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Abstract

Cortical sensory neurons are known to be highly variable, in the sense that responses
evoked by identical stimuli often change dramatically from trial to trial. The origin of
this variability is uncertain, but it is usually interpreted as detrimental noise that reduces
the computational accuracy of neural circuits. Here we investigate the possibility that such
response variability might, in fact, be beneficial, because it may partially compensate for a
decrease in accuracy due to stochastic changes in the synaptic strengths of a network. We
study the interplay between two kinds of noise, response (or neuronal) noise and synaptic
noise, by analyzing their joint influence on the accuracy of neural networks trained to per-
form various tasks. We find an interesting, generic interaction: when fluctuations in the
synaptic connections are proportional to their strengths (multiplicative noise), a certain
amount of response noise in the input neurons can significantly improve network perfor-
mance, compared to the same network without response noise. Performance is enhanced
because response noise and multiplicative synaptic noise are in some ways equivalent. So,
if the algorithm used to find the optimal synaptic weights can take into account the vari-
ability of the model neurons, it can also take into account the variability of the synapses.
Thus, the connection patterns generated with response noise are typically more resistant
to synaptic degradation than those obtained without response noise. As a consequence of
this interplay, if multiplicative synaptic noise is present, it is better to have response noise
in the network than not to have it. These results are demonstrated analytically for the most
basic network consisting of two input neurons and one output neuron performing a sim-
ple classification task, but computer simulations show that the phenomenon persists in a
wide range of architectures, including recurrent (attractor) networks and sensory-motor
networks that perform coordinate transformations. The results suggest that response vari-
ability could play an important dynamic role in networks that continuously learn.
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1 Introduction

Neuronal networks face an inescapable tradeoff between learning new associations and
forgetting previously stored information. In competitive learning models, this is some-
times referred to as the stability-plasticity dilemma (Carpenter and Grossberg, 1987; Hertz et al.,
1991): in terms of inputs and outputs, learning to respond to new inputs will interfere with
the learned responses to familiar inputs. A particularly severe form of performance degra-
dation is known as catastrophic interference (McCloskey and Cohen, 1989). It refers to
situations in which the learning of new information causes the virtually complete loss of
previously stored associations.

Biological networks must face a similar problem, because once a task has been mas-
tered, plasticity mechanisms will inevitably produce further changes in the internal struc-
tural elements, leading to decreased performance. That is, within sub-networks that have
already learned to perform a specific function, synaptic plasticity must at least partly ap-
pear as a source of noise. In the cortex, this problem must be quite significant, given
that even primary sensory areas show a large capacity for reorganization (Wang et al.,
1995; Kilgard and Merzenich, 1998; Crist et al., 2001). Some mechanisms, such as homeo-
static regulation (Turrigiano and Nelson, 2000) and specific types of synaptic modification
rules (Hopfield and Brody, 2004), may help alleviate the problem, but by and large, how
nervous systems cope with it remains unknown.

Another factor that is typically considered as a limitation for neural computation capac-
ity is response variability. The activity of cortical neurons is highly variable, as measured
either by the temporal structure of spike trains produced during constant stimulation con-
ditions, or by spike counts collected in a given time interval and compared across identical
behavioral trials (Dean, 1981; Softky and Koch, 1992, 1993; Holt et al., 1996). Some of the
biophysical factors that give rise to this variability, such as the balance between excitation
and inhibition, have been identified (Softky and Koch, 1993; Shadlen and Newsome, 1994;
Stevens and Zador, 1998). But its functional significance, if any, is not understood.

Here we consider a possible relationship between the two sources of randomness just
discussed, whereby response variability helps counteract the destabilizing effects of synap-
tic changes. Although noise generally hampers performance, recent studies have shown
that in nonlinear dynamical systems such as neural networks this is not always the case.
The best known example is stochastic resonance, in which noise enhances the sensitivity
of sensory neurons to weak periodic signals (Levin and Miller, 1996; Gammaitoni et al.,
1998; Nozaki et al., 1999), but noise may play other constructive roles as well. For instance,
when a system has an internal source of noise, an externally added noise can reduce the
total noise of the output (Vilar and Rubi, 2000). Also, adding noise to the synaptic connec-
tions of a network during learning produces networks that, after training, are more robust
to synaptic corruption and have a higher capacity to generalize (Murray and Edwards,
1994).

In this paper we study another beneficial effect of noise on neural network perfor-
mance. In this case, adding randomness to the neural responses reduces the impact of
fluctuations in synaptic strength. That is, here, performance depends on two sources of
variability, response noise and synaptic noise, and adding some amount of response noise
produces better performance than having synaptic noise alone. The reason for this para-
doxical effect is that response noise acts as a regularization factor that favors connectiv-
ity matrices with many small synaptic weights over connectivity matrices with few large
weights, and this minimizes the impact of a synapse that is lost or has a wrong value. We
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study this regularization effect in three different cases: (1) a classification task, which in
its simplest instantiation can be studied analytically, (2) a sensory-motor transformation,
and (3) an attractor network that produces self-sustained activity. For the latter two, the
interaction between noise terms is demonstrated by extensive numerical simulations.

2 General Framework

First we consider networks with two layers, an input layer that contains N sensory neurons
and an output layer with K output neurons. A matrix r is used to denote the firing rates
of the input neurons in response to M stimuli, so rij is the firing rate of input unit i when
stimulus j is presented. These rates have a mean component r plus noise, as described in
detail below. The output units are driven by the first layer responses, such that the firing
rate of output unit k evoked by stimulus j is

Rkj =
N
∑

i=1

wki rij, (1)

or in matrix form, R = wr, where w is the K×N matrix of synaptic connections between
input and output neurons. The output neurons also have a set of desired responses F ,
where Fkj is the firing rate that output unit k should produce when stimulus j is presented.
In other words, F contains target values that the outputs are supposed to learn. The error
E is the mean squared difference between the actual driven responses Rkj and the desired
ones,

E =

〈

1

KM

K
∑

k=1

M
∑

j=1

(Rkj − Fkj)
2

〉

, (2)

or in matrix notation,

E =
1

KM

〈

Tr
[

(wr − F )(wr − F )T
]〉

. (3)

Here, Tr(A) =
∑

iAii is the trace of a matrix and the angle brackets indicate an average
over multiple trials, which corresponds to multiple samples of the noise in the inputs r.
The optimal synaptic connections W are those that make the error as small as possible.
These can be found by computing the derivative of Equation (3) with respect to w (or
with respect to wab, if the summations are written explicitly) and setting the result equal to
zero (see e.g., Golub and van Loan, 1996). These steps give

W = F rTC−1, (4)

where r = 〈r〉 and C−1 is the inverse (or the pseudo-inverse) of the correlation matrix

C =
〈

rrT
〉

.

