LETTER Communicated by Yin Zhang

Projected Gradient Methods for Nonnegative Matrix
Factorization

Chih-Jen Lin
cjlin@csie.ntu.edu.tw
Department of Computer Science, National Taiwan University, Taipei 106, Taiwan

Nonnegative matrix factorization (NMF) can be formulated as a mini-
mization problem with bound constraints. Although bound-constrained
optimization has been studied extensively in both theory and practice, so
far no study has formally applied its techniques to NME. In this letter, we
propose two projected gradient methods for NME, both of which exhibit
strong optimization properties. We discuss efficient implementations and
demonstrate that one of the proposed methods converges faster than the
popular multiplicative update approach. A simple Matlab code is also
provided.

1 Introduction

Nonnegative matrix factorization (NMF) (Paatero & Tapper 1994; Lee &
Seung, 1999) is useful for finding representations of nonnegative data. Given
an n x m data matrix V with V;; > 0 and a prespecified positive integer r <
min(n, m), NMF finds two nonnegative matrices W € R**" and H € R"™*™
such that

V ~ WH.

If each column of V represents an object, NMF approximates it by a linear
combination of “basis” columns in W. NMF has been applied to many
areas, such as finding basis vectors of images (Lee & Seung, 1999), docu-
ment clustering (Xu, Liu, & Gong, 2003), and molecular pattern discovery
(Brunet, Tamayo, Golub, & Mesirov, 2004). Donoho and Stodden (2004)
have addressed the theoretical issues associated with the NMF approach.

The conventional approach to find W and H is by minimizing the differ-
ence between V and WH:

n m

min f(W, H) = %ZZ(VU — (WH);})?

i=1 j=1

subjectto W, >0, Hy; >0, Vi,a,b,j. (1.1)

Neural Computation 19, 2756-2779 (2007) ~ © 2007 Massachusetts Institute of Technology

Projected Gradient Methods for Nonnegative Matrix Factorization 2757

The inequalities such that variables are upper- and lower-bounded are
referred to as bound constraints. Hence, equation 1.1 is a standard bound-
constrained optimization problem. We also note that

D> (Vi — (WH);)* = |V — WHI},

i=1 j=1

where | - || ¢ is the Frobenius norm.

The most popular approach to solve equation 1.1 is the multiplicative
update algorithm proposed by Lee and Seung (2001). It is simple to imple-
ment and often yields good results. At each iteration of this method, the
elements of W and H are multiplied by certain factors. As the zero elements
are not updated, all the components of W and H are strictly positive for
all iterations. This type of strategy is contrary to the traditional bound-
constrained optimization methods, which usually allow iterations to have
bounded elements (i.e., zero elements in this case). Thus far, no study has
formally applied bound-constrained optimization techniques to NME. This
letter investigates such methods in detail. Some earlier NMF studies require
all W’s column sums to be ones: Z?:l W, =1,Va =1,...,r. The function
value does not change because f(WD, D"'H) = f(W, H) forany r x r pos-
itive diagonal matrix D. With the inclusion of such additional constraints,
equation 1.1 no longer remains a bounded problem. As adding these con-
straints may complicate the optimization procedures, we do not consider
this modification in this study.

Among the existing bound-constrained optimization techniques, the
projected gradient method is simple and effective. Although several re-
searchers have used this method for NMF (Hoyer, 2002; Chu, Diele, Plem-
mons, & Ragni, 2005; Shepherd, 2004), there is neither a systematic study
nor an easy implementation comparable to that of the multiplicative up-
date method. This letter presents a comprehensive study on using projected
gradient methods for NMF. Several useful modifications lead to efficient im-
plementations. While the multiplicative update method still lacks conver-
gence results, our proposed methods exhibit strong optimization proper-
ties. We experimentally show that one of the proposed methods converges
faster than the multiplicative update method. This new method is thus
an attractive approach to solve NMFE. We also provide a complete Matlab
implementation.

Another popular NMF optimization formula is to minimize the (gen-
eralized) Kullback-Leibler divergence between V and WH (Lee & Seung,
1999):

) n m ‘/1]
I%\]lyl}lj‘!l ZZ(VU logm —V,] +(WH)11)

i=1 j=1

subjectto W, >0, Hy; > 0,Vi,a,b, j.

2758 C.Lin

Strictly speaking, this formula is not a bound-constrained problem, which
requires the objective function to be well defined at any point of the bounded
region. The log function is not well defined if V;; = 0 or (WH);; = 0. Hence,
we do not consider this formulation in this study.

This letter is organized as follows. Section 2 discusses existing ap-
proaches for solving NMF problem 1.1 and presents several new properties.
Section 3 introduces the projected gradient methods for bound-constrained
optimization. Section 4 investigates specific but essential modifications for
applying the proposed projected gradients methods to NMF. The stopping
conditions in an NMF code are discussed in section 5. Experiments on
synthetic and real data sets are presented in section 6. The discussion and
conclusions are presented in section 7. Appendix B contains the Matlab
code of one of the proposed approaches. All source codes used in this letter
are available online at http:/ /www.csie.ntu.edu.tw/~cjlin/nmf.

2 Existing Methods and New Properties

There are many existing methods for NMF. Some discussions are in Paatero
(1999), but bound constraints are not rigorously handled. A more recent
and complete survey is by Chu et al. (2005). This section briefly discusses
some existing methods and presents several previously unmentioned ob-
servations.

