone and Schein, 1987; Muller et aI., 1996] and IT [Miller et ai., 1991]. Many of these 

experiments employ time-varying stimuli such as drifting gratings and we would therefore expect the responses 

to be modulated with respect to not just spatial context (as in this paper) but also recent temporal context. This 

would necessitate learning the prediction matrix V (a possible method is suggested in the appendix) and using it in 

conjunction with an appropriate activation function f for predicting spatiotemporal inputs as given by Equation 34. 

Simulation of such spatiotemporal corticaJ models constitutes an active direction of future research. 

9.1 Free Viewing of Natural Scenes by Humans 

An interesting question is whether the model confonns to behavioral data obtained from human subjects during 

free viewing of natural images. Experiments by McConkie and others [McConkie, 1991; Grimes and McConkie, 

1995] appear to be especially relevant in answering this equation. In these experiments, subjects were given the 

primary task of remembering an image but they were also infonned that changes might be introduced in the image 

as they examine it. They were asked to press a button when they detected a change. During a given trial, parts 

of the image was changed during certain saccades. Surprisingly, the subjects were remarkably unaware of such 

prominent changes as the addition or deletion of objects, and changes in color. 

The remarkable insensitivity of human subjects to changes in the image during "free viewing" might appear 

to contradict the present model since, after all, a change in the image from a previous fixation should introduce 

a large residual6 and hence direct the subject's attention to it. Recent experiments in our laboratory [Ballard et 

aI., 1996] and in McConkie's laboratory [Irwin et aI., 1994] in fact do corroborate this expectation: subject's 

do indeed become aware of the changes if the object that was subject to a change was relevant to the task at 

hand. For example, [Ballard et aI., 1996] report an increase in fixation time of subjects whenever task-relevant 

changes are introduced during the course of a block copying task. In addition, neurophysiological experiments 

by [Miller et aI., 1991] indicate that responses in IT neurons in the monkey are attenuated according to whether 

or not the presented stimulus matches a previously memorized object, yielding large responses (residuals) during 

mismatches and response suppression (small residuals) during matches. Indeed, the theoretical framework of 

6This observation applies to models employing temporal context to predict post-saccadic stimuli whereas the simulations described in this 

paper used spatial context only. 
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Crick and Koch (see, for example, [Koch, 1996]) proposes that visual awareness may be correlated with responses 

in higher visual cortical areas such as V4 and IT, but probably not lower level areas such as V 1. This supports our 

argument that high residuals in lower level areas, especially when in image regions not related to the task at hand, 

need not always imply awareness of the corresponding changes as in McConkie's experiments. 

9.2 Illusory Contours, Amodal Completions, Visual Imagery, and Bi-Stable Percepts 

We have shown that the ability of adjacent modules to contribute to the output of a neighbor (via feedback from 

the next level) endows the model with important properties such as the ability to form completions in the presence 

of occlusions (for example, see Figure 3). The same property also allows alternate interpretations of phenomena 

such as subjective/illusory contours and amodal completions [Kanizsa, 1990]. For example, [Grosof et ai., 1992] 

and [von der Heydt et ai., 1984] report the existence of neurons responding to illusory contours in V 1 and V2 

respectively. The present model suggests that these responses may be the result of expectation-based top-down 

feedback as illustrated by Figure 3 (C). In this regard, the existence of overlap between adjacent receptive fields 

considerably helps in providing more accurate completions as compared to non-overlapping receptive fields. The 

feedback pathways in the model also provide a convenient substrate for realizing visual imagery as illustrated by 

the top-down reconstructed images in Figure 3. Indeed, recent PET studies have shown that imagery shares some 

of the same neural substrates as perception and can activate even the lowest visual areas [Kosslyn et ai., 1995]. 

