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Abstract

Newton’s method for solving the matrix equation F (X) ≡ AX −
XXTAX = 0 runs up against the fact that its zeros are not isolated.
This is due to a symmetry of F by the action of the orthogonal group.
We show how differential-geometric techniques can be exploited to re-
move this symmetry and obtain a “geometric” Newton algorithm that
finds the zeros of F . The geometric Newton method does not suffer
from the degeneracy issue that stands in the way of the original Newton
method.
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1 Introduction

Let A be a symmetric positive-definite n × n matrix and let p be a positive integer smaller
than n.

Oja’s flow [Oja82, Oja89], in its averaged version

d

dt
X(t) = F (X(t)), (1a)

where F denotes the vector field

F : Rn×p → R
n×p : X 7→ AX −XXTAX, (1b)
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is well known for its principal component analysis properties. For all initial conditions X0,
the ordinary differential equation (1) has a unique solution curve t 7→ X(t) on the interval
[0,∞) [YHM94, Th. 2.1], the limit X(∞) = limt→∞X(t) exists, the convergence to X(∞) is
exponential, and X(∞) is a zero of Oja’s vector field F (1b) [YHM94, Th. 3.1].

Observe that the zeros of F are the solutions X ∈ R
n×p of the matrix equation

AX = XXTAX,

which implies that the columns of AX are linear combinations of the columns of X. Letting

col(Y ) = {Y α : α ∈ R
p}

denote the column space of Y ∈ R
n×p, it follows that all zeros X of (1b) satisfy A col(X) ⊆

col(X), i.e., col(X) is an invariant subspace of A. Moreover, X(∞) is an orthonormal ma-
trix (XT (∞)X(∞) = Ip), thus of full rank, whenever the initial condition X(0) is of full
rank [YHM94, Prop. 3.1]. Assuming that X(0) has full rank, it holds that col(X(∞)) is the
p-dimensional principal subspace of A if and only if col(X(0)) does not contain any direc-
tion orthogonal to that subspace [YHM94, Th. 5.1]. The set of all initial conditions that
do not satisfy this condition is a negligible set, i.e., Oja’s flow asymptotically computes the
p-dimensional principal subspace of A for almost all initial conditions. We also point out that
Oja’s flow induces a subspace flow, called the power flow [ASM08].

Because of these remarkable properties, Oja’s flow has been and remains the subject
of much attention, in its form (1) as well as in several modified versions; see, for exam-
ple, [YHM94, Yan98, DMV99, MHM05, JO06] . However, turning Oja’s flow into a principal
component algorithm implementable in a digital computer requires to discretize the flow in
such a way that its good convergence properties are preserved. Since the solutions X(t) con-
verge exponentially to their limit point X(∞), it follows that the sequence of equally spaced
discrete-time samples (X(kT ))k∈N converges only Q-linearly [OR70] to X(∞). Therefore, nu-
merical integration methods that try to compute accurately the solution trajectories of Oja’s
flow are not expected to converge faster than linearly.

Nevertheless, if the ultimate goal is to compute the principal eigenspace of A, then it
is tempting to try to accelerate the convergence when the iterates get close to the limit
point X(∞), using techniques akin to those proposed in [Hig99, FK05, KQL+06, LKLT06],
in order to obtain a superlinear algorithm. To this end, it is interesting to investigate how
superlinearly convergent methods perform for finding a zero of Oja’s vector field (1b). Since
Newton’s method can be thought of as the prototype superlinear algorithm to which all other
superlinear algorithms relate, we propose to investigate the behavior of Newton’s method
applied to the problem of finding a zero of Oja’s vector field (1b).

A crucial hypothesis in the classical local convergence analysis of Newton’s method (see,
e.g., [DS83]) is that the targeted zero is nondegenerate. As it turns out, the zeros of Oja’s
vector field F (1b) are never isolated, because F displays a property of symmetry under
the action of the orthogonal group Op on the set R

n×p. Therefore, the classical superlinear
convergence result of Newton’s method is void in the case of F , and indeed our numerical
experiments show that Newton’s method on R

n×p for F performs poorly (see Figure 1).
In this paper, we propose a remedy to this difficulty, that consists in “quotienting out” the

symmetry of F . Conceptually speaking, instead of performing a Newton iteration in R
n×p,

we perform a Newton iteration on a quotient space, namely R
n×p
∗ /Op (defined in Section 3).

We exploit the Riemannian quotient manifold structure of Rn×p
∗ /Op to formulate a Newton
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method on this set, following the framework developed in [AMS08]. The resulting Newton
equation is a linear matrix equation that can be solved by various numerical approaches.
It follows from the theory of Newton method on manifolds (see, e.g., [ADM+02, AMS08]),
and from a careful analysis of the zeros of the vector field, that the obtained algorithm
converges locally superlinearly to the set of orthonormal bases of invariant subspaces of A.
Our numerical experiments show that the method behaves as expected.