To begin, we need certain properties of the NMF problem, equation 1.1.
The gradient of the function f(W, H) consists of two parts:

Vwf(W, H)=(WH — V)H' and Vyf(W,H)=WI(WH-V), (2.1)

which are, respectively, partial derivatives to elements in W and H. From
the Karush-Kuhn-Tucker (KKT) optimality condition (e.g., Bertsekas, 1999),
(W, H) is a stationary point of equation 1.1 if and only if

Wia 20, Hy; 20
Vi f(W, H)js =0,V f(W, H)pj >0 (2.2)
W,-a . wa(W, H),‘a = 0, and Hbj . VHf(W, H)bj = 0, Vi, a, b,]

Optimization methods for NMF produce a sequence {W¥, H¥}> of iter-
ations. Problem 1.1 is nonconvex and may have several local minima. A
common misunderstanding is that limit points of the sequence are local
minima. In fact, most nonconvex optimization methods guarantee only the
stationarity of the limit points. Such a property is still useful, as any local
minimum must be a stationary point.

Projected Gradient Methods for Nonnegative Matrix Factorization 2759

2.1 Multiplicative Update Methods. The most commonly used ap-
proach to minimize equation 1.1 is a simple multiplicative update method
proposed by Lee and Seung (2001):

Algorithm 1: Multiplicative Update

1. Initialize W,lu >0, Hbl]. >0,Vi,a,b,j.

2. Fork=1,2,...
i1k (VHH),)
I/Via - Vvia m, Vi,a (2~3)
b1k (WEDHTY),, .
Hbf - Hbj (WHDT WEHLFEY, vb, j. 24

This algorithm is a fixed-point type method: if (WX H*(H*));, # 0 and
W = WE > 0, then

(V(HY))ie = (W'HN(HYT)i, implies Vi f(W*, H)i, =0,

which is part of the KKT condition, equation 2.2. Lee and Seung (2001) have
shown that the function value is nonincreasing after every update:

FOVHLHS) < fWE HY) and - f(WSH, HE) < fWET HY). (25)

They claim that the limit of the sequence {W¥, H¥}> | is a stationary point
(i.e., a point satisfying the KKT condition, equation 2.2). However, Gonzales
and Zhang (2005) indicate that this claim is wrong, as having equation
2.5 may not imply the convergence. Therefore, this multiplicative update
method still lacks optimization properties.

To have algorithm 1 well defined, one must ensure that denominators
in equations 2.3 and 2.4 are strictly positive. Moreover, if WX = 0 at the
kth iteration, then W;, = 0 at all subsequent iterations. Thus, one should
keep W,’; > 0 and Hé‘j > 0, Vk. The following theorem discusses when this
property holds:

Theorem 1. If V has neither zero column nor row, and Wlla > 0 and Hb]j >
0,Vi,a,b, j, then

Wi, > Oand Hf; > 0,Vi,a,b, j,Vk > 1. (2.6)

The proof is straightforward, and is in appendix A.

If V has zero columns or rows, a division by zero may occur. Even
if theorem 1 holds, denominators close to zero may still cause numerical
problems. Some studies, such as Piper, Pauca, Plemmons, and Giffin (2004)

2760 C.Lin

have proposed adding a small, positive number in the denominators of
equations 2.3 and 2.4. We observe numerical difficulties in a few situations
and provide more discussion in section 6.3.

Regarding the computational complexity, V(H*)T and (W17 V in equa-
tion 2.3 and 2.4 are both O(nmr) operations. One can calculate the denomi-
nator in equation 2.3 by either

(WH)HT or W(HHT). (2.7)

The former takes O(nmr) operations, but the latter costs O((max(m, n)r?).
As r < min(m, n), the latter is better. Similarly for equation 2.4, (W W)H
should be used. This discussion indicates the importance of having fewer
O(nmr) operations (i.e., WH, W'V, or VHT) in any NMF code.

In summary, the overall cost of algorithm 1 is

#iterations x O(nmr).

All time complexity analysis in this letter assumes that V, W, and H are
implemented as dense matrices.

2.2 Alternating Nonnegative Least Squares. From the nonincreasing
property 2.6, algorithm 1 is a special case of a general framework, which
alternatively fixes one matrix and improves the other: find W**! such
that f(W*H1, HF) < f(WK, HY), and find H**! such that f(Wk1, HF1) <
f(WF1, HF). The extreme situation is to obtain the best point (Paatero,
1999; Chu et al., 2005):

Algorithm 2: Alternating Nonnegative Least Squares

1. Initialize W}, > 0, Hy; > 0, ¥i,a,b, j.

2. Fork=1,2,...
Wl —arg min f (W, HY) (2.8)
H"*!'=arg I}}il(‘)l FOWH). (2.9)

This approach is the block coordinate descent method in bound-constrained
optimization (Bertsekas, 1999), where sequentially one block of variables is
minimized under corresponding constraints and the remaining blocks are
fixed. For NMEFE, we have the simplest case of only two block variables W
and H.

Projected Gradient Methods for Nonnegative Matrix Factorization 2761

We refer to equations 2.8 or 2.9 as a subproblem in algorithm 2. When one
block of variables is fixed, a subproblem is indeed the collection of several
nonnegative least-squares problems. From equation 2.9,

H*Vs jth column = r1£1in v — WEHTh2, (2.10)
>0

where v is the jth column of V and h is a vector variable. Chu et al. (2005)
suggest projected Newton’s methods (Lawson & Hanson, 1974) to solve
each problem (see equation 2.10). Clearly, solving subproblems 2.8 and 2.9
per iteration could be more expensive than the simple update in algorithm
1. Then algorithm 2 may be slower even though we expect that it better
decreases the function value at each iteration. Efficient methods to solve
subproblems are thus essential. Section 4.1 proposes using project gradient
methods and discusses why they are suitable for solving subproblems in
algorithm 2.