Equation 34 allows the effects of intrinsic neuronal noise to be modeled via the additive noise term n(t). By 

assuming a probability distribution for this term and sampling from this distribution in Equation 34, the computation 

of the recognition state estimates can be made stochastic. An alternate but equally plausible method to make 

the model stochastic is to directly sample the current recognition state from a Gaussian distribution with mean 

r and covariance M. Either of these settings could conceivably allow modeling of bistable percepts and Gestalt 

inversions such as Rubin's vase or Necker's cube. Such phenomena could be attributed to a lack of convergence 

at the highest level to a stable object hypothesis due to large noise variances in the top-down component of the 

architecture. The stochastic nature of the model would in turn allow periodic transitions between two alternate 

interpretations of the same visual image (local minima in recognition state space). Evaluating the efficacy of these 

ideas remains the subject of ongoing simulations. 

9.3 Comparison with Related Work on Cortical Modeling 

There has been considerable work in recent years on determining the computational nature of the cortex and the 

brain [Churchland and Sejnowski, 1992]. This work includes models ranging from feed forward networks such 

as the hierarchical "perceptual network" of [Linsker, 1988] and the "HBF' networks of Poggio and collaborators 

[Poggio, 1990; Poggio et ai., 1992] to bi-directional "flow"/control-based models, such as Ullman's Counterstreams 

model [Ullman, 1994], Deacon's "counter-current diffusion" model [Deacon, 1989] and Van Essen et ai. 's Dynamic 

Routing Circuit model [Van Essen et ai., 1994]. While an exhaustive survey is beyond the scope of this paper, 

we briefly outline below comparisons of the present model with some closely related models that employ both 

feed forward as well as feedback connections for perception and learning. 

Perhaps the earliest use of feedback mechanisms as integral components of perception can be found in the 

classic paper by [Pitts and McCulloch, 1947] in which a negative feedback model of oculomotor control is 

proposed. Another early model in which feedback plays a central role is that of [MacKay, 1956] who describes 

an automaton that generates "imitative" internal responses to adaptively match incoming signals. The present 
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model can be regarded as a concrete stochastic solution to the "epistemological problem" that is the subject 

of MacKay's work. Feedback also plays an important role in several more recent theories such as Carpenter 

and Grossberg's adaptive resonance theory [Carpenter and Grossberg, 1987], Edelman's "re-entrant" signaling 

theory [Edelman, 1978], Fukushima's extended Neocognitron model [Fukushima, 1988], Harth et al. 's "Alopex" 

optimization model [Harth et aI., 1987], Mumford's model of the cortex [Mumford, 1994] based on Grenander's 

Pattern Theory [Grenander, 1976-81]' and Rolls' theories on the hippocampus and cortical backprojections [Rolls, 

1989], all of which utilize feedback connections to instantiatejorward models [Jordan and Rumelhart, 1992] of 

the input data but differ in the way top-down feedback is compared and integrated with bottom-up input. Of these, 

Mumford's model is closest in spirit to the ideas presented in this paper. However, iterative relaxation schemes 

such as those proposed by Mumford and others have been previously dismissed as models of perception due to 

the large number of iterations that may be required to assure convergence, a fact that contradicts the rapidity 

of recognition of static stimuli in humans and primates [Thorpe and 1mbert, 1989; Oram and Perrett, 1992; 

Tovee et aI., 19931. The model proposed in this paper avoids the pitfalls of steepest descent relaxation algorithms 

by employing prediction weights V and approximate inverse models (as given by W) in the feed forward pathway 

that allow rapid (though perhaps crude and not always correct) one-shot estimates of static stimuli that are further 

refined by the state estimation algorithm if necessary. 

Inverse models also playa crucial role in the forward/inverse optics model of [Kawato et ai., 1993] and in 

the Helmholtz machine [Dayan et aI., 1995; Hinton et ai., 1995], both of which share considerable similarities 

with the model proposed in this paper and both of which inspired many of the choices made in the present model. 

