
ar
X

iv
:c

on
d-

m
at

/9
60

50
71

v1
 1

1
M

ay
 1

99
6

LU TP 96-6
May 29, 2018

Airline Crew Scheduling with Potts Neurons

Martin Lagerholm1, Carsten Peterson2 and Bo Söderberg3

Department of Theoretical Physics, University of Lund

Sölvegatan 14A, S-223 62 Lund, Sweden

Submitted to Neural Computation

Abstract:

A Potts feedback neural network approach for finding good solutions to resource allocation problems
with a non-fixed topology is presented. As a target application the airline crew scheduling problem
is chosen. The topological complication is handled by means of a propagator defined in terms
of Potts neurons. The approach is tested on artificial random problems tuned to resemble real-
world conditions. Very good results are obtained for a variety of problem sizes. The computer time
demand for the approach only grows like (number of flights)

3
. A realistic problem typically is solved

within minutes, partly due to a prior reduction of the problem size, based on an analysis of the local
arrival/departure structure at the single airports.

1martin@thep.lu.se
2carsten@thep.lu.se
3bs@thep.lu.se

http://arxiv.org/abs/cond-mat/9605071v1

Introduction

Feedback neural network have in the last decade emerged as a useful method to obtain good ap-
proximate solutions to various resource allocation problems [1, 2, 3, 4]. Most applications have
concerned fairly academic problems like the traveling salesman problem (TSP) and various graph
partition problems [1, 2]. In refs. [3, 4] high school scheduling was approached. The typical ap-
proach proceeds in two steps: (1) map the problem onto a neural network (spin) system with a
problem-specific energy function, and (2) minimize the energy by means of deterministic mean field
(MF) equations, which allow for a probabilistic interpretation. Two basic mapping variants are
common: a hybrid (template) approach [5], and a “purely” neural one. The template approach
is advantageous e.g. for low-dimensional geometrical problems like the TSP, whereas for generic
resource allocation problems, a purely neural Potts encoding is preferable.

A very challenging resource allocation problem is airline crew scheduling, where a given flight sched-
ule is to be covered by a set of crew rotations, each consisting in a connected sequence of flights
(legs), starting and ending at a given home base (hub). The total crew waiting time is then to be
minimized, subject to a number of restrictions on the rotations. This application differs strongly
from e.g. high school scheduling [3, 4] in the existence of non-trivial topological restrictions. A
similar structure occurs in multi-task phone routing.

A common approach to this problem consists in converting it into a set covering problem, by (1)
generating a large pool of legal rotation templates, and (2) seeking a subset of the templates that
precisely covers the entire flight schedule. Solutions to the set covering problem are then found with
linear programming techniques or feedback neural network methods [6]. A disadvantage with this
method is that the rotation generation for computational reasons has to be non-exhaustive for a
large problem; thus, only a fraction of the solution space is available.

The approach to the crew scheduling problem developed in this letter is quite different, and proceeds
in two steps. First, the full solution space is narrowed down using a reduction technique that removes
a large part of the sub-optimal solutions. Then, a mean field annealing approch based on Potts
neurons is applied, where a novel key ingredient is the use of a propagator formalism for handling
topology, leg-counting, etc.

The method, which is explored on random artificial problems resembling real-world situations,
performs well with respect to quality, with a computational requirement that grows like N3

f , where
Nf is the number of flights.

Nature of Problem

Typically, a real-world flight schedule has a basic period of one week. Given such a schedule in
terms of a set of Nf weekly flights, with specified times and airports of departure and arrival, a
crew is to be assigned to each flight such that the total crew waiting time is minimized, subject to
the constraints:

• Each crew must follow a closed loop – rotation – starting and ending at the hub (see fig. 1).

1

Figure 1: Schematic view of the 3 crew rotations starting and ending in a hub.

• The number of flight legs in a rotation must not exceed a given upper bound.

• The total duration (flight + waiting time) of a rotation is similarly bounded.

These are the crucial and difficult constraints; in a real-world problem there are often some 20
additional ones, which we for simplicity neglect; they constitute no additional challenge from an
algorithmic point of view.

Without the above constraints, the problem would reduce to the local problem of minimizing waiting
times independently at each airport; this can be done exactly in polynomial time. It is the global
structural requirements that make the crew scheduling problem a challenge.

Reduction of Problem Size – Airport Fragmentation

Prior to developing our artificial neural network method, we will describe a technique to reduce the
size of problem, based on the local flight structure at each airport.

With the waiting time between an arriving flight i and a departing flight j defined as

t
(w)
ij =

(

t
(dep)
j − t

(arr)
i

)

mod period, (1)

the total waiting time for a given problem can only change by an integer times the period. By
demanding a minimal waiting time, the local problem (neglecting the global constraints) at each
airport typically can be split up into independent subproblems, each containing a subset of the
arrivals and an equally large subset of the departures. Some of these are trivial, forcing the crew of
an arrival to continue to a particular departure. The minimal total wait-time for the local problem
is straight-forward to compute, and will be denoted by Twait

min .

