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Simple recurrent networks (SRNs) in symbolic time-series prediction
(e.g., language processing models) are frequently trained with gradient
descent–based learning algorithms, notably with variants of backprop-
agation (BP). A major drawback for the cognitive plausibility of BP is
that it is a supervised scheme in which a teacher has to provide a fully
specified target answer. Yet agents in natural environments often receive
summary feedback about the degree of success or failure only, a view
adopted in reinforcement learning schemes.

In this work, we show that for SRNs in prediction tasks for which there
is a probability interpretation of the network’s output vector, Elman BP
can be reimplemented as a reinforcement learning scheme for which the
expected weight updates agree with the ones from traditional Elman BP.
Network simulations on formal languages corroborate this result and
show that the learning behaviors of Elman backpropagation and its rein-
forcement variant are very similar also in online learning tasks.

1 Introduction

Artificial neural networks arose as models of real neuronal networks. They
are used as biologically inspired models of all kinds of brain processes,
from the dynamics of networks of real neurons to the dynamics of cognitive
processes, for which the model neurons correspond to assemblies of real
neurons rather than to real neurons themselves (Ellis & Humphreys, 1999).

Generally network models are used in language modeling since they are
thought of as more plausible than symbol-based approaches toward lan-
guage and also because network models are often able to learn from scratch
parts of language that were thought to be innate (Elman, 1990; Christiansen
& Chater, 1999b). Thus, there is a natural interest in learning algorithms
that are cognitively plausible. If they are also biologically plausible, this is
even better, since then the learning algorithm fills the gap between what
we know about cognitive processes and what we know about the under-
lying neural hardware of the brain (Jackendoff, 2002). van der Velde and
de Kamps (2006), for example, proposed a neurobiologically based model
of language processing, but hard-wired without learning. Thus, while the
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types of processing an artificial neural network can do are fairly well un-
derstood, it is more uncertain how networks can be trained on a particular
task in a biologically and cognitively plausible way. The challenge is to find
learning algorithms for artificial neural networks that are both efficient and
plausible.

In cognitive science, the commonly used training algorithms are variants
of gradient descent algorithms: for an input (or sequence of inputs), they
produce an output that is compared to a target output. Some measure of
error between actual output and expected output is then calculated. The
gradient descent algorithm changes the weights in the network such that
the error is minimized, typically following the negative gradient of the
error as a function of all network parameters. This is a nontrivial task
since at every synapse, we need information as to how much its weight
contributes to the error (credit assignment problem). This is especially true
when weight updates are to be computed from quantities that are locally
available at the synapse the weight belongs to, that is, in a biologically
plausible manner. Backpropagation and its variants bypass this problem
by using each synapse bidirectionally: to forward-propagate activity and
backpropagate each synapse’s contribution to the total error.

Backpropagation (BP) and other standard gradient descent algorithms
are thus implausible for at least two reasons: first, biologically, because
synapses are used bidirectional; second, cognitively, because a full target
with the correct output pattern has to be supplied to the network. In this
work, we deal with the second implausibility: the need for a fully specified
target answer.

In reinforcement learning (RL), the teacher instead of the fully specified
target answer supplies only feedback about success or failure of an answer.
This is cognitively more plausible than supervised learning since a fully
specified correct answer might not always be available to the learner or
even the teacher (Sutton & Barto, 2002; Wörgötter & Porr, 2005).

Standard reinforcement algorithms are less powerful than the gradient
descent–based ones. This seems to be due to the lack of good solutions
for the credit assignment problem for hidden-layer neurons (Roelfsema &
van Ooyen, 2005). Thus, there is a trade-off: BP is quite efficient, but not so
plausible cognitively, and vice versa for RL. Therefore, the objective of this
letter is to find an algorithm that is both as efficient as BP and as plausible
as RL. We want to concentrate on simple recurrent networks (SRNs) that
are trained on a prediction task since these have been used extensively as
models in the cognitive sciences, in particular to model language processing
(Christiansen & Chater, 1999a).

The algorithm we propose shares properties with RL, such as a reward
signal instead of a fully specified target. However, regarding its speed of
learning and the types of solutions it finds, we will provide evidence that
it essentially behaves like Elman BP. Our algorithm will not provide an im-
provement on the technical side. Rather, it is a reimplementation of Elman
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BP in terms of RL. What is gained is an improvement in cognitive plausi-
bility. Since the suggested algorithm will turn out to behave virtually like
Elman BP, this letter can also be seen as a post hoc justification of the use of
Elman BP in so many articles in cognitive science.

We use ideas from the attention-gated reinforcement learning (AGREL)
learning scheme (Roelfsema & van Ooyen, 2005). The AGREL learning
scheme effects an amalgamation of BP and RL for feedforward (FF) net-
works in classification tasks. However we need to recast these ideas in order
to apply them to SRNs in prediction tasks. We call the resulting reimplemen-
tation of Elman BP as a reinforcement scheme recurrent BP-as-reinforcement
learning (rBPRL).

We start with an outline of Elman BP since our suggested modifications
build on an understanding of BP. Then we introduce modifications in order
to reimplement Elman BP as a reinforcement scheme and show that in the
sense of expectations, Elman BP and its reinforcement version, rBPRL, effect
the same weight changes (for a different formulation, see Grüning, 2005).
After these theoretical sections, we present simulations that corroborate the
claimed agreement in practice.