The Kawato et ai. model minimizes the sum of the reconstruction error and a regularizer term incorporating 

a priori knowledge about the visual world such as smoothness of representations. This is similar to the MDL 

optimization function that we use, but without the stochastic perspective. The Helmholtz machine [Dayan et 

ai., 1995] is a hierarchical network that builds a stochastic generative model by using an inverse ("recognition") 

model to approximate the true posterior distribution of the input data. For modifying the feedback (generative) 

and feed forward (recognition) weights of a given stochastic Helmholtz machine, [Hinton et aI., 1995] propose 

an elegant learning method known as the "Wake-Sleep" algorithm, which is derived using the MDL principle. 

While the derivation of the algorithm necessitates some approximations and simplifications, which may sometimes 

prevent it from converging to the correct posterior distribution, experimental results using the algorithm have been 

positive [Hinton et aI., 1995]. In this regard, the non-linear form of the model presented in this paper also 

uses an approximation, namely, a first-order Taylor series approximation to the non-linear activation function 

f. A possible weakness of the Helmholtz machine, as stated by [Dayan et aI., 1995], is that recognition in the 

hierarchical network is a purely bottom-up feedforward process; the generative weights are superfluous and play 

no role in mediating perception. In addition, there are no lateral interactions between units at a given level.? The 

model presented in this paper allows for relatively complex dynamic interactions to occur between top-down and 

bottom-up signals in addition to some lateral interactions as given by Equation 33 among the units at each level. 

Such top-downlbollom-up interactions have been shown to occur in a wide variety of visual tasks in humans (see 

[Churchland et ai., 1994] for a review). Another issue not directly addressed by many of the models above is 

that of modeling the dynamic nature of vision and the role of prediction in visual processing (see [Softky, 1996] 

for some arguments regarding the necessity of prediction during perception). The model presented herein on the 

7However. see [Dayan and Hinton. 1996) for several interesting variants of the Helmholtz machine thaI address some of these issues. 
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other hand is essentially a hierarchical predictor/estimator that continually refines its recognition estimates at each 

level, allowing the visual system to anticipate incoming stimuli. 

9.4 Comparison with Related Work on Kalman Filters 

During the past decade, Kalman filters have been used in computer vision and robotics for tackling a wide variety 

of problems ranging from motion estimation to contour tracking [Hallam, 1983; Broida and Chellappa, 1986; 

Ayache and Faugeras, 1986; Matthies et at., 1989; Blake and Yuille, 1992; Dickmanns and Mysliwetz, 1992; 

Pentland, 19921 Much of this work crucially hinges on the ability to formulate accurate dynamic/physical 

models of the object properties being estimated. The formulation of such hand-coded models however becomes 

increasingly difficult in more complex dynamic environments. A crucial difference between the present approach 

and the approach predominant in much of the Kalman filter literature is that rather than being concerned solely 

with the estimation of state for a predefined model, we suggest that Kalman filter based estimation algorithms 

may also be used for simultaneously learning the feedforward, feedback, and prediction models ("measurement" 

and "system" models in Kalman filter terminology) as given by their respective weight matrices. It remains 

to be seen whether these learned models perform favorably in environments where hand-coded models have 

proved to be unsatisfactory. Another important difference is the use of a hierarchical form of the Kalman filter. 

Our formulation in this regard is in many ways similar to the recent proposals of [Chou et at., 1994a; 1994b; 

Luettgen and Willsky, 1995] who describe an optimal estimation algorithm for a class of multiscale dynamic 

models. These dynamic models are similar in spirit to the one we described in Section 3 albeit without the 

temporal prediction step. In particular, Chou et at. exploit the analogy between time and scale, and define 

scale-recursive linear dynamic models evolving on dyadic trees: 

r(s) = A(s)r(s - 1) + B(s)w(s) (47) 