The general outline of the computer experiments proceeds in five steps as follows.
First, the matrix r with the mean input responses is generated together with the desired
output responses F . These two quantities define the input-output transformation that the
network is supposed to implement. Second, response noise is added to the mean input
rates, such that

rij = rij(1 + ηij). (5)
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The random variables ηij are independently drawn from a distribution with zero mean
and variance σ2

r ,

〈ηij〉 = 0
〈

η2ij

〉

= σ2
r , (6)

where the brackets again denote an average over trials. We refer to this as multiplicative
noise. Third, the optimal connections are found using Equation (4). Note that these con-
nections take into account the response noise through its effect on the correlation matrix
C. Fourth, the connections are corrupted by multiplicative synaptic noise with variance
σ2
W , that is

Wij = W ij(1 + ǫij), (7)

where

〈ǫij〉 = 0
〈

ǫ2ij

〉

= σ2
W . (8)

Finally, the network’s performance is evaluated. For this, we measure the network error
EW , which is the square error obtained with the optimal but corrupted weights W , aver-
aged over both types of noise,

EW =
1

KM

〈

Tr
[

(Wr − F )(Wr − F )T
]〉

. (9)

Thus, the brackets in this case indicate an average over multiple trials and multiple net-
works, i.e., multiple corruptions of the optimal weights W .

The main result we report here is an interaction between the two types of noise: in
all the network architectures that we have explored, for a fixed amount of synaptic noise
σW , the best performance is typically found when the response noise has a certain nonzero
variance. So, given that there is synaptic noise in the network, it is better to have some
response noise rather than to have none.

Before addressing the first example, we should highlight some features of the chosen
noise models. Regarding response noise, Equations (5, 6), other models were tested in
which the fluctuations were additive rather than multiplicative. Also, Gaussian, uniform
and exponential distributions were tested. The results for all combinations were qualita-
tively the same, so the shape of the response noise distribution does not seem to play an
important role; what counts is mainly the variance. On the other hand, the benefit of re-
sponse noise is observed only when the synaptic noise is multiplicative; it disappears with
additive synaptic noise. However, we do test several variants of the multiplicative model,
including one in which the random variables ǫij are drawn from a Gaussian distribution
and another in which they are binary, 0 or -1. The latter case represents a situation in which
connections are eliminated randomly with a fixed probability.

3 Noise Interactions in a Classification Task

First we consider a task in which the two-layer, fully connected network is used to approx-
imate a binary function. The task is to classify M stimuli on the basis of the N input firing
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rates evoked by each stimulus. Only one output neuron is needed, so K=1. The desired
response of this output neuron is the classification function

Fj =

{

1 if j ≤ M/2
0 else,

(10)

where j goes from 1 to M . Therefore, the job of the output unit is to produce a 1 for the
first M/2 input stimuli and a 0 for the rest.

3.1 A Minimal Network

In order to obtain an analytical description of the noise interactions, we first consider the
simplest possible network that exhibits the effect, which consists of two input neurons and
two stimuli. Thus, N=M=2 and the desired output is F = (1, 0). Note that, with a single
output neuron, the matrices W and F become row vectors. Now we proceed according
to the five steps outlined in the preceding section — the goal is to show analytically that,
in the presence of synaptic noise, performance is typically better for a nonzero amount of
response noise.

The matrix of mean input firing rates is set to

r =

(

1 r0
r0 1

)

, (11)

where r0 is a parameter that controls the difficulty of the classification. When it is close
to 1, the pairs of responses evoked by the two stimuli are very similar and large errors
in the output are expected; when it is close to 0, the input responses are most different
and the classification should be more accurate. After combining the mean responses with
multiplicative noise, as prescribed by Equation (5), the input responses in a given trial
become

r =

(

1 + η11 r0(1 + η12)
r0(1 + η21) 1 + η22

)

. (12)

Assuming that the fluctuations are independent across neurons, the correlation matrix is,
therefore,

C =
〈

rrT
〉

=

(

(1 + r20)(1 + σ2
r ) 2r0

2r0 (1 + r20)(1 + σ2
r )

)

. (13)

Next, after calculating the inverse of C, Equation (4) is used to find the optimal weights,
which are

W 1 =
σ2
r(1 + r20) + (1− r20)

(1 + σ2
r )

2 (1 + r20)
2 − 4r20

W 2 =
σ2
r(1 + r20)− (1− r20)

(1 + σ2
r )

2 (1 + r20)
2 − 4r20

r0 . (14)

Notice that these connections take into account the response variability through their de-
pendence on σr. The next step is to corrupt these synaptic weights as prescribed by Equa-
tion (7), and substitute the resulting expressions into Equation (9). After making all the
substitutions, calculating the averages and simplifying, we obtain the average error,

EW =
1

2

(

σ2
W (W

2

1 +W
2

2)(1 + σ2
r )(1 + r20)−W 1 − r0W 2 + 1

)

. (15)
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Figure 1: Noise interaction for a simple network of two input neurons and one output
neuron (K=1, N=M =2). Both input responses and synaptic weights were corrupted by
multiplicative Gaussian noise. For all curves, solid lines are theoretical results and symbols
are simulation results averaged over 1000 networks and 100 trials per network. In all cases,
r0 = 0.8. (A) Average square difference between observed and desired output responses,
EW , as a function of the standard deviation (SD) of the response noise, σr. Squares and
dashed line correspond to the error without synaptic noise (σW =0); circles and continuous
lines correspond to the error with synaptic noise (σW =0.15, 0.20, 0.25). (B) Dependence of
the (uncorrupted) optimal weights W on σr.

This is the average square difference between the desired and actual responses of the out-
put neuron given the two types of noise. It is a function only of three parameters, σr, σW
and r0, because the optimal weights themselves depend on σr and r0.

The interaction between noise terms for this simple N = K = 2 case is illustrated in
Fig. 1A, which plots the error as a function of σr with and without synaptic variability.
Here, dashed and solid lines represent the theoretical results given by Equations (14, 15)
and symbols correspond to simulation results averaged over 1000 networks and 100 trials
per network. Without synaptic noise (dashed line), the error increases monotonically with
σr, as one would normally expect when adding response variability. In contrast, when
σW = 0.15, 0.2 or 0.25 (solid lines), the error initially decreases and then starts increasing
again, slowly approaching the curve obtained with response noise alone.

Figure 1B shows how the optimal weights depend on σr. The solid lines were obtained
from Equations (14) above. The curves show that the effect of response noise is to decrease
the absolute values of the optimal synaptic weights. Intuitively, that is why response vari-
ability is advantageous; smaller synaptic weights also mean smaller synaptic fluctuations,
because their standard deviation (SD) is proportional to the mean values. So, there is a
tradeoff: the intrinsic effect of increasing σr is to increase the error, but with synaptic noise
present, σr also decreases the magnitude of the weights, which lowers the impact of the
synaptic fluctuations. That the impact of synaptic noise grows directly with the magnitude
of the weights is also apparent from the first term in Equation (15).