2 SRNs and Elman BP

An SRN in its simplest form is a three-layer feedforward (FF) network;
in addition, the hidden layer is self-recurrent (Elman, 1990). It is a spe-
cial case of a general recurrent neural network (RNN) and could thus be
trained with full backpropagation through time (BPTT) and its variants
(Williams & Peng, 1990). However, instead of regarding the hidden layer
as self-recurrent, one introduces a so-called context layer into which the
activities of the hidden neurons are stored in each time step and which acts
as an additional input to the hidden layer in the next time step. Regarding
the forward-propagation of activity through the SRN, these two views are
equivalent.

In order to keep notation simple, we will deal only with networks that are
strictly layered: there are connections only between subsequent layers and
assume that there is only one hidden layer. Generalizations where neurons
receive input from other downstream layers and with more hidden layers
are, of course, possible. Furthermore, we refrain from explicitly introducing
a bias term, since its effect can easily be achieved by a unit with constant
activation 1.

2.1 Forward Pass. Let y(0)(t), y(1)(t), and y(2)(t) denote the activation
vectors of the input, hidden, and output layer, respectively, at (discrete) time
step t and a (r )(t), r = 1, 2 the vectors of the corresponding net activations,
and finally let f : a �→ 1

1+e−a be the standard sigmoid and wr,r ′
denote the

weight matrices between layer r and r ′. Then the forward pass of activity
through a three-layer SRN viewed as a special case of a general RNN can
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be expressed as follows:
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i (t) =

∑
j

w
1,0
i j y(0)

j (t) +
∑

j

w
1,1
i j y(1)

j (t − 1), (2.1)

y(1)
i (t) = f

(
a (1)

i (t)
)
, (2.2)

a (2)
i (t) =

∑
j

w
2,1
i j y(1)

j (t), y(2)
i (t) = f

(
a (2)

i (t)
)
. (2.3)

When viewed as an FF network with extra input from the context layer,

we set ỹ(0)(t) :=
(

y(0)(t)

y(1)(t−1)

)
and w̃1,0 := (w1,0 w1,1). This replaces equation 2.1

with

a (1)
i (t) =

∑
j

w̃
1,0
i j ỹ(0)

j (t), (2.4)

making the SRN formally equivalent to an FF network with the addition
of recycling the hidden-layer activations as part of the next input. For no-
tational simplicity, we occasionally drop the explicit dependence of the
variables on t when no confusion can arise.

For each input y(0), the layers are updated consecutively. Finally the out-
put is read off from y(2) and the error E against a target vector u computed:

E(t) = 1
2

∑
i

(
ui (t) − y(2)

i (t)
)2

. (2.5)

2.2 Elman Backpropagation. The SRN is viewed as an FF network
with an additional set of inputs from the context layer. Hence, standard
BP in conjunction with copying the hidden layer into the context layer
(with immutable weights between the hidden and context layer equal to 1
and linear activation function) can be used for training (Elman, 1990). This
scheme is called Elman BP. In fact, any algorithm suitable for FF networks
will automatically be available for SRNs. We restate the main formulas of
Elman BP in the following since the reinforcement implementation will be
based on them.

For the update of the weights, we need to know how much each single
weight w

r,r ′
i j contributes to the overall error E . For given input y(0) and

target u, E can be viewed as a function of all weights w. In order to keep
track of each weight’s contribution ∂ E

∂w
r,r ′
i j

to the error we first calculate the
contribution �

(r )
i := ∂ E

∂a (r )
i

of each neuron’s net input to the error. The �s
can be recursively computed layer-wise starting from the output layer, and



3112 A. Grüning

from them, the weight updates δw with learning rate ε as

�
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i (t) = f ′(a (2)

i (t)
)(

y(2)
i − ui (t)

)
, (2.6)
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since �
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i y(1)
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∂a (2)

i

∂a (2)
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∂w
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i j

= ∂ E
∂w

2,1
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and analogously for δw̃. So weight changes

follow the antigradient of error. Error contributions are not propagated
further back; thus, Elman BP is a variant of BPTT(n), with n = 1 (Williams
& Zipser, 1989).

The weight change δw might be applied to the weights in each time
step (w(t + 1) = w(t) + δw(t), online learning) or collected and summed
and applied to the weights only after a learning epoch has finished (batch
learning). Since weight changes will take place at the end of an epoch or,
ideally, on a timescale slower than the network dynamics, we will assume
the weights to be fixed for the rest of the theory sections.

3 Prediction Tasks for SRNs

The tasks we are interested in are prediction tasks—predicting the next
symbol in a temporal sequence of symbols that follow a certain rule or
stochastic dependency. These tasks often arise in the context of modeling
language or action sequences in cognitive science, or generally in predicting
a stochastic process used as an information source. We formalize these
notions following Tiňo and Dorffner (2001).

3.1 Information Source. Let Adenote a finite alphabet with n elements,
which, for the sake of notational simplicity, we assume to be A = 1, 2, . . . , n.
A stationary stochastic process (Cover & Thomas, 1991) produces a se-
quence s1s2, . . . ,∀i : si ∈ A one symbol a time, so that up to time t, it has
produced the finite sequence σt := s1s2, . . . , st , and is given by a family
of time-invariant probability measures Pn on n-blocks (length n sequences
over A) with the consistency condition that

∑
s∈A Pn+1(ωs) = Pn(ω) for all

n-blocks ω. Conditional probabilities are as usual defined as

P(s|ω) = Pn+1(ωs)
Pn(ω)

(3.1)

and express the probability that an n-block ω will be followed by symbol s.
An example of a stochastic information source is a finite automaton (FA)

that selects one of the state transitions of its current state randomly and emits
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the corresponding edge symbol (Hopcroft & Ullmann, 1979). However, the
source can also be a more powerful automaton or (quantized) dynamical
system.