Similarly, by demanding a solution (assuming one exists) with Twait
min also for the constrained global

problem, this can be reduced as follows:

2

• Airport fragmentation: Divide each airport into effective airports corresponding to the non-
trivial local subproblems.

• Flight clustering: Join every forced sequence of flights into one effective composite flight, which
will thus represent more than one leg and have a formal duration defined as the sum of the
durations of its legs and the waiting times between them.

The reduced problem thus obtained differs from the original problem only in an essential reduction
of the sub-optimal part of the solution space; the part with minimal waiting time is unaffected by
the reduction. The resulting information gain, taken as the natural logarithm of the decrease in size
of the solution space, empirically seems to scale approximately like 1.5× (number of flights), and
ranges from 100 to 2000 for the problems probed.

The reduced problem may in most cases be further separated into a set of independent subproblems,
that can be solved one by one. Some of the composite flights will formally arrive at the same effective
airport they started from. This does not pose a problem. Indeed, if the airport in question is the
hub, such a single flight constitutes a separate (trivial) subproblem, representing an entire forced
rotation. Typically, one of the subproblems will be much larger than the rest, and will be referred
to as the kernel problem, while the remaining subproblems will be essentially trivial.

In the formalism below, we allow for the possibility that the problem to be solved has been reduced
as described above, which means that flights may be composite.

Potts Encoding

A naive way to encode the crew scheduling problem would be to introduce Potts spins in analogy
with what was done in refs. [3, 4] where each event (lecture) is mapped onto a resource unit
(lecture-room, time-slot). This would require a Potts spin for each flight to handle the mapping
onto crews.

Since the problem consists in linking together sequences of (composite) flights such that closed loops
are formed, it appears more natural to choose an encoding where each flight i is mapped, via a Potts
spin, onto the flight j to follow it in the rotation:

sij =

{

1 if flight i precedes flight j in a rotation
0 otherwise

where it is understood that j be restricted to depart from the (effective) airport where i arrives. In
order to ensure that proper closed loops are formed, each flight has to be mapped onto precisely
one other flight (or terminate a rotation, in which case it is formally mapped on a dummy flight
available only at the hub). This restriction is inherent in the Potts spin, defined to have precisely
one component “on”:

∑

j

sij = 1 (2)

Global topological properties, leg-counts and durations of rotations, etc., cannot be described in a
simple way by polynomial functions of the spins. Instead, they are conveniently handled by means

3

= + + + + ...

Figure 2: Expansion of the propagator Pij (©) in terms of sij . A line represents a flight, and (•) a
touch-down.

of a propagator matrix, P, defined a in terms of the Potts spin matrix s by

Pij =
(

(1− s)−1
)

ij
= δij + sij +

∑

k

sikskj +
∑

kl

siksklslj +
∑

klm

siksklslmsmj + . . . (3)

A pictorial expansion of the propagator is shown in fig. 2. The interpretation is obvious: Pij counts
the number of connecting paths from flight i to j. Similarly, an element of the matrix square of P ,

∑

k

PikPkj = δij + 2sij + 3
∑

k

sikskj + . . . (4)

counts the total number of (composite) legs in the connecting paths, while the number of proper
legs is given by

∑

k

PikLkPkj = Liδij + sij (Li + Lj) +
∑

k

sikskj (Li + Lk + Lj) + . . . (5)

where Lk is the intrinsic number of single legs in the composite flight k. Thus, Lij ≡
∑

k PikLkPkj/Pij

gives the average leg count of the connecting paths. Similarly, the average duration (flight + waiting
time) of the paths from i to j amounts to

Tij ≡

∑

k Pikt
(f)
k Pkj +

∑

kl Pikt
(w)
kl sklPlj

Pij

(6)

where t
(f)
i denotes the duration of the composite flight i, including the embedded waiting time.

Furthermore, any improper loops (such as obtained e.g. if two flights are mapped onto each other)
will make P singular – for a proper set of rotations, detP = 1.

Mean Field Approach

We use a mean field (MF) annealing approach in the search for the global minimum. The discrete
Potts variables, sij , are replaced by continuous MF Potts neurons, vij . They represent thermal
averages < sij >T , with T an artificial temperature to be slowly decreased (annealed), and have
an obvious interpretation of probabilities (for flight i to be followed by j). The corresponding
probabilistic propagator P will be defined as the matrix inverse of 1− v.