I(s) = C(s)r(s) + v(s) (48) 

where s denotes the current scale on the dyadic tree (highest values denote the leaves), and wand v are zero-mean 

white noise processes. This formulation leads to an elegant estimation algorithm recursive in scale, consisting of 

an upward sweep in which information in a subtree is fused in a fine-to-coarse fashion, followed by a downward 

sweep in which information is spread back through the tree. For the simple linear case without ll-)e temporal 

prediction step, the iterative algorithm presented in this paper can be seen to converge to approximately the same 

solution as that found by the upward/downward sweep algorithm proposed by Chou et al..8 

The equations used by Chou et at. above can be seen to be closely related to the following two equations (when 

defined on a dyadic tree) that formed part of the more general stochastic model described in Section 3: 

rtd(s, t) = r(s, t) + ntd(s, t) (49) 

I(s, t) = U(s, t)r(s, t) + nbu(s, t) (50) 

where we may use rtd(s, t) = Ui ( S - I, t )r(s - I, t) if rtd happens to be information from the next higher level 

and Ui is the part of the higher level weight matrix U that generates inputs for the given lower level module 

(in Figure 2, for example, the matrix Ui for the first level module corresponds to the top one-fourth rows of the 

8We thank Peter Dayan for pointing out this equivalence. 
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second level matrix U as depicted in the figure). The correspondence between the various terms in the two sets of 

equations (47 and 49, 48 and 50) is quite striking. However, a few important differences are also evident. While 

the linear dynamic system model in Chou et al.'s framework is used only to relate transitions from one scale to 

the next, the model used in this paper can be seen to be recursive in both scale and time. The recursion in scale 

is however implicit since information from another scale is handled in a modular fashion simply as input from a 

separate source (as in Equations 10 and 49). The corresponding estimation algorithm is thus recursive in time as in 

the standard Kalman filter and allows for prediction in the temporal domain at each hierarchical level. As stressed 

previously, the ability to predict is crucial for perception and action. Being strictly recursive in scale, the Chou 

et al. algorithm requires that covariance matrix information be propagated across hierarchical levels. In contrast, 

the model presented here maintains covariance information locally at each level. In a biological setting, the 

computation of covariance information may be a limiting step and is perhaps best kept local. A further advantage 

of our formulation is that it lends itself naturally to arbitrary varieties of modularization by allowing estimates of 

a given state variable from disparate sources to be integrated according to their signal-to-noise ratios (this paper 

illustrates the example of top-down and bottom-up sources). A direct consequence of such a formulation is that 

one can model arbitrary connections among different (but related) cortical areas which do not necessarily have to 

be related in a strictly multiscale, hierarchical fashion as required by the framework of Chou et al. A final but 

important difference, as mentioned in the previous paragraph, is the prominent role accorded to learning in our 

approach, a subject not addressed by Chou et al. 

9.5 Comparison with Related Work on Learning and Parameter Estimation 

The subject of learning synaptic weights that resemble receptive field weighting profiles in the visual cortex has 

received considerable attention within the neural modeling community. Early work showed that receptive fields 

resembling those of simple cells in the striate cortex could be learned from natural images using algorithms ranging 

from competitive learning [Barrow, 1987] to principal component analysis [Hancock et al., 1992J. However, these 

fell short of providing a complete characterization due to limitations such as proclivity towards producing global 

and/or orthogonal receptive fields. More recently, algorithms that produce better characterizations of cortical 

receptive fields have been proposed independently by [Olshausen and Field, 1996] and [Harpur and Prager, 

1996] (see also [Bell and Sejnowski, 1996]), building on previous work by [Daugman, 1988] and [Pece, 1992J. 