The SRN’s task is to predict the next symbol st+1 of sequence σt , more
precisely to infer (an approximation of) the conditional probabilities P(s|σt)
during training.

3.2 Input-Driven Systems of Iterated Functions. From the forward
pass of activity, it is obvious that given y(0)(t), equations 2.1 and 2.2 can be
rewritten as

y(1)(t − 1) �→ y(1)(t) = F (y(0)(t), y(1)(t − 1)) := f̂ (w1,0 y0(t) + w1,1 y(1)(t − 1)),
(3.2)

where f̂ denotes component-wise application of the standard sigmoid f .
Especially in the case where there is only a finite set of different input
vectors y(0)

s that encode the elements s of the finite alphabet A, it is more
convenient to regard the dependence on the input symbol s as a parameter
rather than a variable of F :

Fs(·) := F
(
y(0)

s , ·). (3.3)

The forward pass of activity through the network is thus the application of a
system of iterated functions that map the space of hidden-layer activations
into itself driven by the source from which the symbols s are drawn (Blair
& Pollack, 1997; Moore, 1998; Tiňo, Čerňanský, & Beňušková, 2004).

We finally introduce the notion Fσ to mean the resulting mapping when
a sequence σ = s1s2, . . . , sn of input symbols is applied consecutively: Fσ =
Fsn ◦ Fsn−1◦, . . . , ◦Fs1 .

3.3 Standard Learning Schemes. After these formal prerequisites, let
us look first at how the established learning schemes derive their error
signals in order to reproduce the conditional next symbol probabilities in
the network’s output layer.

For each symbol s, there is an input neuron whose activation y(0)
s is

set to one when this symbol is input, and to zero otherwise, and there
is a corresponding output neuron whose activation y(2)

s (possibly after
normalization) is a measure for the predicted probability of that symbol
as a continuation of the input sequence. (Remember the symbols s are
just natural numbers.) Finally let y0 := y(1)(0) denote the (fixed) vector that
the hidden-layer activities of the networks are initialized to before any
symbols are entered.

3.3.1 Distribution Learning. A straightforward idea is to take as a
target vector u(t) directly the probability distribution P(s|σt), that is,
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ui (t) := P(i |σt) when the network has seen the initial sequence σt and thus
is in state y(1)(t) = Fσt (y0) with output activations y(2)(t) given by equation
2.3. In this case, equation 2.6 reads

�
(2)
i (t) = f ′(a (2)

i (t)
)(

y(2)
i (t) − P(i |σt)

)
. (3.4)

We refer to this scheme as distribution learning (DL). This type of learning
might not be considered cognitively plausible, since it requires the teacher
to know the family of probability distributions that define the information
source.

3.3.2 Elman Learning. However, the conditional probabilities P(s|ω)
might not be explicitly known to the teacher. So in this approach, after
input sequence σt , the teacher waits until the source has produced st+1, and
before using it as the next input symbol, it is presented as the new target
vector; that is, u(t) is a unit vector with the entry corresponding to st+1 set
to one and all others zero. Accordingly at time t, the expected target, aver-
aging over all possible targets after sequence σt , is EP(·|σt )(ui (t)) = P(i |σt),
and the expected value of the error signal according to equation 2.6 reads:

EP(·|σt )
(
�(2)

s (t)
) = f ′(a (2)

i (t)
)(

y(2)
i (t) − P(i |σt)

)
, (3.5)

so that the right-hand side agrees with equation 3.4, and the same is true for
the other �s recursively computed from this due to the linearity of equation
2.7 in the �s, and finally also for the δws due to the linearity of equation 2.8.

This scheme is widely used in simulations in the cognitive and neuro-
sciences. Its interesting feature is that the output activations will be driven
toward the probability distribution P(·|σt) despite not explicitly being the
target.

4 Elman BP as a Reinforcement Learning Scheme

Let us now recast Elman BP as an RL scheme in the following way. In
prediction learning, the activation y(2)

i (t) of output i corresponds to the
estimated probability of symbol i . Assume that the network is only al-
lowed to select a single symbol k as a response in each time step. It selects
this answer according to the distribution Q given by y(2)

i (t)/|y(2)(t)|, | · |
denoting the one-norm. With network weights wr,r ′

and the initial state
y0 fixed, this distribution depends only on the input sequence σt the net-
work has been driven with, so we write Q(i |σt) := y(2)

i (t)/|y(2)(t)|. The neu-
ron k thus selected according to Q by some competitive process (Usher &
McClelland, 2001) is called the winning neuron.

This answer k is compared to the target st+1, the actual next symbol
drawn from the source according to P(s|σt), and the network receives a
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reward r (t) = 1 only if k = st+1, and r (t) = 0 otherwise. The reward ob-
jectively to be expected after sequence σt and with winning neuron k is
EP(·|σt )(r (t)) = P(k|σt). The network compares the received reward r (t) to
the subjectively expected reward, namely, the activation y(2)

k (t) of the win-
ning neuron (Tremblay & Schultz, 1999); the relative difference,

δ(t) := y(2)
k (t) − r (t)

Q(k|σt)
, (4.1)

serves as the direct reward signal for the network. From δ, we compute the
error signals �(2) for the output layer. Since attention is concentrated on the
winning output k, only �

(2)
k (t) is different from zero, and we set

�
(2)
i (t) :=

{
0, i �= k
f ′(a (2)

i (t)
)
δ(t) i = k,

(4.2)

overwriting the original definitions of the �s as derivatives δE
δa (2)

i

. �(1) and
the weight updates δw are recursively computed from �(2) formally as in
equations 2.7 and 2.8. Since the reward r (t) depends on st+1 drawn according
to P , we need to take expected values over P , with k still as the winning
unit:

EP(·|σt )
(
�

(2)
i (t)

) =



0 i �= k

f ′(a (2)
i (t)

) y(2)
i (t) − P(i |σt)

Q(i |σt)
i = k,

(4.3)

since EP(·|σt )(r (t)) = P(k|σt) and all other quantities do not depend on st+1.
However, k is also selected randomly according to Q, so we need to take
the expected value over Q too. Since given the past input sequence σt , the
distributions P(·|σt) and Q(·|σt) are independent, E(Q,P)(·) = EQ(EP (·)), and
we get

EQ(·|σt)
(
EP(·|σt )

(
�

(2)
i (t)

)) = Q(i |σt) f ′(a (2)
i (t)

) y(2)
i (t) − P(i |σt)

Q(i |σt)

= f ′(a (2)
i (t)

)(
y(2)

i (t) − P(i |σt)
)
, (4.4)

and this agrees with equations 3.4 and 3.5. By linearity the expected values
of all other �s and of the δws (and δw̃s) in this scheme coincide as well with
their counterparts in standard Elman BP.

Compared to Elman BP, an error for a certain output is calculated only
when it is the winning unit; it is updated less frequently by a factor Q(i |σt).
But �

(2)
i is larger by 1/Q(i |σt) to compensate for this.
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Let us state briefly how the ingredients in this scheme fit into the standard
reinforcement terminology (Sutton & Barto, 2002). First, there is a primary
reward signal r from which a secondary one δ is derived as a comparison to
the expected reward for a particular network state and selected action k. An
action of our network is simply the selection of an output symbol k, and the
value of this action k is the activation of the corresponding output neuron
y(2)

k . Finally actions k are selected (fairly nongreedily) on the basis of the
distribution Q given by y(2)

|y(2)| . A policy is given by the inner dynamics of the
network that maps an input y(0) and network state y(1) onto a set of action
values and ultimately on the selected symbol. Furthermore, the dynamics
of the network is a model of the information source.

We can conclude that we have found an RL scheme in which the expected
weight updates are the same as in distribution or Elman learning.

5 From Expectations to Averages

In the preceding sections, we showed that expected values of the �s and
weight updates δw in Elman BP and rBPRL agree with their counterparts
in DL. For practical applications, we need to say how these expected values
can be approximated by averages from sampling one or more sequences
from the information source.

Keeping the weights fixed as we did in the preceding paragraphs sug-
gests a batch approach toward learning. However, we are ultimately in-
terested in online learning (and Elman BP has often been used in such
tasks) since they are also cognitively more plausible as no external reset
of information source or network is needed and learning proceeds in an
incremental way.

5.1 Batch Learning. For DL, there are no specific problems. An initial
SRN state y0 is fixed. The SRN is trained epoch-wise so that at the beginning
of each epoch, the network state is reset to y0 and time count to t = 1 and
a new sequence drawn from the information source. The length of the
epoch should be longer than the typical timescale of the source (if any
and if known). For each target, the weight changes δw of equation 2.8 are
collected and are applied at the end of the current epoch.

For Elman BP, since the target vectors are selected randomly according
to P(s|σt), we need to sample over a sufficient number of targets for the
same σt before we update the weights to ensure a good approximation
to the expectation of equation 3.5. Thus, within an epoch there will be
several “subepochs” at the beginning of which network and time are reset
and a new sequence drawn. Weight changes are collected during several
subepochs and applied only on completion of an epoch. Again, the length
of a subepoch should be longer than the typical timescale of the source,
and the number of subepochs within an epoch should be such that each σt
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appears a sufficient number of times so that the sampling of their respective
targets becomes reliable enough for averaging.

For rBPRL, the procedure will be just like for Elman BP. Since the error
signals � have an even bigger variance than in Elman BP, due to averaging
for both P and Q, we need to sample the �s even longer than before for
the targets to yield reliable average �s; thus, epochs will contain more
subepochs.

The difficult point is to decide on the length of subepochs and their
number when one knows nothing about the timescale of the source so that
the network can generalize from the finite sequences it sees in training to
longer sequences.

5.2 Online Learning. Insisting on cognitive plausibility, resetting the
network to a fixed reset state y0 seems unnatural, as does the epoch struc-
ture. Learning ought to be incremental just as new data are coming in. Let
us therefore discuss the problems we incur in the transition from batch to
online learning.

Online learning means that weight updates δw are applied after each
target presentation, and this means that the network dynamics change con-
stantly, so that in equation 3.5, a (2)(t) and y(2)(t), and in equations 4.3 and 4.4,
Q(k|σt) will be different for each presentation of the same sequence σt in a
later subepoch and depend on the complete learning history in an intricate
way, known as the moving targets problem. However, simulational results
have shown for Elman BP and similar gradient descent algorithms that
networks will approximate the averaged target for a sequence σt well when
the learning rate is small (Williams & Peng, 1990), that is, the timescales
of weight changes and the timescale of the source (or epoch) are decou-
pled, so that y(2) and Q will differ only slightly for presentation of the same
sequence σt in different epochs. A rigorous convergence result for BPTT
under certain conditions is derived in Kuan, Hornik, and White (1994). A
proof for rBPRL or Elman BP would presumably have to follow the same
line of argumentation.