2 Plain Newton method for Oja’s vector field

We assume throughout the paper that A is a real symmetric positive-definite n × n matrix.
For simplicity, we also assume that the eigenvalues of A satisfy

λ1 > · · · > λn, (2)

i.e., all the eigenvalues of A are simple. Hence the p-dimensional invariant subspaces of A are
isolated.

Newton’s method in R
n×p for Oja’s vector field F (1b) consists of iterating the map

X 7→ X+ defined by solving

DF (X)[Z] ≡ AZ − ZXTAX −XZTAX −XXTAZ = −F (X) (3)

X+ = X + Z. (4)

The following proposition is a well-known characterization of the zeros of F .

Proposition 2.1 (zeros of F (1b)) Let X ∈ R
n×p be of full rank. Then the following two

conditions are equivalent:

1. F (X) = 0, i.e.,
AX = XXTAX. (5)

2. col(X) is an invariant subspace of A and X is orthonormal (XTX = I).

Proof. 1 ⇒ 2. We have that AX = X(XTAX), thus A col(X) ⊆ col(X). (More precisely,
since X has full rank and A is positive-definite, it follows that XTAX is invertible and
thus A col(X) = col(X).) Moreover, multiplying (5) by XT on the left yields XTAX =
XTXXTAX, which implies that XTX = I since XTAX is invertible.

2 ⇒ 1. Since col(X) is an invariant subspace of A, there is a matrix M such that
AX = XM . Multiply this equation on the left by XT to obtain that M = XTAX and
thus (5). �

Hence, the set of all full-rank zeros of F is the finite union of the compact sets

Si := {X ∈ R
n×p : col(X) = Ei,X

TX = I} (6)

where E1, . . . , EN are the p-dimensional invariant subspaces of A. (Note that N is finite; it is
equal to

(

n
p

)

.) It is readily checked that Si = ViOp, where

Op := {Q ∈ R
p×p : QTQ = I}

is the orthogonal group of order p and Vi is an element of Si. It follows that the zeros of
F are not isolated. Hence the Jacobian of F at the zeros of F is singular (i.e., the zeros are
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degenerate), and consequently, the classical result (see [DS83, Th. 5.2.1]) of local superlinear
convergence of Newton’s iteration to the nondegenerate zeros of F is void. This does not
imply that Newton’s method will fail, but there is a suspicion that it will behave poorly, and
indeed, in Section 5 (see Figure 1), we report on numerical experiments showing that this is
the case.

3 Newton’s method on R
n×p
∗ /Op

The degeneracy of the zeros of F is due to the following fundamental symmetry property:

F (XQ) = F (X)Q, for all Q ∈ Op. (7)

In this section, we propose a geometric Newton method that performs well with functions
F that satisfy (7). This geometric Newton method evolves on the quotient space R

n×p
∗ /Op,

where this symmetry is removed. Then, in Section 4, we will return to the specific case where
F is Oja’s vector field (1b) and obtain a concrete numerical algorithm.

The general idea for the geometric Newton method is first to define a vector field ξ on
the manifold R

n×p
∗ /Op, whose zeros relate to those of F . The vector field ξ is specified in

terms of its so-called horizontal lift in R
n×p
∗ . This formulation requires us to introduce some

concepts (vertical and horizontal spaces) borrowed from the theory of fiber bundles [KN63], or
more specifically from the theory of Riemannian submersions [O’N83]. All the differential-
geometric concepts used in this section are explained in [AMS08], or in [Lee03] for what
concerns Lie groups.

The following notation will come useful. Let

R
n×p
∗ = {X ∈ R

n×p : det(XTX) 6= 0} (8)

denote the set of all full-rank n× p matrices. Let

sym(B) =
1

2
(B +BT ) (9)

and

skew(B) =
1

2
(B −BT ) (10)

denote the terms of the decomposition of a square matrix B into a symmetric term and a
skew-symmetric term. For X ∈ R

n×p
∗ , define

P p
X : Rn×p → R

n×p : Z 7→ P p
X(Z) = (I −X(XTX)−1XT )Z (11)

P s
X : Rn×p → R

n×p : Z 7→ P s
X(Z) = Xsym((XTX)−1XTZ) (12)

P a
X : Rn×p → R

n×p : Z 7→ P a
X(Z) = Xskew((XTX)−1XTZ) (13)

P h
X = P p

X + P s
X : Z 7→ Z −Xskew((XTX)−1XTZ). (14)

We have Z = P p
X(Z) + P s

X(Z) + P a
X(Z) for all Z ∈ R

n×p. Observe that im(P p
X) = {Z ∈

R
n×p : XTZ = 0}, im(P s

X) = XSsym(p), im(P a
X) = XSskew(p), where

Ssym(p) = {S ∈ R
p×p : ST = S}
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denotes the set of all symmetric matrices of order p and

Sskew(p) = {Ω ∈ R
p×p : ΩT = −Ω}

is the set of all skew-symmetric (or antisymmetric) matrices of order p. (The letter “p” stands
for “perpendicular”, “s” for symmetric, “a” for antisymmetric, and the notation P h will make
sense in a moment.)