The magnitude of the noise interaction can be quantified by the ratio Emin/E0, where
the numerator is the minimal value of the error curve and the denominator is the error
obtained when only synaptic noise is present, that is, when σr = 0. The minimum error
Emin occurs at the optimal value of σr, denoted as σmin. The ratio Emin/E0 is equal to 1 if
response variability provides no advantage and approaches 0 as σmin cancels more of the
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Figure 2: Optimal amount of response noise in the minimal classification network. Same
network with two sensory neurons and one output neuron as in Fig. 1. Lines and symbols
indicate theoretical and simulation results, respectively, averaged over 1000 networks and
100 trials per network. (A) Strength of the noise interaction quantified by Emin (dashed
line) and Emin/E0 (solid line), as a function of σW , which determines the synaptic variabil-
ity. Here and in B, r0=0.8. (B) Optimal amount of response variability, σmin, as a function
of σW , for the same data in A. (C) Strength of the noise interaction as a function of r0,
which parameterizes the discriminability of the mean input responses evoked by the two
stimuli. Here and in D, σW =1. (D) σmin, as a function of r0 for the same data in C.

error due to synaptic noise. For the lowest solid curve in Fig. 1A the ratio is approximately
0.8, so response variability cancels about 20% of the square error generated by synaptic
fluctuations. Note, however, that in these examples the error is below E0 for a large range
of values of σr, not only near σmin, so response noise may be beneficial even if it is not
precisely matched to the amount of synaptic noise.

Figure 2 further characterizes the strength of the interaction between the two types of
noise. Figures 2A, B show how the error and the optimal amount of response variability
vary as functions of σW . These graphs indicate that the fraction of the error that σr is able
to compensate for, as well as the optimal amount of response noise, increases with the SD
of the synaptic noise. The minimum error, Emin, grows steadily with σW — clearly, σr
cannot completely compensate for synaptic corruption. Also, σW has to be bigger than a
critical value for the noise interaction to be observed (σW >0.1, approximately). However,
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except when synaptic noise is very small, the optimal strategy is to add some response
noise to the network.

As in the previous figure, symbols and lines in Fig. 2 correspond to simulation and
theoretical results, respectively. To obtain the latter, the key is to calculate σmin. This is done
by, first, substituting the optimal synaptic weights of Equation (14) into the expression for
the average error, Equation (15), and second, calculating the derivative of the error with
respect to σ2

r and equating it to zero. The resulting expression gives σ2
min as a function

of the only two remaining parameters, σW and r0. The dependence, however, is highly
nonlinear, so in general the solution is implicit:

σ8
r (1− σ2

W ) + 2σ6
r (1 + a2(1− 2σ2

W )) + 6σ4
ra

2 (1− σ2
W ) +

2σ2
ra

2 (1 + a2 + 2a2σ2
W − 4σ2

W ) + a4(1 + 3σ2
W )− 4a2σ2

W = 0 , (16)

where

a ≡
1− r20
1 + r20

. (17)

The value of σr that makes Equation (16) true is σmin. For Figs. 2A, B, the zero of the
polynomial was found numerically for each combination of r0 and σW .

Figures 2C, D show how Emin, Emin/E0 and σmin depend on the separation between
evoked input responses, as parameterized by r0. For these two plots, we chose a special
case in which σmin can be obtained analytically from Equation (16): σW =1. In this partic-
ular case the dependence of σmin on r0 has a closed form,

σ2
min =

(1− r20)
2/3

1 + r20

(

(1 + r0)
2/3 + (1− r0)

2/3
)

. (18)

This function is shown in Fig. 2D. In general, the numerical simulations are in good agree-
ment with the theory, except that the scatter in Fig. 2D tends to increase as r0 approaches 0.
This is due to a key feature of the noise interaction, which is that it depends on the overlap
between input responses across stimuli. This can be seen as follows.

First, notice that in Fig. 2C the relative error approaches 1 as r0 gets closer to 0. Thus,
the noise interaction becomes weaker when there is less overlap between input responses,
which is precisely what r0 represents in Equation (11). If there is no overlap at all, the
benefit of response noise vanishes. This fact explains why more than one neuron is needed
to observe the noise interaction in the first place. This observation can be demonstrated
analytically by setting r0 =0 in Equations (14) and (15), in which case the average square
error becomes

EW (r0=0) =
1

2

(

σ2
W − 1

1 + σ2
r

+ 1

)

. (19)

This result has interesting implications. If σ2
W = 1, response noise makes no difference,

so there is no optimal value. If σ2
W < 1, the error increases monotonically with response

noise, so the optimal value is 0. And if σ2
W > 1, the optimal strategy is to add as much

noise as possible! In this case, the variance of the output neuron is so high that there is
no hope of finding a reasonable solution; the best thing to do is set the mean weights to
zero, disconnecting the output unit. Thus, without overlap, either the synaptic noise is
so high that the network is effectively useless, or, if σW is tolerable, response noise does
not improve performance. At r0 =0, the numerical solutions oscillate between these two
extremes, producing an average error of 0.5 (leftmost point in Fig. 2C). In general, however,

8



with non-zero overlap there is a true optimal amount of response noise, and the more
overlap there is, the larger its benefit, as shown in Fig. 2C.

The simulation data points in Fig. 2 were obtained using fluctuations ǫ and η in Equa-
tions (7) and (12), respectively, sampled from Gaussian distributions. The results, however,
were virtually identical when the distribution functions were either uniform or exponen-
tial. Thus, as noted earlier, the exact shapes of the noise distributions do not restrict the
observed effect.

3.2 Regularization by Noise

Above, we mentioned that response noise tends to decrease the absolute value of the op-
timal synaptic weights. Why is this? The reason is that minimization of the mean square
error in the presence of response noise is mathematically equivalent to minimization of
the same error without response noise but with an imposed constraint forcing the optimal
weights to be small. This is as follows.