Weights are changed incrementally in every time step now, but we have
retained the (sub-)epoch structure insofar as we still reset the networks to
y0 and time count to t = 1 at the beginning of each epoch.

Many information sources can be predicted well when one bases one’s
predictions on only a (fixed) finite number of recent symbols in a sequence,
though, of course, cases exist where this is not the case at all. When Ln de-
notes the cut-off operator, that is, Ln(σt) = st−n+1st−n+2, . . . , sn for t > n and
trivial operation for t ≤ n, this means that the probabilities P(s|σt) can be
well approximated by the probabilities P(s|Ln(σt)). For Markov processes
of order n, this approximation is exact. For fully fledged finite state pro-
cesses, this approximation is exact except for a fraction of input histories
whose probability measure decreases exponentially with n due to the guar-
anteed existence of a synchronizing word (Grüning, 2004; Lind & Marcus,
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1995). Second, networks cannot be expected to reproduce the source ex-
actly. Instead they have to build a model of the source using structure in
the sequences (Cleeremans, Servan-Schreiber, & McClelland, 1989; Bodén
& Wiles, 2000; Rodriguez, 2001; Grüning, 2006; Crutchfield, 1993; Tiňo &
Dorffner, 2001). While no definite exact results exist about which models for
which type of information source SRNs can evolve under gradient descent
training, it is known that SRNs, when initialized with small weights, have
an architectural bias toward definite memory machines (Hammer & Tiňo,
2003), that is, a model class with decaying memory. They tend to base their
next symbol predictions on only a finite past since the last few input sym-
bols have the greatest impact on the state-space activations. In addition,
for the standard learning schemes, theoretical and heuristic results point
into the same direction for bigger weights in the sense that under gradient
descent learning, it is very hard to teach long-term dependencies to the
networks (Bengio, Simard, & Frasconi, 1994).

Hence, also for rBPRL, we are led to assume that deviations caused when
we do not reset the network at the beginning of each (sub)epoch to a definite
value y0 are negligible after a few input symbols.

If the information source is stationary and ergodic so that all finite subse-
quences will appear with their typical frequency in almost all long enough
sequences, we can thus abolish the (sub-)epoch structure completely and
train the network on a single long sequence from the source. This has the
advantage too that we do not need to make assumptions about the internal
timescale of the source to set the (sub-)epoch lengths.

While there exists abundant simulational evidence that the network’s
output will approach the conditional probabilities of next symbols for DL
and Elman BP also under online learning (Elman, 1990; Bodén & Wiles,
2000; Rodriguez, 2001; Grüning, 2006), this is of course no formal proof
that rBPRL under these circumstances will converge to an error minimum
too.

6 Simulations

In this section, we present some simulations corroborating the theoretical
considerations. Our goal is to demonstrate that the modifications intro-
duced to Elman BP in order to arrive at rBPRL have minor effect on the
learning behavior, hence establishing also in practice that rBPRL is equiva-
lent to Elman BP in the sense that it shows a similar learning speed and that
the internal dynamics found as a solution to a certain task are similar too.

We have already shown that the expected error signals, and thus the
weight updates, in rBPRL agree with the ones from Elman BP (and from
DL). Thus, the speed of learning ought to be the same when all other
parameters are kept constant and similar dynamics emerge.

While the learning behavior agrees in theory, in practice there are at
least two factors that potentially introduce deviations between rBPRL and
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Figure 1: FAs for the languages used in simulations. Double circles indicate
the start states. The states carry arbitrary labels. Edge labels correspond to the
symbol emitted when the edge is traversed.

Elman BP. First, we change weights online and not batch-like. This might
have different influences for rBPRL and Elman BP on the strict validity
of equations 3.5 and 4.4, respectively. For Elman BP, it has been found to
work well. Second, due to averaging over both P and Q, the variance of
the error signals that � in rBPRL is greater than that in Elman BP; thus,
rBPRL is even more likely than Elman BP to leave narrow local minima.
This is an advantage when the local minimum is shallow; however, rBPRL
is also more likely to lose good local minima, which impedes learning. We
will demonstrate here that one can balance these effects with a low enough
learning rate ε.

We do so using two languages that have been used frequently as a bench-
mark in cognitively motivated symbolic time-series prediction. The first lan-
guage is the so-called Reber language (Cleeremans et al., 1989; Reber, 1967)
that can be generated by the FA in Figure 1a. Its main characteristic is that
the same symbol can effect transitions between otherwise unrelated states.
The second language is the badiiguuu language (Elman, 1990; Jacobsson,
2006), which needs to keep track of the number of symbols i and u in order
to predict the probabilities of the next symbols (see Figure 1b).
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For both languages, a stream of sentences is generated as follows. We
start in the accept state and move to a new state along one of the outgoing
transitions whose symbol is emitted. When there is more than one transition,
each branch is chosen with equal probability. Then we move on to the next
state and so forth. We complete a sentence when we reach the accept state
again.1

6.1 Learning Speed. Both the Reber language and badiiguuu language
have six different symbols. Thus, for each, we create 50 SRNs with six input
and output neurons and three neurons in the hidden layer. The weights in
the 50 networks are initialized independently and identically distributed
randomly from the interval [−0.1, 0.1). We then make three identical copies
of each of the 50 networks that are online trained with one of the following
three training schemes, respectively: DL, standard Elman BP, and rBPRL.