Regarding the convergence of algorithm 2, one may think that it is a
trivial result. For example, Paatero (1999) states that for the alternating non-
negative least-squares approach, no matter how many blocks of variables
we have, the convergence is guaranteed. However, this issue deserves some
attention. Past convergence analysis for block coordinate descent methods
requires subproblems to have unique solutions (Powell, 1973; Bertsekas,
1999), but this property does not hold here: subproblems 2.8 and 2.9 are
convex, but they are not strictly convex. Hence, these subproblems may
have multiple optimal solutions. For example, when H* is the zero matrix,
any W is optimal for equation 2.8. Fortunately, for the case of two blocks,
Grippo and Sciandrone (2000) have shown that this uniqueness condition
is not needed. Directly from corollary 2 of Grippo and Sciandrone (2000),
we have the following convergence result:

Theorem 2. Any limit point of the sequence {W*, H*} generated by algorithm 2
is a stationary point of equation 1.1.

The remaining issue is whether the sequence {W*, H*} has at least one
limit point (i.e., there is at least one convergent subsequence). In optimiza-
tion analysis, this property often comes from the boundedness of the feasible
region, but our region under constraints W;, > 0 and Hy; > 0is unbounded.
One can easily add a large upper bound to all variables in equation 1.1. As
the modification still leads to a bound-constrained problem, algorithm 2
can be applied and theorem 2 holds. In contrast, it is unclear how to eas-
ily modify the multiplicative update rules if there are upper bounds in
equation 1.1.

In summary, contrary to algorithm 1, which still lacks convergence re-
sults, algorithm 2 has nice optimization properties.

2762 C.Lin

2.3 Gradient Approaches. In Chu etal. (2005, sec. 3.3), several gradient-
type approaches have been mentioned. In this section, we briefly discuss
methods that select the step size along the negative gradient direction. By
defining

Wi, = E;, and Hy=F},
Chu et al. (2005) reformulate equation 1.1 as an unconstrained optimization

problem of variables E;; and Fy;. Then standard gradient descent methods
can be applied. The same authors also mention that Shepherd (2004) uses

WK = max(0, WF — oy Vi f(WF, H)),
H*! =max(0, H* — o Vi f(WF, HY)),

where oy is the step size. This approach is already a projected gradient
method. However, in the above references, details are not discussed.

3 Projected Gradient Methods for Bound-Constrained Optimization __

We consider the following standard form of bound-constrained optimiza-
tion problems:

min f(x)
subjectto [<x <u;, i=1,...,n, (3.1)

where f(x): R" — R is a continuously differentiable function, and 1 and
u are lower and upper bounds, respectively. Assume k is the index of
iterations. Projected gradient methods update the current solution x* to
x*+1 by the following rule:

X1 = Pl — ofV (3],
where

Xi lfll < Xi < Ui,
Plxi] = w; ifxi >u,
I ifx <1,

maps a point back to the bounded feasible region. Variants of projected
gradient methods differ on selecting the step size o*. We consider a simple
and effective one called “Armijo rule along the projection arc” in Bertsekas
(1999), which originates from Bertsekas (1976). The procedure is illustrated
in algorithm 3:

Projected Gradient Methods for Nonnegative Matrix Factorization 2763

Algorithm 3: A Projected Gradient Method for Bound-Constrained
Optimization

1. Given0 < 8 < 1,0 < o < 1. Initialize any feasible xL.

2. Fork=1,2,...
X = Pl — V(X))
where ax = g%, and f is the first nonnegative integer t for which
FOEY — F() < oV FE)T (1 — xb). (3.2)

Condition 3.2, used in most proofs of projected gradient methods, en-
sures the sufficient decrease of the function value per iteration. By trying
the step sizes 1, 8, 82, . .., Bertsekas (1976) has proved that oy > 0 satisfying
equation 3.2 always exists and every limit point of {x*}?°, is a stationary
point of equation 3.1. A common choice of o is 0.01, and we consider
B = 1/10 in this letter. In the experiment section, 6.2, we have some discus-
sions about the choice of .

Searching «y is the most time-consuming operation in algorithm 3, so
one should check as few step sizes as possible. Since ax_1 and o may be
similar, a trick in Lin and Moré (1999) uses ax_1 as the initial guess and
then either increases or decreases it in order to find the largest g% satisfy-
ing equation 3.2. Moreover, with nonnegative #, algorithm 4 may be too
conservative by restricting o < 1. Sometimes a larger step more effectively
projects variables to bounds at one iteration. Algorithm 4 implements a
better initial guess of « at each iteration and allows « to be larger than one:

Algorithm 4: An Improved Projected Gradient Method

1. Given0 < B8 < 1,0 < o < 1. Initialize any feasible x!. Set ap = 1.

2 Fork=1,2,...
(a) Assign oy < ax_1
(b) If o satisfies equation 3.2, repeatedly increase it by
o < ax/p
until either oy does not satisfy equation 3.2 or x(ax / B) = x(xk).
Else repeatedly decrease oy by
O < O - /3
until oy satisfies equation 3.2.
(c) Set
X1 = PIx* — o V £ (XN)].

2764 C.Lin

The convergence result has been proved in, for example, Calamai and
Moré (1987). One may think that finding o with the largest function reduc-
tion leads to faster convergence:

o = argm)i{)l f(P[xk — an(xk)]). (3.3)

The convergence of selecting such an oy is proved in McCormick and Tapia
(1972). However, equation 3.3 is a piecewise function of o, which is difficult
to be minimized.

A major obstacle for minimizing bounded problems is to identify free
(i.e., I; < x; <u;) and active (i.e., x; = [; or u;) components at the conver-
gent stationary point. Projected gradient methods are considered effective
for doing so since they are able to add several active variables at a single
iteration. However, once these sets have been (almost) identified, the prob-
lem in a sense reduces to an unconstrained one, and the slow convergence
of gradient-type methods may occur. We will explain in section 4.1 that for
NMF problems, this issue may not be serious.

4 Projected Gradient Methods for NMF

We apply projected gradient methods to NMF in two situations. The first
case solves nonnegative least-squares problems discussed in section 2.2.
The second case directly minimizes equation 1.1. Both approaches have
convergence properties following from theorem 2 and Calamai and Moré
(1987), respectively. Several modifications specific to NMF will be presented.