Consider Equation (4), which specifies the optimal weights in the two-layer network.
Response noise enters into the expression through the correlation matrix. By separating
the input responses into mean plus noise, we have

C =
〈

(r + η)(r + η)T
〉

= r rT +
〈

ηηT
〉

= r rT +Dσ , (20)

where we have assumed that the noise is additive and uncorrelated across neurons (addi-
tivity is considered for simplicity but is not necessary). This results in the diagonal matrix
Dσ containing the variances of individual units, such that element j along the diagonal
is the total variance, summed over all stimuli, of input neuron j. Thus, uncorrelated re-
sponse noise adds a diagonal matrix to the correlation between average responses. In that
case, Equation (4) can be rewritten as

W = F rT
(

r rT +Dσ

)

−1
. (21)

Now consider the mean square error without any noise but with an additional term
that penalizes large weights. To restrict, for instance, the total synaptic weight provided
by each input neuron, add the penalty term

1

KM

∑

i,j

λiw
2
ij (22)

to the original error expression, Equation (3). Here, λi determines how much input neu-
ron i is taxed for its total synaptic weight. Rewriting this as a trace, the total error to be
minimized in this case becomes

E =
1

KM

(〈

Tr
[

(wr − F )(wr − F )T
]〉

+ Tr
(

wTDλw
))

. (23)

where Dλ is a diagonal matrix that contains the penalty coefficients λi along the diagonal.
The synaptic weights that minimize this error function are given by

F rT
(

r rT +Dλ

)

−1
. (24)
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But this solution has exactly the same form as Equation (21), which minimizes the error
in the presence of response noise alone, without any other constraints. Therefore, adding
response noise is equivalent to imposing a constraint on the magnitude of the synaptic
weights, with more noise corresponding to smaller weights. The penalty term in Equation
(22) can also be interpreted as a regularization term, which refers to a common type of
constraint used to force the solution of an optimization problem to vary smoothly (Hinton,
1989; Haykin, 1999). Therefore, as has been pointed out previously (Bishop, 1995), the
effect of response fluctuations can be described as regularization by noise.

In our model, we assumed that the fluctuations in synaptic connections are propor-
tional to their size. What happens, then, is that response noise forces the optimal weights
to be small, and this significantly decreases the part of the error that depends on σW . In this
way, smaller synaptic weights — and therefore a nonzero σr — typically lead to smaller
output errors.

Another way to look at the relationship between the two types of noise is to calculate
the optimal mean synaptic weights taking the synaptic variability directly into account.
For simplicity, suppose that there is no response noise. Substitute Equation (7) directly
into Equation (3) and minimize with respect to W , now averaging over the synaptic fluc-
tuations. With multiplicative noise the result is again an expression similar to Equations
(21) and (24), where a correction proportional to the synaptic variance is added to the di-
agonal of the correlation matrix. In contrast, with additive synaptic noise the resulting
optimal weights are exactly the same as without any variability, because this type of noise
cannot be compensated for. Therefore, the recipe for counteracting response noise is equiv-
alent to the recipe for counteracting multiplicative synaptic noise. An argument outlining
why this is generally true is presented in the Discussion, Section 6.1.

3.3 Classification in Larger Networks

When the simple classification task is extended to larger numbers of first-layer neurons
(N > 2) and more input stimuli to classify (M > 2), an important question can be studied:
how does the interaction between synaptic and response noise depend on the dimension-
ality of the problem, that is, on N and M? To address this issue we did the following. Each
entry in the N × M matrix r of mean responses was taken from a uniform distribution
between 0 and 1. The desired output still consisted of a single neuron’s response given by
Equation (10), as before. So, each one of the M input stimuli evoked a set of N neuronal re-
sponses, each set drawn from the same distribution, and the output neuron had to divide
the M evoked firing rate patterns into two categories. The optimal amount of response
noise was found, and the process was repeated for different combinations of N and M .

The results from these simulations are shown in Fig. 3. All data points were obtained
with the same amount of synaptic variability, σW =0.5. Each point represents an average
over 1000 networks for which the optimal connections were corrupted. The amount of
response noise that minimized the error, averaged over those 1000 corruption patterns,
was found numerically by calculating the average error with the same mean responses
and corruption patterns but different σr. For each combination of N and M , this resulted
in σmin, which is shown in panel B. The actual average error obtained with σr = σmin

divided by the error for σr=0 is shown in panel A, as in the previous figure. Interestingly,
the benefit conferred by response noise depends strongly on the difference between N and
M . With M = 10 input stimuli, the effect of response noise is maximized when N = 10
neurons are used to encode them (Fig. 3A); and viceversa, when there are N =10 neurons
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Figure 3: Interaction between synaptic noise and response noise during the classifica-
tion of M input stimuli. For each stimulus, the mean responses of N input neurons were
randomly selected from a uniform distribution between 0 and 1. The output unit of the
network had to classify the M response patterns by producing either a 1 or a 0. The synap-
tic noise SD was σW = 0.5. Results (circles) are averages over 1000 networks and 100 trials
per network. All data are from computer simulations. (A) Relative error, Emin/E0, as a
function of the number of input neurons, N . The number of stimuli was kept constant at
M =10. (B) Optimal value of the response noise SD, σmin, as a function of the number of
input neurons, N . Same simulations as in A. (C) Relative error as a function of the num-
ber of input stimuli, M . The number of input neurons was kept constant at N = 10. (D)
Optimal value of the response noise SD as a function of M for the same simulations as in
C.

in the network, the maximum effect is seen when they encode M = 10 stimuli (Fig. 3C).
Results with other numbers (5, 20 and 40 stimuli or neurons) were the same: response
noise always had a maximum impact when N=M .

This is not unreasonable. When there are many more neurons than stimuli, a moderate
amount of synaptic corruption causes only a small error, because there is redundancy in
the connectivity matrix. On the other hand, when there are many more input stimuli than
neurons, the error is large anyway, because the N neurons cannot possibly span all the
required dimensions, M . Thus, at both extremes, the impact of synaptic noise is limited.
In contrast, when N =M there is no redundancy but the output error can potentially be
very small, so the network is most sensitive to alterations in synaptic connectivity. Thus,
response noise makes a big difference when the number of responses and the number of
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independent stimuli encoded are equal or nearly so. In Figs. 3A, C, the relative error is
not zero for N =M , but it is quite small (Emin=0.23, Emin/E0 =0.004). This is primarily
because the error without any response noise, E0, can be very large. Interestingly, the
optimal amount of response noise also seems to be largest when N =M , as suggested by
Figs. 3B, D.

In contrast to previous examples, for all data points in Fig. 3 the fluctuations in the
synapses and in the firing rates, ǫ and η, were drawn from uniform rather than Gaussian
distributions. As mentioned before, the variances of the underlying distributions should
matter but their shapes should not. Indeed, with the same variances, results for Fig. 3 were
virtually identical with Gaussian or exponential distributions.