As alluded to in Section 2, these algorithms can be seen to be special cases of the learning rule expressed in 

Equation 40. In particular, the "sparseness" function of [Olshausen and Field, 1996] corresponds to the MDL 

model prior term 1L:(r)1 in Equation 27. Using different encoding distributions gives rise to different degrees 

of sparseness and localization in the internal representations. For example, [Olshausen and Field, 1996] show 

how a variety of non-linear sparseness functions can be used to generate localized receptive fields. 9 In our 

case, the Gaussian distribution assumed when evaluating 1L:(r)1 leads to a linear activity penalty that favors 

distributed codes; localization in our model is provided by the already existing cortical topology of hierarchical, 

overlapping receptive fields, whose size at each level is predetermined by the local dendritic field. Since the 

learning algorithms of [Harpur and Prager, 1996] and [Olshausen and Field, 1996] are based on gradient descent 

(as described in Section 2), they require the specification of a schedule for adapting the learning rate parameter 

whereas this adaptation occurs naturally in Equation 40 due to the gradual reduction in the noise covariance as more 

9However, [Baddeley, 1996] presents some arguments against sparseness maximization. 
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inputs become available. More importantly, the learning rule expressed by Equation 40 as well as those proposed 

for the other weights in the model take into account not only bottom-up information but also top-down expectations 

during weight modification. This allows for the possibility of developing top-down guided task-relevant internal 

representations. 10 

The learning method presented in this paper is closely related to mean field methods for Bayesian belief 

networks [Saul et al., 1996; Jaakkola et al., 1996] which use mean field equations for computing lower bounds 

on the log-likelihood based cost function. The network parameters (the weights and biases) are subsequently 

learned by performing gradient ascent on the mean field derived bound for the log-likelihood. In comparison, 

the learning scheme presented in this paper can be regarded essentially as employing an on-line form of the 

Expectation-Maximization (EM) algorithm [Dempster et al., 1977] in which the M-step performs maximum a 

posteriori (MAP) estimation rather than maximum likelihood (ML) estimation. Note that ML estimation is simply 

a special case of MAP estimation in which there is no prior information (this corresponds to the case where no 

predictions are computed from prior data as, for example, in Section 2). In particular, the on-line MAP form of 

the EM algorithm is invoked in three different ways in the present framework: 

•	 Estimation of the state r: In this case, the "hidden" variables (or "missing" data) consist of the weights U 

and V while we treat the state vector r as the parameter to be estimated. Thus, the E-step involves computing 

the Gaussian distributions given by (u, S) and (v, T). The M-step then uses these distributions from the 

E-step to compute rand P, thereby maximizing the posterior probability of the parameter vector r (by 

minimizing the MDL-based cost function of Section 4). Note however that in the case where the activation 

function f is non-linear, the maximization in the M-step is not exact due to the Taylor series approximation 

to f used in the various update equations (the same applies to the other M-steps below). 

•	 Estimation of the generative weights u: Here, the hidden variables consist of the state vector r and the 

weights V, while the parameter to be estimated is U. The E-step thus involves computing the distributions 

given by (r, M) (or when feasible, (r(tIN), P(tIN)) - see below) and (v, T) which allow the calculation 

of uand Pu in the M-step as discussed in Section 6. 

•	 Estimation ofprediction weights v: In this case, the hidden variables comprise the state vector r and the 

weights U, and the parameter to be estimated is the state transition matrix V. Since V implements a Markov 

chain relating the states r in time,(see Equation 12), the E-step in this case becomes more complicated than 

in the two cases above since the optimal estimate of the state r is no longer causal but depends temporally 

on future as well as past and current data values. In the case of hidden Markov models (HMMs) [Rabiner 

and Juang, 1986] (which are analogous to Kalman filters with discrete hidden states), this impasse is solved 

by using the familiar forward-backward procedure within the context of the Baum-Welch algorithm [Baum 

et al., 1970] (the Baum-Welch algorithm is incidentally a special case of the EM algorithm). In our case, 

we may use a form of optimal smoothing [Bryson and Ho, 1975] which, when given the batch input data 

for time t = 1, ... , N, optimally assimilates past, current, and future data into temporally-smoothed state 

estimates r(tIN) (with covariance P(tIN)) for each of the time instants t = 1, ... ,N. This, along with the 

10A hierarchical learning method for vector quantization in the presence of noise is presented in [Luttrell, 19921. This method allows 

single-cause models whereas the present model can encode multiple-cause models [Dayan and Zemel, 1995; Saund, 1995] (see also [Luttrell, 

1995]). 
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computation of (u, S), comprises the E-step. The M-step then involves computing v and Pv as described 

in the appendix. 