4.1 Alternating Nonnegative Least Squares Using Projected Gradient
Methods. Section 2.2 indicates that algorithm 2 relies on efficiently solving
subproblems 2.8 and 2.9, each of which is a bound-constrained problem.
We propose using project gradient methods to solve them.

Subproblem 2.9 consists of m independent nonnegative least-square
problems (see equation 2.10), so one could solve them separately, a situa-
tion suitable for parallel environments. However, in a serial setting, treating
them together is better for the following reasons:

® These nonnegative least-square problems are closely related as they
share the same constant matrices V and W**! in equation 2.10.

* Working on the whole H but not its individual columns implies that
all operations are matrix based. Since finely tuned numerical linear al-
gebra codes have better speed-up on matrix than on vector operations,
we can thus save computational time.

Projected Gradient Methods for Nonnegative Matrix Factorization 2765

For a simpler description of our method, we focus on equation 2.9 and
rewrite it as

min f(H) =S|IV — WH]}

N =

subjectto H;; >0, Vb, . 4.1)

Both V and W are constant matrices in equation 4.1. If we concatenate H’s
columns to a vector vec (H), then

F(H) = 31V — WHIR

1 WTw
= EveC(H)T vec(H) 4+ H’s linear terms.
WTw

The Hessian matrix (i.e., second derivative) of f(H) is block diagonal, and
each block W Wisanr x r positive semidefinite matrix. As W € R™ and
r < n, WTW and the whole Hessian matrix tend to be well conditioned, a
good property for optimization algorithms. Thus, gradient-based methods
may converge fast enough. A further investigation of this conjecture is in
the experiment section, 6.2.

The high cost of solving the two subproblems, equations 2.8 and 2.9, at
each iteration is a concern. It is thus essential to analyze the time complexity
and find efficient implementations. Each subproblem requires an iterative
procedure, whose iterations are referred to as subiterations. When using
algorithm 4 to solve equation 4.1, we must maintain the gradient

VF(H)=WI(WH - V)

at each subiteration. Following the discussion near equation 2.7, one should
calculate it by (W W)H — WT V. Constant matrices W W and W'V can be
computed respectively in O(nr?) and O(nmr) operations before running
subiterations.

The main computational task per subiteration is to find a step size «
such that the sufficient decrease condition 3.2 is satisfied. Assume H is the
current solution. To check if

H = P[H - oV F(H)]

satisfies equation 3.2, calculating f(H) takes O(nmr) operations. If there are
t trials of H’s, the computational cost O(tnmr) is prohibitive. We propose

2766 C.Lin

the following strategy to reduce the cost: for a quadratic function f(x) and
any vector d,

fx+d) = f)+ V) d+ %dTV2f(x)d. (4.2)

Hence, for two consecutive iterations X and X, equation 3.2 can be written
as

1—0)VFE)T(&—%) + %(i —0)TV2f(R)(X — %) < 0.

Now f(H) defined in equation 4.1 is quadratic, so equation 3.2 becomes

(H—-H,(WI'W)(H - H)) <0, 4.3)

N =

where (-, -) is the sum of the component-wise product of two matrices. The
major operation in equation 4.3 is the matrix product (W' W) - (H — H),
which takes O(mr?). Thus, the cost O(tnmr) of checking equation 3.2 is
significantly reduced to O(tmr?). With the cost O(nmr) for calculating WV
in the beginning, the complexity of using algorithm 4 to solve subproblem
4.1is

O(nmr) + #sub-iterations x O(tmr?),

where t is the average number of checking equation 3.2 at each subiteration.

The pseudocode for optimizing equation 4.1 is in section B.2. We can
use the same procedure to obtain W¥*! by rewriting equation 2.9 as a form
similar to equation 4.1:

fow) = vl — HTWT |3,

NI =

where VT and HT are constant matrices.
The overall cost to solve equation 1.1 is

#iterations x (O(nmr) + #sub-iterations x O(tmr? + tnr?)). (4.4)

At each iteration, there are two O(nmr) operations: V(H*)T and (W-1)TV,
the same as those in the multiplicative update method. If t and #subitera-
tions are small, this method is efficient.

To reduce the number of subiterations, a simple but useful technique is to
warm-start the solution procedure of each subproblem. At final iterations,

Projected Gradient Methods for Nonnegative Matrix Factorization 2767

(W, H*)’s are all similar, so W¥ is an effective initial point for solving
equation 2.8.

4.2 Directly Applying Projected Gradients to NMFE. We may directly
apply algorithm 4 to minimize equation 1.1. Similar to solving the nonneg-
ative least-squares problems in section 4.1, the most expensive operation is
checking the sufficient decrease condition, equation 3.2. From the current
solution (W, H), we simultaneously update both matrices to (W, H):

As f(W, H) is not a quadratic function, equation 4.2 does not hold. Hence,
the trick, equation 4.3, cannot be applied to save the computational time.
Then, calculating f(W, H) = 1|V — WH||? takes O(nmr) operations. The
total computational cost is

#iterations x O(tnmr),

where ¢ is the average number of condition 3.2 checked per iteration.
Given any random initial (W?, H), if |V — W'H!||2 > | V|3, very often
after the first iteration, (W2, H?) = (0, 0) causes the algorithm to stop. The
solution (0, 0) is a useless stationary point of equation 1.1. A simple remedy
is to find a new initial point (W', H') such that f(W!, H') < £(0,0). By
solving H' = arg Igllil(‘)l f(W!, H) using the procedure described in section

4.1, we have
IV = WHH'E < [V = W0l = VI
The strict inequality generally holds, so f(W!, H') < £(0, 0).