The neurons are updated by iterating the MF equations

vij =
exp(uij/T)

∑

k exp(uik/T)
(7)

4

for one flight i at a time, by first zeroing the i:th row of v, and then computing the relevant local
fields uij entering eq. (7) as

uij = −c1t
(w)
ij − c2Pji − c3

∑

k

vkj − c4Ψ
(

T
(ij)
rot − Tmax

rot

)

− c5Ψ
(

L
(ij)
rot − Lmax

rot

)

(8)

where j is restricted to be a possible continuation flight to i. In the first term, t
(w)
ij is the local

waiting time between flight i and j. The second term suppresses improper loops, and the third term
is a soft exclusion term, penalizing solutions where two flights point to the same next flight. In the

fourth and fifth terms, L
(ij)
rot stands for the total leg count and T

(ij)
rot for the duration of the rotation

if i where to be mapped onto j, and amount to

L
(ij)
rot = Lai + Ljb (9)

T
(ij)
rot = Tai + t

(w)
ij + Tjb (10)

Here, a and b are auxiliary dummy-flights (of zero duration and intrinsic leg count) representing the
start/end of a rotation – at the hub, a is formally mapped onto every departure, and every arrival
is mapped onto b. The penalty function Ψ, used to enforce the inequality constraints [6], is defined
by Ψ(x) = xΘ(x) where Θ is the Heaviside step function. Normally, the local fields uij are derived
from a suitable energy function; however, for reasons of simplicity, some of the terms in eq. (8) are
chosen in a more pragmatic way.

After an initial computation of the propagator P from scratch, it is subsequently updated according
to the Sherman-Morrison algorithm for incremental matrix inversion [7]. An update of the i:th row
of v, vij → vij + δj , generates precisely the following change in the propagator P:

Pkl → Pkl +
Pki zl
1− zi

(11)

where zl =
∑

j

δj Pjl (12)

Inverting the matrix from scratch would take O(N3) operations, while the (exact) scheme devised
above only requires O(N2) per row.

As the temperature goes to zero, a solution crystallizes in a winner-takes-all dynamics: for each
flight i, the largest uij determines the continuation flight j to be chosen.

Test Problems

In choosing test problems our aim has been to maintain a reasonable degree of realism, while
avoiding unnecessary complication and at the same time not limiting ourselves to a few real-world
problems, where one can always tune parameters and procedures to get good performance. In order
to accomplish this we have analyzed two typical real-world template problems obtained from a major
airline: one consisting of long distance (LD), the other of short/medium distance (SMD) flights. As
can be seen from fig. 3, LD flight time distributions are centered around long times, with a small
hump for shorter times representing local continuations of long flights. The SMD flight times have
a more compact distribution.

5

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700

a

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350

b

Figure 3: Fligh time distributions in minutes for (a) LD and (b) SMD template problems.

For each template we have made a distinct problem generator producing random problems resem-
bling the template. A problem with a specified number of airports and flights is generated as follows:
First, the distances (flight-times) between airports are chosen randomly from a suitable distribution.
Then, a flight schedule is built up in the form of legal rotations starting and ending at the hub.
For every new leg, the waiting time and the next airport are randomly chosen in a way designed to
make the resulting problems statistically resemble the respective template problem.

Due to the excessive time consumption of the available exact methods, the performance of the Potts
approach cannot be tested against these – except for in this context ridiculously small problems,
for which the Potts solution quality matches that of an exact algorithm. For artificial problems of
more realistic size we circumvent this obstacle in the following way: since problems are generated
by producing a legal set of rotations, we add in the generator a final check that the implied solution
yields Twait

min ; if not, a new problem is generated. Theoretically, this might introduce a bias in the
problem ensemble; empirically, however, no problems have had to be redone. Also the two real
problems turn out to be solvable at Twait

min .

Each problem then is reduced as described above (using a negligible amount of computer time), and
the kernel problem is stored as a list of flights, with all traces of the generating rotations removed.

Results

We have tested the performance of the Potts MF approach for both LD and SMD kernel problems
of varying sizes. As an annealing schedule for the serial updating of the MF eqs. (7,11), we have
used Tn=kTn−1 with k = 0.9. In principle, a proper value for the initial temperature T0 can be
estimated from linearizing the dynamics of the MF equations. We have chosen a more pragmatic
approach: The initial temperature is assigned a tentative value of 1.0, which is dynamically adjusted
based on the measured rate of change of the neurons until a proper T0 is found. The values used
for the coefficients ci in eq. (8) are chosen in an equally simple and pragmatic way: c1 = 1/period,
c2 = c3 = 1, while c4 = 1/ < T rot > and c5 = 1/ < Lrot >, where < T rot > is the average duration
(based on Twait

min) and < Lrot > the average leg count per rotation, both of which can be computed
beforehand. It is worth stressing that these parameter settings have been used for the entire range