It is worth noting that it may be desirable in many cases to implement the various E- and M-steps above for each 

set of parameters in an asynchronous manner rather than in strict alternation. For example, the cortex may choose 

to update its estimates for the state r much more frequently than those for U and V in order to act in real-time. 

The updates for U and V could then be carried out either on-line but at a slower rate than r, or alternately when 

the organism is in a rest phase. The latter suggestion is especial1y attractive in the case of learning V given that 

the batch processing of data required by the optimal smoothing step suggested above may not be appropriate in 

many circumstances that demand real-time responses from the organism. In such cases, it might be beneficial for 

the organism to act based on its current on-line state estimates while simultaneously storing behavioral1y relevant 

input sequences in memory as batch data. Such stored data may then be replayed out at a later time when the 

organism is in a more quiescent phase in order to learn or fine-tune the prediction weights V. This suggests a 

possible computational role for dream sleep in facilitating learning and memory. 

9.6 Summary and Conclusion 

Vision is fundamental1y a dynamic process. Any putative model of the visual cortex must therefore acknowledge 

this fact and al10w the modeling of dynamic processes. This paper suggests that the hierarchical structure of the 

visual cortex is wel1-suited to implement a multiscale estimation algorithm that can be regarded as a hierarchical 

form of the extended Kalmanfilter [Maybeck, 1979]. At each hierarchical level, the algorithm recursively estimates 

the current recognition state by combining "measurement" information from top-down and bottom-up cortical 

modules with the prediction that was made by using a "system" model. The "system" matrix (the prediction 

weights) as wel1 as the "measurement" matrices (feedforward and feedback weights) can be learned from Visual 

experiences in a dynamic environment. Thus, the adaptive processes in the cortex are modeled at two different time 

scales: a fast dynamic state estimation process that allows the visual system to anticipate incoming stimuli and a 

slower Hebbian synaptic weight change mechanism. Both these processes are characterized by their respective 

mean and covariance estimates which are continual1y updated. 

Some of the salient features of the model as a recognition system were il1ustrated by training it on a small 

number of man-made objects and testing recognition performance. The model was shown to be robust to partial 

occlusions and confusing stimuli. An ongoing effort involves a more quantitative evaluation of the model's 

recognition performance using realistic objects in natural scenes and the validation of the model in the domain of 

human visual search. Preliminary results along these two directions have been promising [Rao and Ballard, 1995a; 

Rao et al., 1996]. When trained on natural images, the model developed feed forward receptive fields qualitatively 

resembling those found at the early hierarchical levels of the primate visual cortex. Current simulations involve 

applying the learning algorithms to successively higher levels of the network and comparing the receptive field 

properties that develop to those found at higher cortical levels such as IT. The hierarchical model also provides 

a computational platform for understanding a number of neurophysiologicaVpsychophysical phenomena such as 

il1usory contours, amodal completions, visual imagery, bistable percepts, end-stopping, and other effects that 

occur due to stimuli from beyond the classical receptive field. In particular, we provided simulations of the model 

suggesting that some of the recent results of [Gal1ant et al., 1994; 1995; Gallant, 1996) regarding neural response 

suppression during free viewing of natural scenes may be interpreted as occurring due to predictions from higher 
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levels of the cortex. While the present framework illustrates how information from two different sources, one 

top-down and the other bottom-up, may be integrated in a given cortical area, it is not hard to envision extensions 

of the model where more than two areas feed into a single area as is evident in the visual cortex [Felleman and Van 

Essen, 19911 This would entail the relatively straightforward exercise of adding additional error/model terms to 

the optimization equations 26 and 27 to account for inputs from the additional areas before deriving the estimation 

algorithms. 

