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Abstract
We analyze a neural network model of the Eriksen task, a two-alternative forced choice task in which
subjects must correctly identify a central stimulus and disregard flankers that may or may not be
compatible with it. We linearize and decouple the model, deriving a reduced drift-diffusion process
with variable drift rate that describes the accumulation of net evidence in favor of either alternative,
and we use this to analytically describe how accuracy and response time data depend on model
parameters. Such analyses both assist parameter tuning in network models, and suggest explanations
of changing drift rates in terms of attention. We compare our results with numerical simulations of
the full nonlinear model and with empirical data, and show that it provides good fits to both with
fewer parameters.
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1 Introduction
There is currently considerable interest in the psychological (Laming, 1968; Ratcliff, 1978;
Ratcliff et al., 1999) and neural bases of decision making (Platt and Glimcher, 2001; Schall,
2001; Gold and Shadlen, 2001, 2002). In the simplest, two-alternative forced-choice (2AFC)
task, a subject must decide, on each trial, which of two randomly-presented stimuli has actually
appeared (at the neural level). The discriminatory process is typically modelled as a competition
among different populations of neurons, each preferentially responsive to one of the stimuli
(Usher and McClelland, 2001). This is supported by direct recordings in oculo-motor areas of
monkeys performing such tasks, which suggest that “decision” neurons (e.g. in the lateral
interparietal area (LIP) and frontal eye field (FEF)) accumulate evidence for the stimulus
alternatives, and the corresponding behavioral response is initiated when their firing rates cross
thresholds, e.g. (Schall, 2001; Gold and Shadlen, 2001; Shadlen and Newsome, 2001; Schall
et al., 2002; Roitman and Shadlen, 2002). Moreover, computational simulations and analyses
of neural network (connectionist or parallel distributed processing (PDP)) models (Grossberg,
1988; Hopfield, 1982, 1984) show that their solutions can be matched to behavioral data
(Cohen et al., 1990, 1992; Usher and McClelland, 2001).

yuanliu@princeton.edu, pholmes@math.princeton.edu, jdc@princeton.edu.

NIH Public Access
Author Manuscript
Neural Comput. Author manuscript; available in PMC 2009 September 24.

Published in final edited form as:
Neural Comput. 2008 February ; 20(2): 345–373. doi:10.1162/neco.2007.08-06-313.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In particular, a simple and analytically-tractible drift-diffusion model (DDM) has been
extensively fitted in this manner (Ratcliff, 1978; Ratcliff et al., 1999). The DDM is known to
be optimal for 2AFC in the sense that, on average, it delivers choices of guaranteed accuracy
in the shortest possible time (Laming, 1968), and analytical solutions for DDM error rates and
decision times from the DDM can be used to investigate speed-accuracy tradeoffs for optimal
performance (Gold and Shadlen, 2002; Bogacz et al., 2006). However, little work has examined
the ability of this model to account for performance in more complex and cognitively-
interesting tasks, such as those requiring selective attention to a subset of task-relevant stimuli
in the presence of distractors. The Eriksen flanker task has been used extensively to study such
effects (Eriksen and Eriksen, 1974; Gratton et al., 1988; Cohen et al., 1992).

In this task subjects are asked to respond appropriately to a target letter or arrow (e.g. < or >),
visually displayed in the center of a five-symbol stimulus array on a display screen (e.g., by
pressing the left button to < and the right button to >). The flanking symbols may be either
compatible or incompatible with the central stimulus. In the compatible conditions, the display
reads <<<<< or >>>>>; in the incompatible conditions, it reads >><>> or <<><<, and in each
block of trials all four conditions are typically presented with equal probabilities.

Experiments show that subjects are slower and make more errors under the incompatible
conditions, as illustrated in the the data of Gratton et al. (1988): see Figure 1. Furthermore,
response patterns exhibit an interesting temporal profile: specifically, a dip in accuracy for
incompatible trials at short reaction times, and a “crossover time” at which accuracy regains
50%: the chance level for “blind” responses. This dip is thought to reflect the dynamics of an
interaction between bottom-up processing of sensory information (which, for the incompatible
condition, favors the incorrect response) and the engagement of “top-down” attentional
processes which favor processing of the central stimulus and thereby encourage the correct
response. Accuracy for compatible trials increases montonically with time.

Trials may be run under a free-response paradigm in which decisions are signalled when the
subject feels that sufficient evidence in favor of one alternative has accumulated. Since sensory
processes are subject to variability, response times vary from trial to trial and performance
under the free-response condition is characterised by both reaction time distributions and error
rates. In contrast, in a forced-response or deadline paradigm, subjects must respond at or before
a fixed time T following stimulus onset with their best estimate of which alternative was
presented. This is how Figure 1 was generated. Reaction times may still vary due to errors in
temporal estimation.

Here we shall consider both free response and the “hard limit” of forced response, in which
the decision must be rendered when a cue is given: in this limiting case we can ignore RT
variability and consider only accuracy as a function of the cue time. To distinguish the latter
from deadlining, we call it the interrogation protocol. In both cases one can sort the data into
response time bins and plot it as in Figure 1, but as we shall see, the two cases lead to somewhat
different predictions.