A potential concern in this network is that, although the variability of the output neu-
ron depends on the interaction between the two types of noise, perhaps the interaction
is of little consequence with respect to actual classification performance. The relevant
measure for this is the probability of correct classification, pc. This probability is ob-
tained by comparing the distributions of output responses to stimuli in one category ver-
sus the other, which is typically done using standard methods from signal detection the-
ory (Dayan and Abbott, 2001). The algorithm underlying the calculation is quite simple:
in each trial, the stimulus is assumed to belong to class 1 if the output firing rate is below
a threshold, otherwise the stimulus belongs to class 2. To obtain pc, the results should be
averaged over trials and stimuli. Finally, note that an optimal threshold should be used to
obtain the highest possible pc. We performed this analysis on the data in Fig. 3. Indeed,
pc also depended non-monotonically on response variability. For instance, for N=M=10
the values with and without response noise were pc(σr=σmin)=0.83 and pc(σr=0)=0.75,
where chance performance corresponds to 0.5. Also, the maximum benefit of response
noise occurred for N=M and decreased quickly as the difference between N and M grew,
as in Figs. 3A, C. However, the amount of response noise that maximized pc was typi-
cally about one third of the amount that minimized the mean square error. Thus, the best
classification probability for N =M = 10 was pc(σr = 0.13) = 0.91. Maximizing pc is not
equivalent to minimizing the mean square error; the two quantities weight differently the
bias and variance of the output response (see Haykin, 1999). Nevertheless, response noise
can also counteract part of the decrease in pc due to synaptic noise, so its beneficial impact
on classification performance is real.

4 Noise Interactions in a Sensory-Motor Network

To illustrate the interactions between synaptic and response noise in a more biologically
realistic situation, we apply the general approach outlined in Section 2 to a well-known
model of sensory-motor integration in the brain. We consider the classic coordinate trans-
formation problem in which the location of an object, originally specified in retinal co-
ordinates, becomes independent of gaze angle. This type of computation has been thor-
oughly studied both experimentally (Andersen et al., 1985; Brotchie et al., 1995) and theo-
retically (Zipser and Andersen, 1988; Salinas and Abbott, 1995; Pouget and Sejnowski, 1997),
and is thought to be the basis for generating representations of object location relative to
the body or the world. Also, the way in which visual and eye-position signals are in-
tegrated here is an example of what seems to be a general principle for combining differ-
ent information streams in the brain (Salinas and Thier, 2000; Salinas and Sejnowski, 2001).
Such integration by ’gain modulation’ may have wide applicability in diverse neural cir-
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cuits (Salinas, 2004), so it represents a plausible and general situation in which computa-
tional accuracy is important.

From the point of view of the phenomenon at hand, the constructive effect of response
noise, this example addresses an important issue: whether the noise interaction is still
observed when network performance depends on a population of output neurons. In the
classification task, performance was quantified through a single neuron’s response, but
in this case it depends on a nonlinear combination of multiple firing rates, so maybe the
impact of response noise washes out in the population average. As shown below, this is
not the case.

The sensory-motor network has, as before, a feedforward architecture with two layers.
The first layer contains N gain-modulated sensory units and the second or output layer
contains K motor units. Each sensory neuron is connected to all output neurons through a
set of feedforward connections, as illustrated in Fig. 4B. The sensory neurons are sensitive
to two quantities, the location (or direction) of a target stimulus x, which is in retinal coor-
dinates, and the gaze (or eye-position) angle y. The network is designed so that the motor
layer generates or encodes a movement in a direction z, which represents the direction of
the target relative to the head. The idea is that the profile of activity of the output neurons
should have a single peak centered at direction z. The correct (i.e., desired) relationship
between inputs and outputs is z = x−y, which is approximately how the angles x and y
should be combined in order to generate a head-centered representation of target direc-
tion (Zipser and Andersen, 1988; Salinas and Abbott, 1995; Pouget and Sejnowski, 1997).
In other words, z is the quantity encoded by the output neurons and it should relate to
the quantities encoded by the sensory neurons through the function z(x, y)=x−y. Many
other functions are possible, but as far as we can tell, the choice has little impact on the
qualitative effect of response noise.

In this model, the mean firing rate of sensory neuron i is characterized by a product of
two tuning functions, fi(x) and gi(y), such that

ri(x, y) = rmax fi(x) (1−D +D gi(y)) + rB , (25)

where rB=4 spikes/s is a baseline firing rate, rmax=35 spikes/s and D is the modulation
depth, which is set to 0.9 throughout. The sensory neurons are gain modulated because
they combine the information from their two inputs nonlinearly. The amplitude — but
not the selectivity — of a visually-triggered response, represented by fi(x), depends on
the direction of gaze (Andersen et al., 1985; Brotchie et al., 1995; Salinas and Thier, 2000).
Note that, in the expression above, the second index of the mean rate rij has been replaced
by parentheses indicating a dependence on x and y. This is to simplify the notation; the
responses can still be arranged in a matrix r if each value of the second index is understood
to indicate a particular combination of values of x and y. For example, if the rates were
evaluated in a grid with 10 x points and 10 y points, the second index would run from 1 to
100, covering all combinations. Indeed, this is how it is done in the computer.

For simplicity, the tuning curves for different neurons in a given layer are assumed to
have the same shape but different preferred locations or center points, which are always
between −25 and 25. Visual responses are modeled as Gaussian tuning functions of stim-
ulus location x,

fi(x) = exp

(

−
(x− ai)

2

2σ2
f

)

, (26)

where ai is the preferred location and σf = 4 is the tuning curve width. The dependence
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Figure 4: Network model of a sensory-motor transformation. In this network, N = 400,
K = 25, M = 400. Target and movement directions, x and z, respectively, vary between
−25 and 25, whereas gaze angle y varies between −15 and 15. The graphs correspond to a
single trial in which x=−10, y=10 and z=x−y=−20. Neither response noise nor synaptic
corruption were included in this example. (A) Firing rates of the 400 gain-modulated input
neurons arranged according to preferred stimulus location. (B) Network architecture. (C)
Firing rates of the 25 output motor neurons arranged according to preferred target location.

on eye position is modeled using sigmoidal functions of the gaze angle y,

gi(y) =
1

1 + exp(−(bi − y)/di)
, (27)

where bi is the center point of the sigmoid and di is chosen randomly between −7 and +7
to make sure that the curves gi(y) have different slopes for different neurons in the array.
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In each trial of the task, response variability is included by applying a variant of Equation
(5),

rij = rij +
√

rij ηij. (28)

This makes the variance of the rates proportional to their means, which in general is in
good agreement with experimental data (Dean, 1981; Softky and Koch, 1992, 1993; Holt et al.,
1996). This choice, however, is not critical (see below). The desired response for each out-
put neuron is also described by a Gaussian,

Fk(z) = rmax exp

(

−
(z − ck)

2

2σ2
F

)

+ rB , (29)

where σF = 4 and ck is the preferred target direction of motor neuron k. This expression
gives the intended response of output unit k in terms of the encoded quantity z. Keep in
mind, however, that the desired dependence on the sensory inputs is obtained by setting
z = x− y. When driven by the first-layer neurons, the output rates are still calculated
through a weighted sum,

Rk(z) = Rk(x, y) =
N
∑

i=1

Wki ri(x, y). (30)

This is equivalent to Equation (1) but with the second index defined implicitly through x
and y, as mentioned above. The optimal synaptic connections W ki are determined exactly
as before, using Equation (4).