6

Nf Na < Neff
f > < Neff

a > < R > < CPU time >

75 5 23 8 0.0 0.0 sec
100 5 50 17 0.0 0.2 sec
150 10 55 17 0.0 0.3 sec
200 10 99 29 0.0 1.3 sec
225 15 84 26 0.0 0.7 sec
300 15 154 46 0.0 3.4 sec

Table 1: Average performance of the Potts algorithm for LD problems. The superscript “eff” refers
to the kernel problem, subscript “f” and “a” refers to flight respectively airport. The averages
are taken with 10 different problems for each Nf . The performance is measured as the difference
between the waiting time in the Potts and the local solutions divided by the period. The CPU time
refers to DEC Alpha 2000.

of problem sizes probed.

When evaluating a solution obtained with the Potts approach, a check is done as to whether it is
legal (if not, a simple post-processor restores legality – this is only occasionally needed), then the
solution quality is probed by measuring the excess waiting time R,

R =
Twait
Potts − Twait

min

period
, (13)

which is a non-negative integer for a legal solution.

For a given problem size, as given by the desired number of airports Na and flights Nf , a set of
10 distinct problems is generated. Each problem is subsequently reduced, and the Potts algorithm
is applied to the resulting kernel problem. The solutions are evaluated, and the average R for the
set is computed. The results for a set of problem sizes ranging from Nf ≃ 75 to 1000 are shown in
tables 1 and 2, for the two real problems see table 3.

Nf Na < Neff
f > < Neff

a > < R > < CPU time >

600 40 280 64 0.0 19 sec
675 45 327 72 0.0 35 sec
700 35 370 83 0.0 56 sec
750 50 414 87 0.0 90 sec
800 40 441 91 0.0 164 sec
900 45 535 101 0.0 390 sec
1000 50 614 109 0.0 656 sec

Table 2: Average performance of the Potts algorithm for SMD problems. The averages are taken
with 10 different problems for each Nf . Same notation as in table 1.

The results are quite impressive – the Potts algorithm has solved all problems, and with a very
modest CPU time consumption, of which the major part goes into updating the P matrix. The

7

Nf Na < Neff
f > < Neff

a > < R > < CPU time > type

189 15 71 24 0.0 0.6 sec LD
948 64 383 98 0.0 184 sec SMD

Table 3: Average performance of the Potts algorithm for 10 runs on the two real problems. Same
notation as in table 1.

sweep time scales like (Neff
f)3 ∝ N3

f , with a small prefactor, due to the fast method used, eqs. (11,
12). This should be multiplied by the number of sweeps needed – empirically between 30 and 40,
independently of problem size4.

Summary

We have developed a mean field Potts approach for solving resource allocation problems with a non-
trivial topology. The method is applied to airline crew scheduling problems resembling real-world
situations.

A novel key feature is the handling of global entities, sensitive to the dynamically changing “fuzzy”
topology, by means of a propagator formalism. Another important ingredient is the problem size
reduction achieved by airport fragmentation and flight clustering, narrowing down the solution space
by removing much of the sub-optimal part.

High quality solutions are consistently found throughout a range of problem sizes without having
to fine-tune the parameters, with a time consumption scaling as the cube of the problem size. The
basic approach should be easy to adapt to other applications, like e.g. communication routing.

References

[1] J.J. Hopfield and D.W. Tank, ”Neural Computation of Decisions in Optimization Problems”,
Biological Cybernetics 52, 141 (1985).

[2] C. Peterson and B. Söderberg, ”A New Method for Mapping Optimization Problems onto
Neural Networks”, International Journal of Neural Systems 1, 3 (1989).

[3] L. Gislén, B. Söderberg and C. Peterson, ”Teachers and Classes with Neural Networks”, Inter-
national Journal of Neural Systems 1, 167 (1989).

[4] L. Gislen, B. Söderberg and C. Peterson, ”Complex Scheduling with Potts Neural Networks”,
Neural Computation 4, 805 (1992).

[5] R. Durbin and D. Willshaw, “An Analog Approach to the Traveling Salesman Problem using
an Elastic Net Method”. Nature 326, 689 (1987).

4The minor apparent deviation from the expected scaling in tables 1, 2 and 3 are due to an anomalous scaling of
the Digital DXML library routines employed; the number of elementary operations does scale like N

3

f
.

8

[6] M. Ohlsson, C. Peterson and B. Söderberg, ”Neural Networks for Optimization Problems with
Inequality Constraints - the Knapsack Problem”, Neural Computation 5, 331 (1993).

[7] See e.g. W.P. Press, B.P Flannery, S.A. Teukolsky and W.T. Vettering, Numerical Recipes,

The Art of Scientific Computing, Cambridge University Press, Cambridge (1986).

9