The training consists of up to 500 epochs, where each epoch comprises a
training phase of 100 sentences followed by a test phase of 50 sentences from
the same online source; that is, all three copies of a network receive the same
input in the same order starting from the same initial weights. Neither the
network nor the information sources are reset at epoch boundaries; they are
left running continuously, so epochs merely serve to organize the training.
In the test phase, for each network the squared Euclidean distance between
the actual output and the target distribution is calculated as a measure for
error while weights are kept constant. Errors are then averaged over all
patterns in a test epoch to yield the network’s mean squared error (MSE)
for that epoch.

6.1.1 The Reber Language. Graphs for learning rates ε = 1.0, 0.1 and 0.01
are displayed in Figure 2, showing the MSE averaged over the 50 indepen-
dently randomly initialized network for each test epoch as a function of the
number of training epochs.

For learning rate ε = 1.0, we see that there is a wider distance between
rBPRL and Elman BP, as well as a smaller one between Elman BP and DL,
so that the error for DL finally is lowest while the error of rBPRL stays
above Elman BP. This is true even for the initial epochs where larger error
signals could facilitate finding a large but perhaps shallow local minimum.
We conclude that the higher variance of error signals does play a role
when learning rates ε are high, and thus leads to a dissociation of the error
curves.

1 Strictly speaking, these sources are not stationary and ergodic, since they start in
a fixed state instead of drawing the start state each time from their stationary state
distribution (Kitchens, 1998). However, each state distribution converges exponentially
fast to the stationary distribution (in an irreducible, aperiodic FA) so that the differences
are negligible after a few initial symbols.



Elman Backpropagation as Reinforcement 3121

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0  20  40  60  80  100

av
. M

S
E

Epochs

Elman BP
Reinforcement

Distribution

(a) ε = 1.0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0  20  40  60  80  100

av
. M

S
E

Epochs

Elman BP
Reinforcement

Distribution

(b) ε = 0.1

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0  20  40  60  80  100

av
. M

S
E

Epochs

Elman BP
Reinforcement

Distribution

(c) ε = 0.1

Figure 2: Performance in terms of epoch-wise MSE of the Reber language aver-
aged over the 50 networks for each language. Error bars indicate the standard
error of the average MSE.
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For ε = 0.1 and ε = 0.01, all three learning curves agree well. Thus, mov-
ing target problems and the higher variance of the error signal do not cause
performance to deteriorate.

6.1.2 Badiiguuu. Averaged performance curves for badiiguuu are shown
in Figure 3. While there is not much difference between the performance of
Elman BP and rBPRL regardless of learning rate, there remains for all tested
learning rates a certain gap between these two on the one side and DL on
the other. However, we are mainly interested in the equivalence between
Elman BP and rBPRL and can thus again state that their performance levels
as functions of the number of training epochs are similar. We note that the
error rate is generally higher than for the Reber languages. An inspection
of the trained networks reveals that many of them fail to count the three u
correctly.

6.2 Inner Dynamics. A main objective with this work is to give more
plausibility to neural network simulations in cognitive modeling that make
use of Elman BP for learning. The idea is to justify these simulations post hoc
by demonstrating that Elman BP and rBPRL show similar learning behavior
and thus that using Elman BP introduces only negligible deviations from
rBPRL. Therefore, our main interest is in a comparison of Elman BP and
rBPRL, and we do not pursue DL anymore in the following.

We have already presented some evidence that rBPRL and Elman BP
learn equally fast (at least for low learning rates); however, “similar” means
more than “equally fast.” Therefore, we want to demonstrate that starting
from identically initialized networks, the two learning algorithms also lead
to the same internal dynamics or, put differently, that the solution space is
identical for both algorithms for a given prediction task.

Thus, we also recorded the activations of the hidden layer during the
test phases. For each test phase, we calculate the average squared Euclidean
distance between the hidden-layer activations of the copies of the network
trained with Elman BP and with rBPRL, respectively.

We start for both learning algorithms from identically initialized weight
matrices, and hence from identical inner dynamics. When the learning rate
is sufficiently low, the dynamics of copies of the network trained with
different learning algorithms should also change slowly (bar any passing
critical points in the dynamics, which usually is a rare event compared to
continuous change of dynamics with parameters). When the dynamics stay
sufficiently close to each other, the differences of hidden-layer activations
between the two copies will also be small. When the dynamics evolve
differently, the distance between the hidden-layer states will increase until
the dynamics are not related any longer; that is, the activation distances
reach a level that corresponds to the expected squared distance of two
random vectors in the state space. For a three-dimensional state space [0, 1]3,
the expected squared distance of two random vectors drawn with uniform
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Figure 3: Performance in terms of average MSE of the badiiguuu language over
50 networks. Error bars indicate the standard error as before.
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Figure 4: Reber language. In order to make the curves comparable for differ-
ent learning rates and yield equal gross weight changes, the x-axes are ten-
fold stretched for ε = 0.1 and hundred-fold for ε = 1.0. Error bars indicate
the standard error of the average mean squared error and average distances.
(a) Comparison of performance curves. The networks for ε = 0.01 and ε = 0.1
perform equally after 10 times the number of epochs when trained with a 10
times smaller learning rate. (b) Differences of hidden-layer activations between
Elman BP and rBPRL. At comparable performance and gross weight change,
the differences are considerably smaller for smaller ε. (c) Euclidean distance
of the weight matrix w1,1 from the initial weight matrix as a function of epoch
number. (d) Euclidean distance of the weight matrices w1,1 between Elman BP
and rBPRL.

probability is 1
2 . For higher learning rates, one expects this to be the case

earlier than for lower learning rates, since in the latter case, the effect of the
moving-targets problem as well as the effects of different variances of the
weight updates, are lower.