Typical profiles of activity for input and output neurons are shown in Figs. 4A, C for
a trial with x = −10 and y = 10. The sensory neurons are arranged according to their
preferred stimulus location ai, whereas the motor neurons are arranged according to their
preferred movement direction ck. For this sample trial no variability was included; the
firing rate values in Fig. 4A are scattered under a Gaussian envelope (given by Equation
(26)) because the gaze-dependent gain factors vary across cells. Also, the output profile
of activity is Gaussian and has a peak at the point z = −20, which is exactly where it
should be given that the correct input-output transformation is z = x−y. With noise, the
output responses would be scattered around the Gaussian profile and the peak would be
displaced.

The error used to measure network performance is, in this case,

Epop = 〈 |z − Z| 〉 . (31)

This is the absolute difference, averaged over trials and networks, between the desired
movement direction z — the actual head-centered target direction — and the direction Z
that is encoded by the center of mass of the output activity,

Z =

∑

i (Ri − rB)
2 ci

∑

k (Rk − rB)2
. (32)

Therefore, Equation (31) gives the accuracy with which the whole motor population repre-
sents the head-centered direction of the target, whereas Equation (32) provides the recipe
to read out such output activity. Now the idea is to corrupt the optimal connections and
evaluate Epop using various amounts of response noise to determine whether there is an
optimum. Relative to the previous examples, the key differences are, first, that the error in
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Figure 5: Noise interaction for the sensory-motor network depicted in Fig. 4. Results
are averaged over 100 networks and 100 trials per network. All data are from computer
simulations. (A) Average absolute deviation between actual and encoded target locations,
Epop, as a function of response noise. Continuous lines are for three probabilities of weight
elimination, pW =0.1, 0.3 and 0.5; the dashed line corresponds to pW =0. (B) Magnitude of
the noise interaction, measured by the relative error Emin/E0, as a function of the number
of input neurons, N , for pW =0.2. (C) Emin and Emin/E0 as functions of pW . (D) Optimal
response noise SD, σmin, as a function of pW .

(31) represents a population average, and second, that although the connections are set to
minimize the average difference between desired and driven firing rates, the performance
criterion is not based directly on it.

Simulation results for this sensory-motor model are presented in Fig. 5. A total of 400
sensory and 25 output neurons were used. These units were tested with all combinations
of 20 values of x and 20 values of y, uniformly spaced (thus, M = 400). Synaptic noise
was generated by random weight elimination. This means that, after having set the con-
nections to their optimal values given by Equation (4), each one was reset to zero with a
probability pW . Thus, on average, a fraction pW of the weights in each network was elim-
inated. As shown in Fig. 5A, when pW > 0, the error between the encoded and the true
target direction has a minimum with respect to σr. These error curves represent averages
over 100 networks. Interestingly, the benefit of noise does not decrease when more sensory
units are included in the first layer (Fig. 5B). That is, if pW is constant, the proportion of
eliminated synapses does not change, so the error caused by synaptic corruption cannot
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be reduced simply by adding more neurons.
Figure 5C shows the minimum and relative errors as functions of pW . This graph high-

lights the substantial impact that response noise has on this network: the relative error
stays below 0.2 even when about a third of the synapses are eliminated. This is not only
because the error without response noise is high, but also because the error with an op-
timal amount of noise stays low. For instance, with pW = 0.3 and σr = σmin, the typical
deviation from the correct target direction is about 2 units, whereas with σr=0 the typical
deviation is about 10. Response noise thus cuts the deviation by about a factor of five,
and importantly, the resulting error is still small relative to the range of values of z, which
spans 50 units. Also, as observed in the classification task, in general it is better to include
response noise even if σr is not precisely matched to the amount of synaptic variability
(Fig. 5A).

Figure 5D plots σmin as a function of the probability of synaptic elimination. The op-
timal amount of response noise increases with pW and reaches fairly high levels. For in-
stance, at a value of 1, which corresponds to pW near 0.15, the variance of the firing rates
is equal to their mean, because of Equation (28). We wondered whether the scaling law
of the response noise would make any difference, so we reran the simulations with either
additive noise (SD independent of mean) or noise with an SD proportional to the mean,
as in Equation (5). Results in these two cases were very similar: Emin and Emin/E0 varied
very much like in Fig. 5C, and the optimal amount of noise grew monotonically with pW ,
as in Fig. 5D.

5 Noise Interactions in a Recurrent Network

The networks discussed in the previous sections had a feedforward architecture, and in
those cases the contribution of response noise to the correlation matrix between neuronal
responses could be determined analytically. In contrast, in recurrent networks the dynam-
ics are more complex and the effects of random fluctuations more difficult to ascertain.
To investigate whether response noise can still counteract some of the effects of synaptic
variability, we consider a recurrent network with a well-defined function and relatively
simple dynamics characterized by attractor states. When the firing rates in this network
are initialized at arbitrary values, they eventually stop changing, settling down at certain
steady-state points in which some neurons fire intensely and others do not. The optimal
weights sought are those that allow the network to settle at predefined sets of steady-state
responses, and the error is thus defined in terms of the difference between the desired
steady states and the observed ones. As before, response noise is taken into account when
the optimal synaptic weights are generated, although in this case the correction it intro-
duces (relative to the noiseless case) is an approximation.

The attractor network consists of N continuous-valued neurons, each of which is con-
nected to all other units via feedback synaptic connections (Hertz et al., 1991). With the
proper connectivity, such network can generate, without any tuned input, a steady-state
profile of activity with a cosine or Gaussian shape (Ben-Yishai et al., 1995; Compte et al.,
2000; Salinas, 2003). Such stable ‘bump’-shaped activity is observed in various neural
models, including those for cortical hypercolumns (Hansel and Sompolinsky, 1998), head-
direction cells (Zhang, 1996; Laing and Chow, 2001) and working memory circuits (Compte et al.,
2000). Below, we find the connection matrix that allows the network to exhibit a unimodal
activity profile centered at any point within the array.
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Figure 6: Steady-state responses of a recurrent neural network with 20 neurons. Results
show the input currents of all units after 1000 ms of simulation time, with responses evolv-
ing according to Equation (34). Each neuron is labeled by an angle between -180◦ and 180◦.
(A) Steady-state responses for four sets of initial conditions with peaks near units -90◦,
0◦, +90◦and 180◦. The observed activity profiles are indistinguishable from the desired
Gaussian curves. Neither synaptic nor response noise were included in this example. (B)
Steady-state responses with and without noise. The desired activity profile is indicated
by the solid line. The dotted line corresponds to the activity observed with noise after
1000 ms of simulation time, having started with an initial condition equal to the desired
steady state. Vertical lines indicate the locations of the corresponding centers of mass. The
absolute deviation is 34◦. Here, σr=0.3 and pW =0.02.