Cohen et al. (1992) proposed a neural network model of the Eriksen task and showed that it
can be fitted to the Gratton et al. (1988) data. The model has multiple layers and includes top-
down biases applied to perception units associated with the central stimuli. However, like other
connectionist models with nonlinear input-output response functions, it is not amenable to
analysis, and data fitting and predictive studies must be carried out by numerical simulation,
cf. Servan-Schreiber et al. (1998a,b). In this article we derive a simplified, linearized system
and show how it can be reduced to a DDM with variable drift rate that models the decision
process. In doing so we derive analytical approximations for crossover times and other
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characteristics that assist parameter fitting, and reveal how the DDM emerges naturally from
more complex multi-layered networks.

The paper is organised as follows. In Section 2 we briefly review connectionist network models,
describe the model of Cohen et al. (1992), and analyze a linearised and decoupled version of
it, which finally results in a DDM describing the evolution of net evidence in favor of one (or
the other) alternative. A key ingredient is the time-varying input to this process from the
perception and attention layers of the network, and we compare our analytical predictions of
this with numerical simulations of the original nonlinear system. Section 3 contains analyses
of the DDM with drift rates of various functional forms derived from simulation data. We
compute accuracy vs response time curves for the interrogation protocol explicitly (displaying
parameter dependencies), and for the free response protocol numerically, and compare them
with simulations of the full Eriksen model. In Section 4 we compare fits of the original model
of Cohen et al. (1992) and the reduced DDM to empirical data of Gratton et al. (1988). Our
analysis assists parameter tuning in network models, and suggests explanations of variable drift
rates in terms of attention, as noted in the summary discussion of Section 5.

2 Connectionist models
Connectionist models are stochastic differential equations (SDEs) or iterated mappings in
which the activities (firing rates) of neurons or groups of neurons evolve in a manner
determined by their summed inputs transformed via an activation or response function:

(1)

where ψ is bounded to reflect the resting and maximal firing rates. Here xi are the activities of
other neurons or groups connected via weights wi, negative values representing inhibition and
positive values excitation. The term I models external inputs from stimuli, perhaps modulated
via sensory circuits. Typically ψ is taken as the sigmoid

(2)

with parameters g and β specifying gain and bias. Bias sets the input range x ≈ β in which the
unit is maximally responsive, and gain determines its width. Ouside this region, the unit is
essentially quiescent (output = 0) or maximally active (output = 1): see Figure 2. Appropriate
parameter choices can effectively increase signal-to-noise ratios as information flows though
a network, by amplifying larger inputs and suppressing smaller ones (Servan-Schreiber et al.,
1990). Eqn. (2) is chosen so that the maximal slope ∂ψ/∂x(β) = g, and it has been argued that
neural circuits should adjust biases β to work near this point to utilize the resulting sensitivity
(Cohen et al., 1990). As in earlier work (Brown et al., 2005), we shall appeal to this in linearizing
response functions at their maximal slope regions to yield more tractable models.

Models such as those considered below explain a wide range of behavioral data (Cohen and
Servan-Schreiber, 1992; Servan-Schreiber et al., 1998a,b; Aston-Jones and Cohen, 2005), and
moreover may be derived from biophysically-based ionic current models of single cells
(Abbott, 1991). Since the latter take the form of continuous differential equations rather than
iterated maps, we shall focus on SDEs in this paper.
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2.1 A connectionist model for the Eriksen task
We consider the architecture proposed by Cohen et al. (1992), shown in Figure 3. The units
p1 through p6 constitute the perception layer (called the input module in Cohen et al. (1992)),
z1 and z2 constitute the decision layer (output module), and a1 through a3 the attention module.
Units within each layer or module are mutually interconnected via inhibitory weights -w (here
all assumed equal), implementing competition among representations within that layer. The
decision and perception layers receive excitatory inputs of weights +l and +h from the
perception and attention layers respectively, and the left, center and right units of the attention
layer receive excitatory inputs of weights +h from the corresponding pairs of perception units,
as shown. All units are subject to independent additive white noise, to simulate unmodeled
inputs. Absent inputs and noise, each unit’s activity decays at rate -k.

The perception layer contains three pairs of units that receive inputs from the left, central, and
right visual fields respectively and it is assumed that in each pair the left unit is preferentially
responsive to the symbol < and the right unit to >. Thus, stimuli are modeled as follows: in the
compatible condition, either the left (p3) or right (p4) central unit has external input Ij = a, and
the corresponding flanker units (p1, p5 or p2, p6 resp.) receive input Ij = b (modelling <<<<<
or >>>>>); and, in the incompatible condition, either the left (p3) or right (p4) central unit has
external input Ij = a, and the non-corresponding flanker units (p2, p6 or p1, p5 resp.) recieve
input Ij = b (modelling >><>> or <<><<). Since each flanker unit represents two symbols in
the stimulus array, we typically assume b ≥ a. The central unit (a2) of the attention layer receives
an input A2 = ac in both conditions. All other inputs Ij, Aj are zero. See Figure 3 for an example.