When we compare the dynamics of networks across different learn-
ing rates we should also ensure that their performances are comparable.
Figure 4a shows that the performances of networks trained on the Reber
language with a learning rate ε = 0.01 are comparable to those of networks
trained with ε = 0.1 for 10 times as long a training, and a bit less so to
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ε = 1.0 (for a hundred times as long a training), so that the total gross
weight changes (number of epochs × learning rate) are of the same order
of magnitude. Figure 4b shows the epoch-wise squared hidden-layer dis-
tances between Elman BP and rBPRL for learning rates ε = 1.0, 0.1, 0.01,
averaged over the 50 networks. A comparison across the different learning
rates (aided by the epoch scaling) at comparable performance levels and
comparable gross weight changes reveals that the dynamics for Elman BP
and rBPRL become dissimilar much faster for ε = 1.0 than for ε = 0.1 or
0.01. In fact, the difference approaches its random value 1

2 already after five
epochs for ε = 1.0, while it still stays considerably smaller for ε = 0.01 than
for ε = 0.1.

A more direct way to compare the dynamics are the Euclidean distances
of the weight matrices. In the following, we concentrate on the hidden-to-
hidden matrix w1,1 as a main ingredient of the state dynamics; the other
weight matrices not presented here show a similar qualitative behavior.
Figure 4c shows the Euclidean distance of w1,1 to its value after initialization
as a function of epochs. With scaling the epoch axis for ε = 0.1 and ε = 1.0,
the average distances traveled from the initial matrix to the current one
are comparable across learning algorithms and learning rates, with rBPRL
for ε = 1.0 deviating quite a bit. These distances show as a side effect that
the matrices and thus dynamics have moved considerably away from the
initial dynamics.2 Finally Figure 4d compares epoch-wise the Euclidean
distances of weight matrices w1,1 between Elman BP and rBPRL across
the different learning rates. The graphs show that the matrices become
dissimilar faster for higher learning rates, comparable gross weight changes,
and comparable distances from the initial matrix. For ε = 1.0 the distances
between the algorithms are of the same order of magnitude as the distance to
the initial matrix, around 6 after five epochs, while for learning rates ε = 0.1,
the ratio of the distance to the initial matrix and the distance between the
algorithms is roughly 1.5 after 50 epochs and 4 for ε = 0.01, so that the
matrix distances show that for low learning rates, the dynamics for Elman
BP and rBPRL stay more similar for comparable distances from the initial
weight matrix.

Figures 5a to 5d are the equivalent for the badiiguuu language and provide
evidence for essentially the same behavior as for the Reber language. Also
here, matrix distances from the initial matrix and between the algorithm
variants show ratios about 1, 2, and 6 for ε = 1.0, 0.1, 0.01. However, ma-
trix distances are generally smaller, indicating that the dynamics have not
moved as far from the initial matrix. This might also explain the generally
lower performance of badiiguuu as compared to the Reber language.

2 A similar picture emerges when comparing the maximal eigenvalue of w1,1 across
learning rates and algorithm variants. It rises from close to 0.15 to levels of about 6 after
500, 50, 5 epochs for ε = 0.01, 0.1, 1.0, respectively, indicating that the contractive regime
of the initial matrix has probably been left.
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Figure 5: badiiguuu language. In order to make the curves comparable for differ-
ent learning rates and yield equal gross weight changes, the x-axes are tenfold
stretched for ε = 0.1 and hundred-fold for ε = 0.01. Error bars indicate the stan-
dard error. (a) Comparison of performance curves. The networks for ε = 0.01
and ε = 0.1 perform equally after 10 times the number of epochs when trained
with a 10 times smaller learning rate. (b) Differences of hidden-layer activations
between Elman BP and rBPRL. At comparable performance and gross weight
change, the differences are considerably smaller for ε = 0.01 than for 0.1 or 1.0.
(c) Euclidean distance of the weight matrix w1,1 from the initial weight matrix as
a function of epoch number. (d) Euclidean distance of the weight matrices w1,1

between Elman BP and rBPRL.

From both Figures 4 and 5, we can conclude that for too high a learning
rate ε, the distances between the hidden-layer activations increase faster
than for lower learning rates at comparable performance levels. Thus, the
dynamics of two networks stay similar although trained with two different
learning algorithms. This is an indication that, again for low learning rates
ε, one can keep the search space for solutions the same for rBPRL and
Elman BP. Even more so, given the same network initialization and identical
training data, the two algorithms will lead to identical (or nearly identical)
dynamical solutions for the learning task.
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7 Discussion

The crucial facts why we can reimplement Elman BP as a reinforcement
scheme are (1) a probability interpretation of the output vector, which al-
lows us to regard the network as directing its attention to a single output
that is stochastically selected and subsequently to relate the evaluative feed-
back to this single output with � �= 0 only for this output; and (2) the error
contribution of each single neuron in the hidden layer to the total error is
a linear superposition of the individual contributions of the neurons in the
output layer in Elman BP (see equations 2.7 and 2.8). This enables us to con-
centrate on the contribution from a single output in each time step and still
arrive at an expected weight update equal to the original Elman BP scheme.

Obviously the ideas laid out in this letter are applicable to all kinds of
SRNs, multilayered or not, and more general RNNs as long as their recur-
rence can be treated in the sense of introducing context units with immutable
copy weights, and they ought also to be applicable to other networks and
gradient-based learning algorithms that fulfill the two above conditions
(e.g., the long short-term memory algorithm; Hochreiter & Schmidhuber,
1997).