5 Stopping Conditions

In all algorithms mentioned so far, we did not specify when the procedure
should stop. Several implementations of the multiplicative update method
(e.g., Hoyer, 2004) have an infinite loop, which must be interrupted by users
after a time or iteration limit. Some researchers (e.g., Brunet, 2004) check
the difference between recent iterations. If the difference is small enough,
the procedure stops. However, such a stopping condition does not reveal
whether a solution is close to a stationary point. In addition to a time or
iteration limit, standard conditions to check the stationarity should also
be included in NMF software. Moreover, in alternating least squares, each
subproblem involves an optimization procedure, which needs a stopping
condition as well.

2768 C.Lin

In bound-constrained optimization, a common condition to check if a
point x* is close to a stationary point is the following (Lin & Moré¢, 1999):

V7 FOON < ellVFI, (5.1)
where V" f(x¥) is the projected gradient defined as

Vf(x),- if li < Xi < Ui,
VP f(x); = { min(0, Vf(x);) ifx; =1;, (5.2)
max(0, Vf(x);) if xi = u;.

This condition follows from an equivalent form of the KKT condition for
bounded problems: /; < x; < u;, Vi, and

IVP £Goll = o.
For NME, equation 5.1 becomes
IVP FOWS, HY)Ip < €|V AW, HY)lE (5.3)

For alternating least squares, each subproblem 2.8 or 2.9 requires a stop-
ping condition as well. Ideally, the condition for them should be related to
the global one for equation 1.1, but a suitable condition is not obvious. For
example, we cannot use the same stopping tolerance in equation 5.3 for sub-
problems. A user may specify € = 0 and terminate the code after a certain
time or iteration limit. Then the same € = 0 in solving the first subproblem
will cause algorithm 2 to keep running at the first iteration. We thus use
the following stopping conditions for subproblems. The returned matrices
W*1 and H**! from the iterative procedures of solving the subproblems
2.8 and 2.9 should, respectively, satisfy

IV fFOV HY|, <ew. and |V FWE B Y| < &y,
where we set
ew = éy = max(1073, €) ||Vf(W1, Hl)HF
in the beginning and ¢ is the tolerance in equation 6.3. If the projected
gradient method for solving equation 2.8 stops without any iterations, we
decrease the stopping tolerance by

éw < éw/10. (54)

For subproblem 2.9, &y is reduced in a similar way.

Projected Gradient Methods for Nonnegative Matrix Factorization 2769

6 Experiments

We compare four methods discussed in this letter and refer to them in the
following way:

® mult: The multiplicative update method described in section 2.1

e alspgrad: Alternating nonnegative least squares using the projected
gradient method for each subproblem (see section 4.1)

pgrad: A direct use of the projected gradient method on equation 1.1
(see section 4.2)

¢ Isgnonneg: Using Matlab command Isqnonneg to solve m problems
(see equation 2.10) in the alternating least-squares framework

All implementations are in Matlab (http://www.mathworks.com). We
conduct experiments on an Intel Xeon 2.8 GHz computer. Results of using
synthetic and real data are presented in the following subsections. All
source codes for experiments are available online at http:/ /www.csie.ntu.
edu.tw/~cjlin/nmf.

6.1 Synthetic Data. We consider three problem sizes: (m,r,n) =
(25, 5,25), (50, 10, 250), and (100, 20, 500). The matrix V is randomly gener-
ated by the normal distribution (mean 0 and standard deviation 1)

Vij = IN(Q,)]

The initial (W', H') is constructed in the same way, and all four methods
share the same initial point. These methods may converge to different points
due to the nonconvexity of the NMF problem, equation 1.1. To have a fair
comparison, for the same V we try 30 different initial (W', H') and report
the average results. As synthetic data may not resemble practical problems,
we leave detailed analysis of the proposed algorithms in section 6.2, which
considers real data.

We set € in equation 6.3 to be 1073, 107*, 105, and 107° in order to
investigate the convergence speed to a stationary point. We also impose a
time limit of 1000 seconds and a maximal number of 8000 iterations on each
method. As Isgnonneg takes long computing time, we run it only on the
smallest data. Due to the slow convergence of mult and pgrad, for e = 107°
we run only alspgrad.

Results of average time, number of iterations, and objective values are in
Table 1. For small problems, Table 1 shows that all four methods give similar
objective values as € — 0. The method Isgnonneg is rather slow, a result
supporting our argument in section 4.1 that a matrix-based approach is
better than a vector-based one. For larger problems, when ¢ = 107>, multand
pgrad often exceed the maximal number of iterations. Clearly, mult quickly

C. Lin

2770

“0008 FO W] UOHRIR} 33 Pasddxa ueyo pelfid pue jnw ‘;_0T = > uaym Jeyy ajoN 2d43 poq ur are sanfea aandslqo 10 swn
3soTews oy} Yim saypeorddy syurod renrur gg Sursn jo sanjea 9AROS(GO pue ‘SUOTILIS)T JO ISQUINU “(SPU0dIS Ur) dur} d3eroAe ay Juasard ap :$910N

0'6/€9 £'8€89 T'I¥IS 190€ 00¢ 4 0Tse 88T 090 pe.fd
6'T€E9 L9EP9 98569 L8616 FEC I¢ 8 4 00l 60°L 120 200 peibdsye
€TPE9 L'SSE9 TSESY 0008 /89T 0/1 GS6/1 8T8 IO ynw 00§ = u ‘0z = 4°00T = WD
GGPST F'8GST ¥'6841 989% TeeT /P 6001 LIS 8€0 pe.fd
G€PST §LPST T46ST 99981 CS€ 94 i i 1SS 6670 €10 €070 pesbdsie
9GPST L'GPST 1'T9SL 0008 8099 6¥F¢ €SI €LFL 910 ynw ST =uQr=405=1u"q
068 T68€ TT16€ 861 96 €C S48 9Lt Te9 Beuuoubs
168 668 9T10F 7801 1S¢ €g 890 ¥T0 S0°0 pe.fd
T68€ T68€ 8T6E 6CIF €0z 00I 9T 9 L60 SP0 0I'0 €00 peibdsye
€68¢ €68¢ P06€ 6£9L 1S9F 869 09T WL 010 ynw GCr=u‘G=4'Gg=uw-e
901 01 5-0T =01 =0T -0l -0 ¢O0I 40 ¢O0I 00 ¢OI >
sanjeA aandalqO SUOT}RId)] JO IaquInN QL]

‘saduera[o], Surddoig snotrep 1opun (981e7 03 [TeWS WoL) $39G eye(] SBIYIUAG Sutuuny] Jo synsay T S[qeL

Projected Gradient Methods for Nonnegative Matrix Factorization 2771

Table 2: Image Data: Average Objective Values and Projected-Gradient Norms
of Using 30 Initial Points Under Specified Time Limits.