5.1 Optimal Synaptic Weights in a Recurrent Architecture

The dynamics of the network are determined by the equation

τ
dri
dt

= −ri + h





∑

j

Wij rj



+ ηi , (33)

where τ = 10 is the integration time constant, ri is the response of neuron i, and h is the
activation function of the cells, which relates total current to firing rate. The sigmoid func-
tion h(x) = 1/(1 + exp(−x)) is used, but this choice is not critical. As before, ηi represents
the response fluctuations, which are drawn independently for each neuron in every time
step. In this case they are Gaussian, with zero mean and a variance σ2

r/∆t. The variance
of ηi is divided by the integration time step ∆t to guarantee that the variance of the rate ri
remains independent of the time step (van Kampen, 1992).

For our purposes, manipulating this type of network is easier if the equations are ex-
pressed in terms of the total input currents to the cells (Hertz et al., 1991; Dayan and Abbott,
2001). If the current for neuron i is ui=

∑

j Wij rj , then

τ
dui
dt

= −ui +
∑

j

Wij (h(uj) + ηj) , (34)

is equivalent to Equation (33) above. A stationary solution of Equation (34) without input
noise is such that all derivatives become zero. This corresponds to an attractor state α for
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which
uαi =

∑

j

Wij h(u
α
j ). (35)

The label α is used because the network may have several attractors or sets of fixed points.
The desired steady-state currents are denoted as Uα

i . These are Gaussian profiles of activity
such that, during steady state α = 1, neuron 1 is the most active (i.e., the Gaussian is
centered at neuron 1), during steady state α = 2, neuron 2 is the most active, and so on.
Figure 6 illustrates the activity of the network at four steady states in the absence of noise
(σW = 0 = σr). To make the network symmetric, the neurons were arranged in a ring, so
their activity profiles wrap around. Because of this, each neuron is labeled with an angle.
The observed currents ui settle down at values that are almost exactly equal to the desired
ones, Uα

i . The synaptic connections that achieved this match were found by enforcing the
steady-state condition (35) for the desired attractors. That is, we minimized

E =
1

NA

NA
∑

α=1

∑

i



Uα
i −

∑

j

Wij h(U
α
j )





2

, (36)

where Uα
i is a (wrap-around) Gaussian function of i centered at α and NA is the number

of attractors; in the simulations NA is always equal to the number of neurons, N . This
procedure leads to an expression for the optimal weights equivalent to Equation (4). Thus,
without response noise,

W = LC−1, (37)

where

Lij =
1

NA

∑

α

Uα
i h(Uα

j )

Cij =
1

NA

∑

α

h(Uα
i )h(U

α
j ) . (38)

To include the effects of response noise, we add a correction to the diagonal of the correla-
tion matrix, as in the previous cases (see Section 3.2). We thus set

Cij =
1

NA

∑

α

h(Uα
i )h(U

α
j ) + δij a

σ2
r

2τ
, (39)

where a is a proportionality constant. The rationale for this is as follows.
Strictly speaking, Equation (34) with response noise does not have a steady state. But

consider the simpler case of a single variable u with a constant asymptotic value u∞, such
that

τ
du

dt
= −u+ u∞ + η. (40)

If the trajectory u(t) from t= 0 to t= T is calculated many times, starting from the same
initial condition, the distribution of endpoints u(T ) has a well-defined mean and variance,
which vary smoothly as functions of T . The mean is always equal to the endpoint that
would be observed without noise, whereas for T much longer than the integration time
constant τ , the variance is equal to the variance of the fluctuations on the right hand side
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of Equation (40) divided by 2τ (van Kampen, 1992). These considerations suggest that we
minimize

E =
1

NA

∑

α,i



Uα
i −

∑

j

Wij

(

h(Uα
j ) + a η̃j

)





2

, (41)

where the variance of η̃j is σ2
r/(2τ). This leads to Equation (37) with the corrected correla-

tion matrix given by (39).

5.2 Performance of the Attractor Network

To evaluate the performance of this network, we compare the center of mass of the desired
activity profile to that of the observed profile tracked during a period of time. For a par-
ticular attractor α, the network is first initialized very close to that desired steady state,
then Equation (34) is run for 1000 ms (100 time constants τ ), and the absolute difference
between the initial and the current centers of mass is recorded during the last 500 ms. The
error for the recurrent networks Erec is defined as the absolute difference averaged over
this time period and all attractor states, ie., all values of α. Also, when there is synaptic
noise, an additional average over networks is performed. This error function is similar
to Equation (31), except that the circular topology is taken into account. Thus, Erec is the
mean absolute difference between desired and observed centers of mass. It is expressed in
degrees.

Before exploring the interaction between synaptic and response noise, we used Erec to
test whether the noise-dependent correction to the correlation matrix in Equation (39) was
appropriate. To do this, a recurrent network without synaptic fluctuations was simulated
multiple times with different values of the parameter a and various amounts of response
noise. The desired attractors were kept constant. The resulting error curves are shown
in Fig. 7A. Each one gives the average absolute deviation between desired and observed
centers of mass as a function of σr for a different value of a. The dependence on a was non-
monotonic. The optimal value we found was 0.5, which corresponds to the lowest curve
(dashed) in the figure. This curve was well below the one observed without adjusting the
synaptic weights. Therefore, the correction was indeed effective.

Figure 7B shows Erec as a function of σr when synaptic noise is also present in the recur-
rent network. The three solid curves correspond to nets in which synapses were randomly
eliminated with probabilities pW =0.005, 0.015 and 0.025. As with previous network archi-
tectures, a non-zero amount of response noise improves performance relative to the case
where no response noise is injected. In this case, however, the mean absolute error is al-
ready about 25◦at the point at which response noise starts making a difference, around
pW =0.005 (Fig. 7C). This is not surprising: these types of networks are highly sensitive to
changes in their synapses, so even small mismatches can lead to large errors (Seung et al.,
2000; Renart et al., 2003). Also, Fig. 7C shows that the ratio Emin/E0 does not fall below
0.6, so the benefit of noise is not as large as in previous examples. The effect was some-
what weaker when synaptic variability was simulated using Gaussian noise with SD σW
instead of random synaptic elimination. Nevertheless, it is interesting that the interaction
between synaptic and response noise is observed at all under these conditions, given that
the response dynamics are richer and that the minimization of Equation (41) may not be
the best way to produce the desired steady-state activity.
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Figure 7: Interaction between synaptic and response noise in recurrent networks. (A) Av-
erage absolute difference between desired and observed centers of mass as a function of
σr. Units are degrees. The different curves are for a= 0, 1.5, 1 and 0.5, from left to right.
The lowest curve (dashed) was obtained with a=0.5, confirming that the synaptic weights
are optimized when response noise is taken into account. (B) Average error Erec as a func-
tion of response noise. Continuous lines are for three probabilities of weight elimination
pW =0.005, 0.015 and 0.025; the dashed line corresponds to pW =0. Here and in the follow-
ing panels, a=0.5. (C) Emin/E0 (left y-axis) and Emin (right y-axis) as functions of pW . (D)
Optimal response noise SD, σmin, as a function of pW for the same data in C.