Our goal here is to make Elman BP cognitively and biologically more ac-
ceptable, not to offer a technical improvement of BP. Therefore a discussion
of aspects of rBPRL’s plausibility is in order.

First, we have replaced a fully specified target with a single evaluative
feedback for SRNs in a symbolic prediction task, so that a more natural
semisupervised RL scheme can be incorporated in Elman BP, yielding our
rBPRL.

Second, look at the neural computability of the quantities we use in
rBPRL. First, there is the relative difference δ of actual and expected reward.
It can be realized as a prediction error neuron (Schultz, 1998; Wörgötter &
Porr, 2005). Furthermore, attentive concentration on the winning neuron is
physiologically plausible (Roelfsema & van Ooyen, 2005), and we are justi-
fied to inject a � �= 0 only for the winning neuron. Also the computation of
Q (that also enters δ) from the output activations y(2) is not trivial. Techni-
cally it is just an addition of the y(2)

i and a division of each output activity
by this sum. Positive evidence for pools of neurons doing precisely such
a divisive normalization is summarized in Carandini and Heeger (1994).
Furthermore, there needs to be a competitive process among the output
neurons to finally select one according to Qy as the winning neuron. Plau-
sible brain mechanisms for this are discussed in Nowlan and Sejnowski
(1995) and Usher and McClelland (2001). Finally, the �s have to be calcu-
lated. The term that seems not straightforward to calculate is f ′(a ). But here
the choice of the standard sigmoid f as the activation function leads to a
derivative that can be calculated from the function value y = f (a ) alone as
f ′(a ) = f (a )(1 − f (a )) = y(1 − y), so that this derivative is also natural to
compute.
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A third set of problems to be addressed is related to locality and how
past values can be stored. In order to make all quantities for weight update
available locally at a synapse, the weights w are used bidirectionally. And
that is not really biologically plausible. When model neurons stand for
assemblies of real neurons, the assumption of reciprocal connections of
roughly equal strength can, however, be justified (Fellemann & van Essen,
1991). Therefore, Roelfsema and van Ooyen (2005) suggest a second set
of weights w̄ that are used in backward propagation of error, while w is
used in the forward pass of activity only. This second set of weights w̄ is
initialized independently from w but updated, mutatis mutandis, according
to equations 2.6 to 2.8, however, with a small noise term η with mean 0
added in order to introduce deviations between forward and backward
connections:

δw̄
r,r ′
i j = −(1 + η)ε�(r )

i y(r ′)
j . (7.1)

In simulations with rBPRL and separate backpropagation weights w̄, differ-
ent initialization and introduction of gaussian noise (mean zero, standard
deviation 0.2) as above did not change the average performance curves.
Thus, rBPRL can cope with backpropagation weights that are not exactly
equal to the forward-propagation weights.

In our view, the bidirectional use of weights or the introduction of a
second set of weights in this explicit manner remains the weakest point
of both Roelfsema and van Ooyen’s AGREL and our rBPRL and needs
further elaboration. An interesting route to pursue would be to incorporate
elements of weight perturbation algorithms (Rowland, Maida, & Berkeley,
2006).

For SRNs we also need to make plausible that the activations of the
hidden layer can be retrieved after one time step when they are to act as
inputs to the hidden layer again. This assumption is again plausible in
view of the ample recurrent connections in the brain, which might recycle
activation from a neighboring cell for some time so that its activation can
be traced.

Also in this case, we cannot expect that the activation can be retrieved
with perfect accuracy. Hence, we conducted an additional set of simulations
in which we added gaussian noise with mean zero and standard deviation
0.2 to the activations in the context layer. This modification left the perfor-
mance curves for both the Reber and the badiiguuu languages unaltered,
demonstrating that rBPRL can also cope with an imprecise context layer.

While our reinforcement scheme easily extends even to fully recurrent
networks trained with BP through time (again, it is mainly a question of the
linearity of the �s), its naturalness would of course hinge on a mechanism
that allows tracing a neuron’s or assembly’s activation with some precision
for a longer time.
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8 Conclusion

We have found an RL scheme that behaves essentially like the Elman BP
scheme for SRNs in prediction tasks; however, it is cognitively more plausi-
ble by using a success-failure signal instead of a prescribed target. Essential
in transforming Elman BP into a reinforcement scheme was (1) that the
Elman BP error signal for the complete target is a linear superposition of
the error for each single output neuron and (2) the probabilistic nature of
the task: select one possible output randomly and direct the network’s at-
tention toward it until it is rewarded. We have shown that expected weight
updates are the same for DL, Elman BP, and rBPRL under the assumption
of fixed weights. Furthermore, we have found evidence in the simulations
that DL, rBPRL, and Elman BP also behave similar in online learning with
incremental weight updates (for low learning rates). They agree in terms of
the number of epochs to reach a certain level of performance. Also, there is
evidence that the solution spaces for rBPRL and Elman BP are essentially
the same, at least for low learning rates ε.

Furthermore, we have briefly discussed the cognitive and biologi-
cal plausibility of other ingredients in the recurrent BP-as-reinforcement
scheme. It seems that there is good evidence for all of them at least in some
parts of the brain, possibly with the exception of the second set of weights
used for the backward propagation phase. Enhanced cognitive plausibility
for Elman BP in the form of rBPRL thus gives SRN use in cognitive science
a stronger standing.
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Tiňo, P., Čerňanský, M., & Beňušková, Ľ. (2004). Markovian architectural bias of
recurrent neural networks. IEEE Transactions on Neural Networks, 15(1), 6–15.
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