Under the interrogation paradigm the decision is rendered at a set time t after stimulus onset
by taking the larger of the decision unit outputs: i.e. “<” if z1(t) > z2(t) and “>” if z2(t) > z1(t).
Under the free-response paradigm the first of z1(t) or z2(t) to cross preset thresholds zj = θ
determines the choice.

In this article we consider continuously evolving SDE models of these mechanisms, which for
the Eriksen model may be written as:

(3)

(4)

(5)

where the ηj’s represent i.i.d. white noise processes.
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This 11-dimensional, coupled set of SDEs is effectively insoluble analytically, so we shall
employ two strategies that result in more tractible approximations: linearization and
decoupling. In all, with the stimulus and attention input choices specified above, 11 parameters
are required to specify the system (g and β for the sigmoids; w, l, h and k for leak and connection
weights, a, b and ac for inputs, a threshold value, and an overall noise level. Allowing different
values in each layer would significantly increase this number. The reduction done below
substantially reduces the number of parameters. Similar analyses of simpler models of the
2AFC task are developed in Brown et al. (2005) and Bogacz et al. (2006).

2.2 Decoupling, linearization, and the drift-diffusion process
Here we use two major ideas to simplify the problem: decoupling and linearization. We
decouple the lower layers of the model by assuming that the modulatory output of the attention
layer to the perception layer has a predetermined time course that is little-affected by feedback
from the perception layer (the decision layer is already decoupled in the version of the model
given above, in that it does not feed back to the lower layers). We then appeal to the proposal
of Cohen et al. (1990): that biases in the sigmoidal units are adjusted so that they remain near
their most sensitive ranges (close to maximum slope) where input modulations have maximal
effect on outputs, and we replace the nonlinear functions (2) by their linearizations at x = b.

As already noted, the decision layer does not feed back to the perception or attention layers
and thus cannot influence their dynamics. It may therefore be analyzed independently, given
knowledge of, or assumptions regarding, the inputs i1 = l(p1 + p3 + p5) and i2 = l(p2 + p4 +
p6) to its two units. Furthermore, assuming that the sigmoid bias parameter β in (2) is selected
so that the units remain near their most sensitive range, we linearize (3) about z1 = z2 = β and
let z‾j = zj - β to obtain:

(6)

Subtracting these equations yields a scalar Ornstein-Uhlenbeck process:

(7)

where u = z‾1 - z‾2 and A = g(i1 - i2) is the difference in the inputs. If A > 0 (i1 > i2) u will tend
to increase and if A < 0 (i1 < i2) it will tend to decrease: thus, in its linearised form, the decision
layer integrates the net evidence from the perception layer.

When gw-k = 0 the first term on the right of equation (7) vanishes, and we say that such a
network is balanced (Bogacz et al., 2006). In this case (7) is a pure drift-diffusion process, and
is particularly simple to analyse, even when the net evidence A(t) varies with time, as it will
in the analysis to follow.

We will also formally decouple the perception layer from the attention layer, assuming that
the feedback from the latter may be approximated by a specified time-dependent function. We
initially neglect noise and inputs from the attention layer, so that after linearization, setting
p‾j = pj - β, and writing p = (p‾1, . . . , p‾6), we have the linear ODE system:

(8)
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where the n × n matrix A and input vector I are:

(9)

Here we assume that the central stimulus is “<” and the components of the vector I respectively
correspond to compatible and incompatible conditions. The “>” case may be derived using
symmetry arguments. Also note that, since the inputs to the flanker units p1, p5 and p2, p6 are
equal in both compatible and incompatible cases, solutions remain on the invariant 4-
dimensional plane p1 = p5, p2 = p6, provided that the corresponding initial conditions are also
equal.

The eigenvalues of the symmetric matrix A are λ1 = -(k+5gw) and λ2 = -(k - gw) with
multiplicities 1 and 5 respectively, so we may diagonalize (8) by an othogonal transformation
p = Ty, solve the resulting decoupled ODEs in the y coordinates and transform back to p, as
detailed in the Appendix. In this way we may compute the sums that form the inputs to the
decision layer in (3) and its linearization (7):

(10)

in writing (10) we have also used the symmetry p1 = p5, p2 = p6.

If yj(0) = 0, corresponding to unbiased starting points, and a, b = const., the general solution
given in the Appendix yields:

(11)

In (11) the central ± refers to the cases i1, i2 and the right-hand ± to the compatible/incompatible
conditions. The special case in which decay and inhibition are balanced

 is of particular importance:

(12)

Since the difference between the inputs to the decision layer is

(13)
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the flanker inputs dominate in the incompatible case, as one expects (provided b > a/2).
However, the inputs need not remain constant: in Cohen et al. (1992) and Servan-Schreiber et
al. (1998a) the central perception units p3, p4 are activated on all trials via the output of the set
of attention units shown in Figure 3. For simplicity we shall initially model this effect by
boosting the central inputs I3,4 to the perception layer by a multiplicative factor that increases
linearly with time, replacing a thus:

(14)

We shall partially justify and improve this simple choice subsequently by comparing with the
decision layer inputs and outputs in the nonlinear model (3-5). Replacing a as in (14) and using
the solutions given in the Appendix adds the following terms to the individual inputs:

(15)

so that the differences become

(16)

and

(17)

in the balanced case (λ2 = 0). The inputs are equal at t = 0, and i1 > i2 for t > 0 in the compatible
case, but we see that there is now a critical crossover time such that i1 < i2 for 0 < t < tci and
i1 > i2 for t > tci in the incompatible case. With balanced parameters, we have

(18)

and solving the noise-free drift equation (7) with A = g(i1 - i2) of (17) and u(0) = 0, we find
that

(19)

Hence for incompatible stimuli the output of the decision layer is negative for 0 < t < tco and
positive thereafter, and the crossover time for that output is given by

(20)
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Figure 4 shows examples of decision layer inputs and outputs in the balanced case λ2 = 0.