6 Discussion

6.1 Why are Synaptic and Response Fluctuations Equivalent?

We have investigated the simultaneous action of synaptic and response fluctuations on the
performance of neural networks and found an interaction or equivalence between them:
when synaptic noise is multiplicative, its effect is similar to that of response noise. At heart,
this is a simple consequence of the product of responses and synaptic weights contained in
most neural models, which has the form

∑

j Wjrj . With multiplicative noise in one of the
variables, this weighted sum turns into

∑

j Wj(1 + ξj)rj , which is the same whether it is
the synapse or the response that fluctuates. In either case, the total stochastic component
∑

j Wjξjrj scales with the synaptic weights. The same result is obtained with additive
response noise. Additive synaptic noise behaves differently, however. It instead leads to
a total fluctuation

∑

j ξjrj that is independent of the mean weights. Evidently, in this case
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the mean values of the weights have no effect on the size of the fluctuations. Thus, the
key requirement for some form of equivalence between the two noise sources is that the
synaptic fluctuations must depend on the strength of the synapses.

This condition was applied to the three sets of simulations presented above, which
corresponded to the classification of arbitrary response patterns, a sensory-motor trans-
formation, and the generation of multiple self-sustained activity profiles. This selection of
problems was meant to illustrate the generality of the observations outlined in the above
paragraph. And indeed, although the three problems differed in many respects, the results
were qualitatively the same.

We should also point out that, in all the simulations, the criterion used to determine
the optimality of the synaptic weights was based on a mean square error. But perhaps
the noise interaction changes when a different criterion is used. To investigate this, we
performed additional simulations of the small 2×1 network in which the optimal synaptic
weights were those that minimized a mean absolute deviation; thus, the square in Equation
(2) was substituted with an absolute value. In this case everything proceeded as before,
except that the mean weight values W had to be found numerically. For this, the averages
were performed explicitly and the downhill simplex method was used to search for the
best weights (Press et al., 1992). The results, however, were very similar to those in Fig. 2A.
Although the shapes of the curves were not exactly the same, the relative and minimum
errors found with the absolute value varied very much like with the mean-square error
criterion as functions of σW . Therefore, our conclusions do not seem to depend strongly
on the specific function used to weight the errors and find the best synaptic connection
values.

6.2 When Should Response Noise Increase?

According to the argument above, the most general way to state our results is this: as-
suming that neuronal activities are determined by weighted sums, any mechanism that is
able to dampen the impact of response noise will automatically reduce the impact of mul-
tiplicative synaptic noise as well. Furthermore, we suggest that under some circumstances
it is better to add more response noise and increase the dampening factor, than ignore the
synaptic fluctuations altogether. There are two conditions for this scenario to make sense.
(1) The network must be highly sensitive to changes in connectivity. This can be seen, for
instance, in Fig. 3A, which shows that the highest benefit of response noise occurs when
the number of neurons matches the number of conditions to be satisfied — it is at this point
that the connections need to be most accurate. (2) The fluctuations in connectivity cannot
be evaluated directly. That is, why not take into account the synaptic noise in exactly the
same way as the response noise when the optimal connections are sought? For example,
the average in Equation (3) could also include an average over networks (synaptic fluctu-
ations), in which case the optimal mean weights would depend not only on σr but also
on σW . In the simulations this could certainly be done, and would lead to smaller errors.
But we explicitly consider the possibility that either σW is unknown a priori, or there is no
separate biophysical mechanism for implementing the corresponding corrections to the
synaptic connections.

Condition number 2 is not unreasonable. Realistic networks with high synaptic plas-
ticity must incorporate mechanisms to ensure that ongoing learning does not disrupt their
previously acquired functionality. Thus, synaptic modifications rules need to achieve two
goals: to establish new associations that are relevant for the current behavioral task, and to
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make adjustments to prevent interference from other, future associations. The latter may
be particularly difficult to achieve if learning rates change unpredictably with time. It is
not clear whether plausible (e.g., local) synaptic modification mechanisms could solve both
problems simultaneously (see Hopfield and Brody, 2004), but the present results suggest
an alternative: synaptic modification rules could be used exclusively to learn new associ-
ations based on current information, whereas response noise could be used to indirectly
make the connectivity more robust to synaptic fluctuations. Although this mechanism
evidently doesn’t solve the problem of combining multiple learned associations, it might
alleviate it. Its advantage is that, assuming that neural circuits have evolved to adaptively
optimize their function in the face of true noise, simply increasing their response variabil-
ity would generate synaptic connectivity patterns that are more resistant to fluctuations.

6.3 When is Synaptic Noise Multiplicative?

The condition that noise should be multiplicative means that changes in synaptic weight
should be proportional to the magnitude of the weight. Evidently, not all types of synaptic
modification processes lead to fluctuations that can be statistically modeled as multiplica-
tive noise; for instance, saturation may prevent positive increases, thus restricting the vari-
ability of strong synapses. However, synaptic changes that generally increase with initial
strength should be reasonably well approximated by the multiplicative model. Random
synapse elimination fits this model because, if a weak synapse disappears, the change is
small, whereas if a strong synapse disappears, the change is large. Thus, the magnitude of
the changes correlates with initial strength. Another procedure that corresponds to mul-
tiplicative synaptic noise is this. Suppose the size of the synaptic changes is fixed, so that
weights can only vary by ±δw, but suppose also that the probability of suffering a change
increases with initial synaptic strength. In this case, all changes are equal, but on average a
population of strong synapses whould show higher variability than a population of weak
ones. In simulations, the disruption caused by this type of synaptic corruption is indeed
lessened by response noise (data not shown).

6.4 Final Remarks

To summarize, the scenario we envision rests on five critical assumptions: (1) the activity
of each neuron depends on synaptically-weighted sums of its (noisy) inputs, (2) network
performance is highly sensitive to changes in synaptic connectivity, (3) synaptic changes
unrelated to a function that has already been learned can be modeled as multiplicative
noise, (4) synaptic modification mechanisms are able to take into account response noise,
so synaptic strengths are adjusted to minimize its impact, but (5) synaptic modification
mechanisms do not directly account for future learning. Under these conditions, our re-
sults suggest that increasing the variability of neuronal responses would, on average, re-
sult in more accurate performance. Although some of these assumptions may be rather
restrictive, the diversity of synaptic plasticity mechanisms together with the high response
variability observed in many areas of the brain make this constructive noise effect worth
considering.
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