Problem CBCL ORL Natural

Size (n r m) 361 49 2429 10,304 25 400 288 72 10,000

Time limit (in seconds) 25 50 25 50 25 50

Objective value mult 963.81 914.09 16.14 14.31 370,797.31 353,709.28
alspgrad 923.77 870.18 14.34 13.82 377,167.27 352,355.64

IVFP(W, H)llp mult 488.72 327.28 19.37 9.30 54,534.09 21,985.99
alspgrad 230.67 14213 4.82 4.33 19,357.03 4974.84

Note: Smaller values are in bold type.

decreases the objective value in the beginning but slows down in the end.
In contrast, alspgrad has the fastest final convergence. For the two larger
problems, it gives the smallest objective value under € = 107¢ but takes
less time than that by mult under € = 10~°. Due to the poor performance
of pgrad and Isgnonneg, subsequently we focus on comparing mult and
alspgrad.

6.2 Image Data. We consider three image problems used in Hoyer
(2004):

¢ The CBCL (MIT Center for Biological and Computional Learning)
face image database (http://cbcl.mit.edu/cbcl/software-datasets/
FaceData2.html).

® ORL (Olivetti Research Laboratory) face image database (http://
www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html).

¢ Natural image data set (Hoyer, 2002).

All settings are the same as those in Hoyer (2004). We compare objective
values and projected-gradient norms of mult and alspgrad after running
25 and 50 seconds. Table 2 presents average results of using 30 random
initial points. For all three problems, alspgrad gives smaller objective values.
While mult may quickly lower the objective value in the beginning, alspgrad
catches up very soon and has faster final convergence. Results here are
consistent with the findings in section 6.1. Regarding the projected-gradient
norms, those by alspgrad are much smaller. Hence, solutions by alspgrad
are closer to stationary points.

To further illustrate the slow final convergence of mult, Figure 1 checks
the relation between the running time and the objective value. The CBCL
set with the first of the 30 initial (W', H') is used. The figure clearly demon-
strates that mult very slowly decreases the objective value at final iterations.

The number of subiterations for solving equations 2.8 and 2.9 in alspgrad
is an important issue. First, it is related to the time complexity analysis.
Second, section 4.1 conjectures that the number should be small as WTw

2772 C.Lin

1300

1200

1100

1000

Objective value

900

800
10 10 10 10
Time in seconds (logged scale)

Figure 1: Time (seconds in log scale) versus objective values for mult (dashed
line) and alspgrad (solid line).

Table 3: Number of Subiterations and Condition Numbers in Solving Equations
2.8 and 2.9 of alspgrad.

CBCL ORL Natural
Problem
Time limit (in seconds) 25 50 25 50 25 50
W: # subiterations 34.51 47.81 9.93 11.27 21.94 27.54
cond(HHT) 224.88 231.33 76.44 71.75 93.88 103.64
H: # subiterations 11.93 18.15 6.84 7.70 3.13 4.39
cond(WT W) 150.89 124.27 478.35 129.00 38.49 17.19

Notes: For subiterations, we calculate (total subiterations)/(total iterations) under each
initial point and report the average of 30 values. For condition numbers, we find the
median at all iterations, and report the average. Note that HHT (WT W) corresponds to
the Hessian of minimizing W (H).

and HHT are generally well conditioned. Table 3 presents the number of
subiterations and the condition numbers of W' W and HH'. Compared
to gradient-based methods in other scenarios, the number of subiterations
is relatively small. Another projected gradient method pgrad discussed in
Table 1 easily takes hundreds or thousands of iterations. For condition
numbers, both the CBCL and natural sets haver < n < m, so HHT tends to
be better conditioned than W W. ORL has the opposite as r < m < n. All
condition numbers are small, and this result confirms our earlier conjecture.
For ORL, cond(WT W) > cond(HHT), but the number of subiterations on
solving W is more. One possible reason is the different stopping tolerances
for solving equations 2.8 and 2.9.

In the implementation of alspgrad, there is a parameter 8, which is the
rate of reducing the step size to satisfy the sufficient decrease condition,
equation 3.2. It must be between 0 and 1, and for the above experiments,

Projected Gradient Methods for Nonnegative Matrix Factorization 2773

Table 4: Text Data: Average Objective Values and Projected-Gradient Norms of
Using 30 Initial Points Under Specified Time Limits.

Size (n v m) 5412 3 1588 5737 6 1401
Time limit (in seconds) 25 50 25 50
Objective value mult 710.160 710.135 595.245 594.869
alspgrad 710.128 710.128 594.631 594.520
IV FP (W, H)| g mult 4.646 1.963 13.633 11.268
alspgrad 0.016 0.000 2.250 0.328

Notes: Smaller values are in bold type. Due to the unbalanced class distribution, inter-
estingly the random selection of six classes results in fewer documents (i.e., 7) than that
of selecting three classes.

we use 8 = 0.1. One may wonder about the effect of using other g. Clearly,
a smaller 8 more aggressively reduces the step size, but it may also cause a
step size that in the end is too small. We consider the CBCL set with the first
of the 30 initial (W', H!) (i.e., the setting to generate Figure 1, and check
the effect of using g = 0.5 and 0.1. In both cases, alspgrad works well, but
the one using 0.1 slightly more quickly reduces the function value. There-
fore, B = 0.5 causes too many checks for the sufficient decrease condition,
equation 3.2. The cost per iteration is thus higher.