If the effect of attention is modeled by any additive term applied equally to both central decision
units, so that in place of (14) we have a ↦ a + ac(t) applied to p3 and 0 ↦ ac(t) applied to
p4, we find that the difference between the inputs to the decision layer is unaffected. A nonlinear
(multiplicative) interaction is evidently crucial. As we shall see, such an interaction emerges
naturally from the nonlinear activation functions ψ of Figure 2.

2.3 Simulations with sigmoidal activation functions
We now return to the the more neurally-realistic network (3-5) with non-linear activation
functions, and perform numerical simulations to validate the linearized analysis of §2.2. In
order to make direct comparisons we again exclude noise terms. Here and in §3 we set
parameters k = w = l = h = 1 and a = b = 0.5, ac = 1 unless specified otherwise, and take
sigmoidal gain and bias g = 0.55, β = 0.8 for the attention and perception units and g = 1, β =
-0.9 for the decision units. The biases are selected so that, at rest without stimulus inputs, the
units are close the centers of their sensitive ranges where ϕ’ = g, and we allow the units to
equilibrate after starting with zero initial conditions before the stimuli are applied at t = 0. In
§4 we shall derive parameters by fitting to the data of Figure 1.

Examples of solutions analagous to those of Figure 4 are shown in Figure 5, illustrating that
the linearized analysis captures the key qualitative effects exhibited by the nonlinear system
following stimulus onset, including crossover behavior in incompatible cases. In particular,
the inputs from the central attention unit a2 via the sigmoidal function have the effect of
boosting the central stimulus inputs as assumed in our simple analysis. The quantitative
predictions of the linear analysis are also adequate: in particular, the ratios between decision
layer input and output crossover times fall within 10 - 15% of the value r = tci/tco = 2/3 from
(18-20), and the linear dependence of tci and tco on (2b - a) and inverse dependence on ac of
(18-20) are approximately borne out. Figure 6 shows solutions for incompatible cases for
different values of the attention parameter ac and of the ratio b/a, which measures the relative
strength of flanker to center stimuli. Increasing ac by a factor of 2 reduces tci from 4.43 to 1.84
and tco from 6.11 to 2.75, and increasing b/a by 2 increases tci from 1.41 to 5.33 and tco from
2.21 to 7.25, giving 0.42, 0.45 and 3.78, 3.28 respectively, in comparison to the factors 0.5 and
3 predicted by (18-20). (The crossover times are explicitly identified on Figure 5.)

Despite the reasonable match between data from the linearized and fully nonlinear systems,
our linear growth assumption (14) for input to the central perception units, which leads to the
quadratic and cubic functions of (17) and (19) is evidently too crude. In particular, the
difference in inputs i1 - i2 to the decision layer departs significantly from (17) at large times,
due to the limiting effect of the sigmoidal activation functions for large inputs, and it does not
account for time delays due to the the fact that the attention units and stimuli are co-activated,
and biases to the central perception units take some time to build up. More realistic inputs can
be derived by examining noise-free simulation results, as we now show.

Figure 7 (left) shows the net input i1 - i2 from an incompatible trial in comparison to three
analytical approximations: a linear expression

(21)

the quadratic expression (17), which we rewrite in the form

(22)
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and the exponential

(23)

The former two compare well to the nonlinear system’s response in the middle and in the early
and middle time ranges respectively, but neither captures its asymptotic approach to a constant
as t continues to increase (Figure 7). However, the exponential function (23) provides an
excellent fit throughout. The specific parameter values obtained are:

(24)

In the compatible case stimuli reinforce rather than compete, and the attention layer again
further accentuates the contribution of the center units as time progresses, leading to the
monotonically increasing function shown in Figure 7 (right), which can also be well-fitted by
an exponential, in this case requiring only three parameters:

(25)

the specific values being a0 = 0.934, a1 = -0.787 and a2 = -0.960.

The number of parameters defining the exponential drift rates in the incompatible and
compatible cases can each be reduced by one by requiring that the net input g(i1 - i2) = 0 at an
appropriate reference time such as t = 0. This was not done for the fits noted above (since the
quantities obtained from full simulations did not vanish at t = 0), but we use it in fitting empirical
data in §4.

3 Analysis of the drift-diffusion decision process
We have already noted that, in case of balanced parameters (w = gk) the difference between
the activities of the linearized decision layer units follows an Ornstein-Uhlenbeck or drift-
diffusion process (cf. equations (6-7)). For convenience we rewrite the latter in Itô form:

(26)

here λ = gw-k, A(t) = g(i1-i2) is the time-varying drift rate, and c denotes the r.m.s. noise strength,
assumed to be constant. We discuss psychological interpretations of A(t) in §5.