A reassuring feature of the model is that it does not explicitly depend on the input signals being visual. Thus, 

given that the neocortex is organized along similar laminar input-output principles regardless of cortical area or 

input modality [Creutzfeldt, 1977], it is reasonable to assume that the general framework proposed herein may be 

uniformly applicable to other cortical areas such as the parietal, audi1ory, or motor cortex as well. II We expect the 

results obtained using the current model to playa crucial role in guiding our future cortical modeling efforts. 
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Appendix 

Learning the Prediction Weights 

While the simulations in the paper used static stimuli and therefore did not make use of the prediction step, it is 

almost certain that such predictions play an important role in the processing of time-varying stimuli. Therefore, 

we suggest in this appendix a possible learning procedure for modifying the synaptic weights v of the (possibly 

nonlinear) prediction units during exposure to time-varying stimuli. The derivation is similar to that for the 

feedback weights u. Given the current vector of responses i at time t, define the k x k 2 matrix R to be: 

iT 0 o 
~ 0 iT o 
R= . (51) 

[ 
o 

Notice that the prediction step can be stated as: 

r(t + 1)	 j(V(t)r(t» + n(t) 

j(R(t)v(t» + n(t) (52) 

Differentiating the cost function J with respect to the vector of prediction weights v and setting the result to zero, 

we obtain (using Equation 52 for r(t + I»): 

- (~~) T M-1(r(t + I) _ j(R(t)v(t») _ n(t» + T-1(v(t) - v(t)) + (3v(t) = 0 (53) 

which yields the update rule (for time t): 

v(t) =v(t) + Pv (~~) T M- 1(r(t + I) - j(R(t)v(t» - n(t») - (3Pvv(t) (54) 

or more simply: 

v(t) =v(t) + Pv (~~) T M-1(r(t + I) - f(t + I» - (3Pvv(t) (55) 

where v(t + I) = v(t) + nv(t) and r(t + I) = j(R(t)v(t» + n(t). The corresponding covariance matrix is 

updated at time t as follows: 

j
Pv(t) = (T(t)-I + (8 ) T M(t)-I 8j + (3/)-1	 (56)

8v 8v 

where I is the k2 x k2 identity matrix. The partial derivatives are evaluated at v(t) = v(t). Note that in order 

to obtain a closed-form expression for updating v and Pv , we once again applied a first-order Taylor series 

approximation to j around the current estimate v(t). The covariance matrix T gets updated according to: 

(57) 

By appealing to a version of the EM algorithm (see Section 9.5), we may use r(t + I) = i(t + liN) in Equation 55 

above, where i( t + liN) is the optimal temporally smoothed state estimate [Bryson and Ho, 1975] for time 
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t + 1 (::; N), given input data for each of the time instants I, ... ,N (see discussion in Section 9.5). In certain 

circumstances, it might be possible to use the on-line estimate r(t + I) in place of its computationally more 

expensive smoothed counterpart r(t + liN), though such an approximation has been known to yield negative 

results in other related network architectures [Peter Dayan, personal communication]. Simulations are currently 

underway to evaluate the effectiveness of the above learning rule and the role of temporally smoothing the state 

estimates. 

Intuitively, Equation 55 may be regarded as a form of quasi-Hebbian adaptation involving the presynaptic 

activity U (which is simply the response R(t) at time t for linear neurons) and the postsynaptic activity 

(r(t + liN) - r(t + I)) which indicates the error in prediction. Note that computing the difference in the 

prediction error term requires the presence of some form of inhibitory intemeurons. Inhibitory intemeurons are 

also required by some of the other estimation algorithms derived in this paper. Interestingly, a wide variety of 

such interneurons have been discovered in the primate visual cortex Dones, 19811 
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