6.3 Text Data. NMF is useful for document clustering, so we next con-
sider a text set RCV1 (Lewis, Yang, Rose, & Li, 2004). This set is an archive
of manually categorized newswire stories from Reuters Ltd. The collection
has been fully preprocessed, including removing stop words, stemming,
and transforming into vector space models. Each vector, cosine normal-
ized, contains features of logged TF-IDF (term frequency, inverse document
frequency). Training and testing splits have been defined. We remove doc-
uments in the training set that are associated with more than one class and
obtain a set of 15,933 instances in 101 classes. We further remove classes
with fewer than five documents. Using ¥ = 3 and 6, we then randomly se-
lect 7 classes of documents to construct the n x m matrix V, where 7 is the
number of the vocabulary set and m is the number of documents. Some
words never appear in the selected documents and cause zero rows in V.
We remove them before experiments. The parameter r is the number of
clusters that we intend to assign documents to. Results of running mult
and alspgrad by 25 and 50 seconds are in Table 4. Again, alspgrad gives
smaller objective values. In addition, projected-gradient norms of alspgrad
are smaller.

In section 2.1, we mentioned that mult is well defined if theorem 1 holds.
Now V is a sparse matrix with many zero elements since words appearing in
a document are only a small subset of the whole vocabulary set. Thus, some
columns of V are close to zero vectors, and for a few situations, numerical

2774 C.Lin

difficulties occur. In contrast, we do not face such problems for projected
gradient methods.

7 Discussion and Conclusions

We discuss some future issues and draw conclusions.

7.1 Future Issues. As resulting W and H usually have many zero com-
ponents, NMF is said to produce a sparse representation of the data. To
achieve better sparseness, some studies, such as Hoyer (2002) and Piper
et al. (2004) add penalty terms to the NMF objective function:

fZZWl] (WH);j)* + o[WII} + BIIH|Z. (7.1)
i=1 j=1

where o and g are positive numbers. Besides the Frobenius norm, which is
quadratic, we can also use a linear penalty function,

@) Wi+B> Hy. (7.2)
ia b,j

Our proposed methods can be used for such formulations. As penalty pa-
rameters « and B only indirectly control the sparseness, Hoyer (2004) pro-
poses a scheme to directly specify the desired sparsity. It is interesting to
investigate how to incorporate projected gradient methods in such frame-
works.

7.2 Conclusions. This letter proposes two projected gradient methods
for NMF. The one solving least-squares subproblems in algorithm 2 leads
to faster convergence than the popular multiplicative update method. Its
success is due to our following findings:

¢ Subproblems in algorithm 2 for NMF generally have well-conditioned
Hessian matrices (i.e., second derivative) due to the property r <«
min(n, m). Hence, projected gradients converge quickly, although they
use only the first-order information.

® The cost of selecting step sizes in the projected gradient method for
subproblem 4.1 is significantly reduced by some reformulations that
again use the property r <« min(n, m).

Therefore, taking special NMF properties is crucial when applying an opti-
mization method to NMFE.

Projected Gradient Methods for Nonnegative Matrix Factorization 2775

Roughly speaking, optimization methods are between the following two
extreme situations:

Low cost per iteration; High cost per iteration;
slow convergence. fast convergence.

For example, Newton’s methods are expensive per iteration but have very
fast final convergence. Approaches with low cost per iteration usually de-
crease the objective value more quickly in the beginning, a nice property
enjoyed by the multiplicative update method for NMF. Based on our anal-
ysis, we feel that the multiplicative update is very close to the first extreme.
The proposed method of alternating least squares using projected gradients
tends to be more in between. With faster convergence and strong optimiza-
tion properties, it is an attractive approach for NMF.

Appendix A: Proof of Theorem 1

When k = 1, equation 2.6 holds by the assumption of this theorem. Using
induction, if equation 2.6 is correct atk, then at (k + 1), clearly denominators
of equations 2.3 and 2.4 are strictly positive. Moreover, as V has neither
zero column nor row, both numerators are strictly positive as well. Thus,
equation 2.6 holds at (k + 1), and the proof is complete.

Appendix B: Matlab Code

B.1 Main Code for alspgrad (Alternating Nonnegative Least Squares
Using Projected Gradients)

function [W,H] = nmf(V,Winit,Hinit,tol,timelimit,maxiter)

% NMF by alternative non-negative least squares using projected

gradients

=

Author: Chih-Jen Lin, National Taiwan University
% W,H: output solution

% Winit,Hinit: initial solution

% tol: tolerance for a relative stopping condition
% timelimit, maxiter: limit of time and iteratioms

W = Winit; H = Hinit; initt = cputime;

gradW = Wx(H+#H’) - VxH’; gradH = (W’ *W)*H - W’ *V;

2776 C.Lin

initgrad = norm([gradW; gradH’],’fro’);
fprintf(’Init gradient norm %f\n’, initgrad);
tolW = max(0.001,tol)*initgrad; tolH = tolW;

for iter=1:maxiter,
% stopping condition
projnorm = norm([gradW(gradW<0 | W>0); gradH(gradH<O0 | H>0)1);
if projnorm < tolxinitgrad | cputime-initt > timelimit,
break;

end

[W,gradW,iterW] = nlssubprob(V’,H’,W’,tolW,1000);