3.1 The interrogation protocol
We first derive simple analytical expressions for accuracy in terms of response time and the
system parameters introduced above, assuming that that responses are delivered under the
interrogation protocol. Although this paradigm has not typically been used in empirical studies
of performance in the Eriksen task, it provides an approximation of the deadlining procedures
used to produce conditional accuracy curves of the sort shown in Figure 1. Such procedures
are required to generate an adequate number of responses at short latencies and low accuracy.

To analyze accuracy in terms of response time under the interrogation protocol, we observe
that the probability distribution p(u, t) for solutions of (26), derived from the associated Fokker-
Planck or forward Kolmogorov equation (Gardiner, 1985):
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(27)

may be written in the form

(28)

where

(29)

denote the evolving mean and variance of p(u, t), and we have assumed that initial conditions
u(0) p for (26) are drawn from a Gaussian distribution with mean μ0 and variance √ν0. For a
balanced system, λ = 0 and equations (29) become:

(30)

We model the interrogation protocol by assuming that, on a given trial, the subject chooses the
alternative that seems more probable at time T. Thus, response > is given if u(T) > 0 and < is
given if u(T) < 0, and if > is the correct alternative, the fraction of correct responses (accuracy)
is given by:

(31)

To make specific comparisons, we shall assume that μ0 = ν0 = 0 (initial conditions are reset to
u(0) = 0 for each trial, corresponding to an unbiased start). We additionally take λ = 0,
corresponding to the optimal drift-diffusion process (Bogacz et al., 2006), and consistent with
the parameter choices of Section 2.3 (w = k = 1 and g = 1 for the decision layer). Substituting
the linear (21), quadratic (17), and exponential (23) expressions into the first expression of (30)
and appealing to (31), we produce the accuracy vs. mean response time curves of Figure 8.
These all exhibit an early dip in accuracy below 50%, as in the data of Gratton et al. (1988)
(cf. Figure 1), and we may compute the times tmin at which their minima occur and the crossover
times t50 at which accuracy regains 50%. The latter are given by μ(t50) = 0, leading to the
explicit expressions

(32)

and the implicit one

(33)
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in the linear, quadratic and exponential cases respectively. The minima occur at the (negative)
turning points of the error function argument μ(t)/√2ν(t), i.e.

(34)

and the solution of

(35)

The fact that the quadratic drift rate leads to the fastest approach to 100% accuracy is due to
the rapid growth of that function as t increases. A linear fit, with strong negative drift at early
times, leads to the lowest accuracy and latest crossover time. The exponential drift rate gives
accuracies between these two cases over the early RT range, only falling below the linear drift
case at larger times, when the exponential approaches its finite asymptote.

3.2 The interrogation protocol with bounded domain
While analytical solutions (28) are available for the unbounded DD process (26), this process
is unrealistic in that magnitudes |u(t)| can become arbitrarily large. In reality, neural firing rates
and differences among them must remain bounded above and below. The original Eriksen
model (3-5) respects this via the upper and lower asymptotes of its sigmoidal response functions
(Figure 2), and we shall presently compare the above results with direct simulations of this
nonlinear model, but one may also incorporate these bounds in a linear context, as we now
show.

specifically, to compute the probability distribution with bounded |u| ≤ L, (27) (with λ = 0)
must be solved subject to no-flux boundary conditions:

(36)

This can be done analytically via separation of variables for constant drift rates A, but we must
resort to Monte Carlo simulations in the present case of time-varying drift. Figure 9 shows
examples to illustrate the effect of increasing the boundary L from the small value of c/3 to the
relatively large one of 5c/3, illustrating convergence to the unbounded result of Figure 8 as L
increases. Note that small L gives higher accuracy for mid-range RT responses than large L,
but that this effect reverses for slower responses, since the asymptotic accuracy increases
toward 1 as L increases. This is due to the fact that more sample paths that would have remained
below 0 in the unbounded case (giving errors) are reflected from the lower boundary u = -L
and thereafter move above 0 under the influence of positive drift, than are reflected from +L
and subsequently move below 0. For example, averages over 10,000 simulated trials show that
for L = 0.1 about 24% of the sample paths reflected from +L cross and remain below 0, while
for L = 0.3 and L = 0.5 the figures are 3% and 0.3% respectively.

In the limit t → ∞, the exponential drift rate becomes constant A(t) → A = a0, and at long times
the probability distribution p(u, t) approaches the equilibrium solution of (27) with with λ = 0
and A(t) ≡ A and boundary conditions (36):
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(37)

The asymptotic accuracy is therefore

(38)

Now Pcorrect(t) → 1 as L → ∞, but asymptotic accuracy is bounded for all finite L. The t → ∞
limits are indicated for three values of L in Figure 9. In contrast, for the linear and quadratic
drift rates of (21-22) that both grow without bound, accuracies approach 100% as t increases
(not shown).

3.3 The free-response protocol
For the free-response protocol the appropriate setting is that of a first passage problem, as
treated in considerable detail for both DDM and OU processes in Bogacz et al. (2006,Appendix
A), cf. (Gardiner, 1985). Unfortunately, to our knowledge, neither explicit solutions nor
asymptotic approximations are available for first passage problems with time-varying drift
rates, and so we must again use numerical methods. In Figure 10 (left panel) we compare the
analytical interrogation results of Section 3.1 with simulations of the full Eriksen model, and
in the right panel we compare free response data from the Eriksen model with those of the
DDM with exponential drift rate inputs as fitted in Figure 7, Eqns. (25-24). Parameter values
for the simulations here and in Figure 11 were: k = w = l = h = 1, a = b = ac = 1 and g = 0.55,
b = 0.8 for the attention and perception units and g = 1, b = -0.9 for the decision units. With
the exception of the stimulus strengths a and b, these are identical to those used for our earlier
simulations and lead to a pure DDM with λ = 0. Threshold values are given in the figure
captions.

The full model gives higher accuracy at early times and lower accuracy at later times than the
unbounded DDM for incompatible stimuli in the interrogation case, much as does the bounded
DDM of Figure 9, suggesting that the limiting nature of the sigmoidal response function,
ignored in the unbounded linearised analysis, comes into play. The numerical free-response
results from the linearized DDM exhibit leftward (time compression) shifts in both compatible
and incompatible cases compared with the full simulations. The analytical interrogation results
are closer to the full nonlinear simulations for incompatible trials, but a similar shift leads to
overestimates of accuracy at early response times.

The free response accuracy results are rather sensitive to the choice of threshold in the DDM,
which we based on the difference between the noise-free steady states of the decision layer
outputs, as illustrated in Figures 5-6 (note that those figures were computed for parameters
differing from those given directly above). specifically, noting that the DDM net evidence
variable is u = z1 - z2 (Equations (6-7)), it follows that if z1 and z2 equilibrate to steady state
levels  as t → ∞ in the noise-free simulation with stimulus 1 (<) applied, the appropriate

1 threshold for u must lie in the range . Adjustments to match accuracy curves may
be made in this range. Figure 11 shows the data from the full Eriksen model again, with DDM
data obtained using a modified threshold that provides a better match. We also show reaction-
time histograms from the full simulation and from the DDM. Note that, as in the experiments,
reaction times are longer under the incompatible condition than the compatible condition, and
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that the DDM provides reasonable estimates of RT distributions, especially in the incompatible
case.

4 Comparisons with empirical data
In this section we compare results from the Eriksen task model of §2.1 and from the pure λ =
0 DDM of §3, working under the free response (threshold crossing) paradigm, with the data
of Gratton et al. (1988). We reproduce the model fit described in Cohen et al. (1992), and
perform a new fit to determine values of the parameters aj describing the exponential drift rates
for both compatible and incompatible stimuli, as in §2.3. Figures 12 and 13 show the resulting
accuracy curves and RT distributions in comparison with the experimental data (cf. Figure 1
above). A visual inspection of Figure 12 shows that the DDM fits the accuracy data somewhat
better then the full nonlinear model. We quantify and comment further on this below.

Data fits for the DDM were performed using the fmincon() function in MATLAB for
comparison with the fits to the original connectionist model of Cohen et al. (1992). As the
analyses of §2.3 and §3 predict, different exponentially-varying drift rates A(t) are required for
incompatible and compatible cases: the former having 5 and the latter 3 parameters (Equations
(23) and (25)). To reduce the number of free parameters we required that A(0) = 0, thereby
reducing these numbers to 4 and 2 respectively. The noise variance c and threshold θ add 2
more parameters, for a total of 8. These 8 parameters were determined by adjusting them while
seeking minima of a fitting error function which averages over all the accuracy and reaction
time data for compatible and incompatible trials.

The fitting error utilizes a weighted Euclidean norm. The usual Euclidean (L2) distance between
vectors u and v with components uj and vj is

(39)

Accuracy and reaction time histogram vectors were first formed from the data (ACd, RTd) and
model predictions (ACm, RTm) (cf. Figures 12-13) and their differences computed by (39).
Since the units of accuracy and reaction time differ, each of these was then weighted by dividing
it by the mean of the data, indicated by an overbar. This produces the nondimensional quantity:

(40)

This represents the sum of the percentage differences in accuracy and reaction time.

According to the error measure of (40), the DDM provides a 24% improvement over the fit
obtained for the full connectionist model of Cohen et al. (1992). Moreover, this is achieved
using 8 parameters in comparison with 11 for the connectionist model.

5 Discussion and conclusions
In this article we analyze a linearized version of the connectionist model for the Eriksen two-
alternative forced-choice flanker task presented in Cohen et al. (1992) and Servan-Schreiber
et al. (1998a). We show that, provided solutions remain within the central domain of the logistic
function in which it may be approximated by a linear function that matches its slope g at the
bias point β, as proposed by Cohen et al. (1990), analytical solutions of a decoupled, linearized
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model modulated by a pre-determined attention signal can provide reasonable estimates of
critical times at which evidence in favor of the correct and incorrect alternatives cross over for
incompatible trials and hence reproduce the characteristic dip in accuracy for such trials. We
also show that the dynamics of the two-unit decision layer can be decoupled and reduced to a
drift-diffusion model (DDM) whose drift rate represents the net evidence for one alternative
coming from the perception layer.