W =W; gradW = gradW’;
if iterW==1,

tolW = 0.1 * tolW;
end

[H,gradH,iterH] = nlssubprob(V,W,H,tolH,1000);
if iterH==1,
tolH = 0.1 * tolH;

end

if rem(iter,10)==0, fprintf(’.’); end
end
fprintf(’\nIter = d Final proj-grad norm %f\n’, iter, projnorm);

B.2 Solving Subproblem 4.1 by the Projected Gradient Algorithm 4.
function [H,grad,iter] = nlssubprob(V,W,Hinit,tol,maxiter)

%
%
% V, W: constant matrices
yA
yA
yA

H, grad: output solution and gradient

iter: #iterations used

Hinit: initial solution

tol: stopping tolerance

maxiter: limit of iterations

H = Hinit; WtV = W *V; WtW = W’ *W;

alpha = 1; beta = 0.1;

Projected Gradient Methods for Nonnegative Matrix Factorization 2777

for iter=1:maxiter,
grad = WtW+H - WtV;
projgrad = norm(grad(grad < 0 | H >0));
if projgrad < tol,
break

end

% search step size
for inner_iter=1:20,
Hn = max(H - alpha*grad, 0); d = Hn-H;
gradd=sum(sum(grad.*d)); dQd = sum(sum((WtW*d).*d));
suff_decr = 0.99%gradd + 0.5%dQd < O;
if inner_iter==1,
decr_alpha = “suff_decr; Hp = H;
end
if decr_alpha,
if suff_decr,
H = Hn; break;
else
alpha = alpha * beta;
end
else
if “suff_decr | Hp == Hn,
H = Hp; break;
else
alpha = alpha/beta; Hp = Hn;
end
end
end

end
if iter==maxiter,

fprintf(’Max iter in nlssubprob\n’);

end

Acknowledgments

I thank Marco Sciandrone for pointing out the convergence of two-block
coordinate descent methods in Grippo & Sciandrone (2000) and helpful
comments.

2778 C.Lin

References

Bertsekas, D. P. (1976). On the Goldstein-Levitin-Polyak gradient projection method.
IEEE Transations on Automatic Control, 21, 174-184.

Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Belmont, MA: Athena Sci-
entific.

Brunet, J.-P. (2004). An NMF Program. Available online at http:/ /www.broad.mit.
edu/mpr/publications/projects/NMF/nmf.m

Brunet, J.-P., Tamayo, P., Golub, T. R., & Mesirov, J. P. (2004). Metagenes and molecular
pattern discovery using matrix factorization. Proceedings of the National Academy
of Science, 101(12), 4164-4169.

Calamai, P. H., & Mor¢, J. J. (1987). Projected gradient methods for linearly con-
strained problems. Mathematical Programming, 39, 93-116.

Chu, M., Diele, F, Plemmons, R., & Ragni, S. (2005). Optimality, computation and
interpretation of nonnegative matrix factorizations. Preprint. Available online at
http:/ /www4.ncsu.edu/~mtchu/Research/Papers/nnmf.ps

Donoho, D., & Stodden, V. (2004). When does non-negative matrix factorization
give a correct decomposition into parts? In S. Thriin, L. Saul, & B. Scholkopf
(Eds.), Advances in neural information processing systems, 16. Cambridge, MA: MIT
Press.

Gonzales, E. F,, & Zhang, Y. (2005). Accelerating the Lee-Seung algorithm for non-negative
matrix factorization (Tech. Rep.). Houston, TX: Department of Computational and
Applied Mathematics, Rice University.

Grippo, L., & Sciandrone, M. (2000). On the convergence of the block nonlinear
Gauss-Seidel method under convex constraints. Operations Research Letters, 26,
127-136.

Hoyer, P. O. (2002). Non-negative sparse coding. In Proceedings of IEEE Workshop on
Neural Networks for Signal Processing (pp. 557-565). Piscataway, NJ: IEEE.

Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints.
Journal of Machine Learning Research, 5, 1457-1469.

Lawson, C. L., & Hanson, R. J. (1974). Solving least squares problems. Upper Saddle
River, NJ: Prentice Hall.

Lee, D. D., & Seung, S. (1999). Learning the parts of objects by nonnegative matrix
factorization. Nature, 401, 788-791.

Lee, D. D., & Seung, S. (2001). Algorithms for non-negative matrix factorization. In
T. K. Leen, T. G. Dietterich, and V. Tresp (Eds.), Advances in neural information
processing systems, 13 (pp. 556-562). Cambridge, MA: MIT Press.

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collec-
tion for text categorization research. Journal of Machine Learning Research, 5, 361—
397.

Lin, C.-J., & Moré, J. J. (1999). Newton’s method for large-scale bound constrained
problems. SIAM Journal on Optimization, 9, 1100-1127.

McCormick, G. P, & Tapia, R. A. (1972). The gradient projection method under mild
differentiability conditions. SIAM Journal on Control, 10, 93-98.

Paatero, P. (1999). The multilinear engine—A table-driven, least squares program for
solving multilinear problems, including the n-way parallel factor analysis model.
J. of Computational and Graphical Statistics, 8(4), 854-888.

Projected Gradient Methods for Nonnegative Matrix Factorization 2779

Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor
model with optimal utilization of error. Environmetrics, 5, 111-126.

Piper, J., Pauca, P., Plemmons, R., & Giffin, M. (2004). Object characterization from
spectral data using nonnegative factorization and information theory. In Proceed-
ings of AMOS Technical Conference. Mavi, HIL.

Powell, M. J. D. (1973). On search directions for minimization. Mathematical Program-
ming, 4, 193-201.

Shepherd, S. (2004). Non-negative matrix factorization. Available online at
http:/ /www.simonshepherd.supanet.com/nnmf.htm

Xu, W., Liu, X., & Gong, Y. (2003). Document clustering based on non-negative matrix
factorization. In Proceedings of the 26th Annual International ACM SIGIR Conference
(pp. 267-273). New York: ACM Press.

Received May 1, 2006; accepted September 27, 2006.