We then derive estimates of accuracy as a function of response time by interrogating a DDM
with variable drift rates that are fitted to outputs from the perception layer of the fully nonlinear
model. Collapsing to this model reduces the number of parameters from 11 or more in the
connectionist model to 8 in the DDM with exponential drift rates. We compute the evolving
probability distribution of solutions to the DDM and integrate it to obtain the psychometric
function (% correct) as an explicit function of response time and the parameters defining the
drift rate and noise strength. The interrogation protocol assumes that the response delivered
reflects the subject’s current estimate, and corresponds best to a deadlined task with a cued
response.

We also consider a protocol under which subjects respond in their own time, modeled as a first
passage problem. The qualitative forms of psychometric functions in the interrogation and free
response cases are similar to those of the full nonlinear model for both compatible and
incompatible trials, the latter showing the characteristic dip below chance for early responses.
The DDM also produces acceptable approximations to accuracy and reaction time distributions
derived from simulations of the full nonlinear model, and, more strikingly, it provides a slightly
better fit to empirical data than does the full model, while using fewer parameters.

These results show that judicious linearization and decoupling of processing layers in
connectionist models can allow analytical studies of how parameters influence the behaviour
of such models. They also suggest that parameter tuning based on the explicit formulae
available for the DDM interrogation protocol may be generally useful in matching model
results with behavioral data. The key linearization step has been justified in model studies of
2AFC tasks (Brown et al., 2005), and extended to multiple alternative decision models
(McMillen and Holmes, 2006). The range over which response functions ψ are well-
approximated by their linearizations grows with the dynamic range of the neurons involved
(the output range is normalized to 1 in Eqn. (2)). Decoupling is more problematic: a simple a
priori assumption regarding biases due to attention does not produce realistic inputs from the
perception layer to the decision layer or to the DDM, although such inputs can be derived from
simulations of the full network, and here they are accurately fitted by simple exponential
functions.

The present study also provides a foundation for further theoretical and experimental work.
The DDM reduction reveals that interaction of the attention and perception layers produces
variable drift rates, implying varying signal-to-noise ratios. These modulate the conjectured
integration of evidence (in LIP) as attention is progressively engaged by top-down control.
This interpretation is consistent with the assumption, within the DDM framework, that attention
modulates drift rate.

These findings present an interesting challenge to the hypothesis that human performance in
2AFC tasks reflects the operation of optimal decision making processes. In a stationary
environment such as the one modeled here, a constant drift-diffusion process produces optimal
behavior (Bogacz et al., 2006). This contrasts with our observation of variable drift, suggesting
that human performance in the Eriksen flanker task is not optimal. Such sub-optimality may
reflect adaptive biases developed in response to a broader class of experience. For example, a
Bayesian approach to analyzing optimality in this task (Yu et al., 2006) has shown that prior
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expectations of compatible stimuli, or of correlations between neighboring elements in the
visual field, can produce the observed dips in accuracy. Hence, experience of natural
environments may have biased perception and decision systems to expect response-
compatibility or perceptual similarity of nearby inputs. Work relating such expectations to the
dynamics of processing indicate that such biases can be related directly to the variable drift
rates incorporated in the present model, and used to account for empirical observations
concerning performance (Yu et al., 2006; Liu et al., 2006).

In summary, the work reported here exemplifies how connectionist models of the dynamics of
processing in cognitive tasks can be related to the DDM, which then provides an analytic
framework for interpreting empirical observations. specifically, we have shown that a DDM
reduction of a multi-layer model of the Eriksen task suggests that processing involves a
progressive change in the drift rate over the course of a trial, reflecting the influence of top-
down attentional mechanisms. This finding can be related, in turn, to an optimality analysis
that generates new hypotheses about the factors governing attentional control (e.g., prior
expectations of stimulus compatibility). The present work therefore provides links between
theoretical analyses of optimal performance and formal specifications of the dynamics of
processing mechanisms responsible for actual performance.
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Appendix

Appendix
We observe that an n×n matrix A with diagonal entries -k and off-diagonal entries gw has two
eigenvalues

(41)

with multiplicities 1 and n - 1 respectively, and since A is symmetric, n - 1 mutually orthogonal
eigenvectors belonging to λ2 can be found. Along with the eigenvector (1, 1, . . . , 1) of λ1,
these yield an orthonormal transformation T with T-1 = TT with the latter given explicitly by:

(42)

For n = 6 the orthonormal eigenvector matrix is:

(43)
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and (8) transforms to the uncoupled system :

(44)

where the first of each alternative additive term corresponds to compatible stimuli and the
second to incompatible stimuli, and the single terms in components 1,3 and 4 apply to both.

The initial value problem

(45)

has the solution:

(46)

and in case that y0 = 0 and f(t) = At + B, we have

(47)

In the case of balanced parameters (k = w ⇒ λ2 = 0), (47) becomes:

(48)

Equipped with these solutions of (45), we compute p = Ty(t) and sum the appropriate
components to obtain Equations (11-17) of §2.2. In doing so we also appeal to fact that the 4-
dimensional subspace p1 = p5, p2 = p6 is invariant, implying, via y = TTy, that solutions started
at yj(0) = 0 satisfy

(49)
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Figure 1.
(Top) Accuracy vs. response time as determined by electromyo-graphic activity (EMG) for
compatible (solid) and incompatible (dashed) stimuli; standard errors shown by vertical bars.
(Bottom) EMG onset histograms. Data replotted from Gratton et al. (1988, Fig. 1).
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Figure 2.
Logistic activation functions, showing the effects of gain g and bias β. Bias sets the center of
the input range over which the response is approximately linear, and gain sets the size of this
range. Solid blue curve: g = 1, β = 0; dashed red curve: g = 2, β = 0.2.

Liu et al. Page 20

Neural Comput. Author manuscript; available in PMC 2009 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
The architecture of the Eriksen Model, showing inputs corresponding to stimulus < in the center
with compatible (solid) and incompatible (dashed) flanking stimuli. From Cohen et al.
(1992).
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Figure 4.
Analytical solutions of the linearized, noise-free Eriksen model. Decision layer input (a) and
output (b) for compatible stimuli, and the same functions for incompatible stimuli (c,d). Solid
blue curves indicate i1 and z1: correct response; dashed red curves indicate i2 and z2: incorrect
response. Here a = b = ac = 1 and crossover times tci = 2, tco = 3.
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Figure 5.
Simulations of the noise-free Eriksen model with logistic activation functions. Decision layer
inputs ij (a) and outputs zj (b) for compatible stimuli, and for incompatible stimuli (c,d):
crossovers in (c,d) cause the dip in accuracy. Solid blue curves indicate i1 and z1: correct
response; dashed red curves indicate i2 and z2: incorrect response. Stimuli are applied at t = 0,
after units have settled at resting values. Parameters are specified in text.

Liu et al. Page 23

Neural Comput. Author manuscript; available in PMC 2009 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Simulations of the noise-free Eriksen model with logistic activation functions showing decision
layer inputs i1 and outputs z1 (solid and dashed blue) and i2 and z2 (dash-dotted and dotted
red); inputs in panels (a,c) and outputs in (b,d). Panels (a,b) show effect of attention ac = 0.5
(solid and dotted) and ac = 1 (dash-dotted and dotted), and panels (c,d) show effect of the ratio
b/a = 1 (solid and dotted) and b/a = 2 (dashed and dash-dotted). See text for discussion. Other
parameters as for Figure 5.
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Figure 7.
Inputs to the decision units computed from a simulation of the noise-free Eriksen model logistic
activation functions (black +s). Left panel: incompatible stimuli, with linear (solid blue line),
quadratic (red dots) and exponential (green dashes) fits to simulation data. Right panel:
compatible stimuli with an exponential fit (solid blue curve). See text for discussion.
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Figure 8.
Analytical predictions of accuracy for the drift-diffusion model under the interrogation protocol
with linear (solid, blue), quadratic (dotted, red) and exponential (dashed, green) drift rates,
fitted to the nonlinear simulation data of Figure 7 as described in the text. Parameter values for
the drift-diffusion process are λ = 0 (balanced), c = 0.3.
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Figure 9.
Accuracy vs. RT for the bounded diffusion process with an exponential drift rate and bounds
L of 0.1 (red), 0.3 (blue) and 0.5 (green) bottom to top on right of figure, with noise strength
c = 0.3. Dashed black curve shows accuracy for unbounded process. Arrows at right show
theoretical accuracy limits for large RT from (38).
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Figure 10.
Left: Accuracy vs. RT for the full Ericksen model under the interrogation protocol (solid line)
compared with analytical results for the unbounded DDM (stars). Right: Accuracy vs. RT for
the full Ericksen model (solid line) under the free-response protocol compared with numerical
results for the unbounded DDM with exponential inputs (stars): thresholds are θ = 1.0 for full
model and θ = ±0.3 for DDM. Upper curves denote compatible trials and lower curves
incompatible trials. Remaining parameters are as specified in text.
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Figure 11.
Accuracy vs. RT for the full Ericksen model (blue lines with solid dots) under the free-response
protocol, with RT histograms below (left, blue bars of each pair). Unbounded DDM accuracy
results are shown for comparison in solid red with open triangles and RT histograms in right,
red bars of each pair. Thresholds are θ = 1.1 for full model and θ = ±0.3 for DDM. Left panel
shows compatible trials, right panel shows incompatible trials. Remaining parameters are as
specified in text.
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Figure 12.
Accuracy vs. RT for the full model (top, solid) and the DDM (bottom, solid), compared with
data from Gratton et al. (1988) (dashed). Standard errors of latter indicated by vertical bars.
Curves for compatible stimuli lie above those for incompatible stimuli.
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Figure 13.
RT histograms from the full model (top row) and the DDM (bottom row), compared with data
from Gratton et al. (1988). Model results are shown in right, yellow bars and empirical data in
left, blue bars for each 50 ms bin. Compatible trials appear in left column and incompatible
trials in right column.
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