In R
n×p
∗ , we define an equivalence relation “∼” where X ∼ Y if and only if there exists a

Q ∈ Op such that Y = XQ. The equivalence class of X ∈ R
n×p
∗ is thus

[X] = X Op = {XQ : Q ∈ Op}. (15)

We let
R
n×p
∗ /Op = R

n×p
∗ / ∼

denote the quotient of Rn×p
∗ by this equivalence relation, i.e., the elements of the set Rn×p

∗ /Op

are the equivalence classes of the form (15), X ∈ R
n×p
∗ . We let

π : Rn×p
∗ → R

n×p
∗ /Op (16)

denote the quotient map that sendsX ∈ R
n×p
∗ to its equivalence class [X] viewed as an element

of Rn×p
∗ /Op. The set R

n×p
∗ is termed the total space of the quotient R

n×p
∗ /Op. Note that a

point π(X) ∈ R
n×p
∗ /Op can be numerically represented by any element of its equivalence class

[X] = π−1(π(X)).
Since R

n×p
∗ is an open subset of Rn×p, it is naturally an open submanifold of the linear

manifold R
n×p. Moreover, it can be shown that the map

ψ : On × R
n×p
∗ → R

n×p
∗ : (Q,X) 7→ XQ

is a free and proper Lie group action on the manifold R
n×p
∗ . Therefore, by the quotient man-

ifold theorem (see, e.g., [Lee03, Th. 9.16]), the orbit space R
n×p
∗ /Op is a quotient manifold.

In other words, the set R
n×p
∗ /Op is turned into a manifold by endowing it with the unique

differentiable structure that makes the quotient map π a submersion. It comes as a conse-
quence that each equivalence class [X] = π−1(π(X)), X ∈ R

n×p
∗ , is an embedded submanifold

of Rn×p
∗ . We term vertical space at X ∈ R

n×p
∗ the tangent space VX to [X] at X, i.e.,

VX = TX [X] = X TIOp = XSskew(p).

Observe that im(P a
X) = VX .

Next we define horizontal spaces HX , which must satisfy the condition that R
n×p is the

internal direct sum of the vertical and horizontal spaces. We choose

HX = im(P h
X) = {XS +X⊥K : ST = S} (17)

where P h is as in (14) andX⊥ ∈ R
n×(n−p) denotes any orthonormal matrix such thatXTX⊥ =

0. (It would be sufficient to state that X⊥ has full rank, but it does not hurt to assume that
it is orthonormal. We do not use X⊥ in the numerical algorithms.)

As an aside, we point out that the horizontal space (17) is the orthogonal complement of
the vertical space with respect to the noncanonical metric g defined by

gX(Z1, Z2) = tr(ZT
1 P

p
X(Z2) + ZT

1 X(XTX)−2XTZ2).
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Indeed, we have {Z ∈ R
n×p : gX(W,Z) = 0 for all W ∈ VX} = {XS +X⊥K : ST = S}. The

reason for not choosing the canonical Riemannian metric on R
n×p
∗ is that it yields a more

intricate formula for the horizontal space and for the projection onto it.
Consider a function F : Rn×p → R

n×p that satisfies the symmetry property (7). Define a
horizontal vector field ξ by

ξX := P h
X(F (X)).

It can be checked that this horizontal vector field ξ satisfies Dπ(X)[ξX ] = Dπ(XQ)[ξXQ]

for all Q ∈ Op, and thus ξ is the horizontal lift of a vector field ξ on the quotient manifold
R
n×p
∗ /Op. In the remainder of this section, we formulate a geometric Newton method for

finding a zero of the vector field ξ.
For finding a zero of a vector field ξ on an abstract manifold M endowed with an affine

connection ∇ and a retraction R, we consider the geometric Newton method in the form
proposed by Shub [ADM+02, §5] (or see [AMS08, §6.1]). The method consists of iterating
the mapping that sends x ∈ M to x+ ∈ M obtained by solving

Jξ(x)[ηx] = −ξx, ηx ∈ TxM, (18a)

x+ = Rx(ηx). (18b)

Here Jξ(x) denotes the Riemannian Jacobian Jξ(x) : TxM → TxM : ζx 7→ Jξ(x)[ζx] = ∇ζxξ.
For the case where M is the quotient Rn×p

∗ /Op, we choose the affine connection ∇ defined
by

(∇ηπ(X)
ξ)

X
:= P h

XDξ(X)[ηX ], (19)

where the overline denotes the horizontal lift. It can be shown that the right-hand side is
indeed a horizontal lift and that the definition of ∇ satisfies all the properties of an affine
connection. With this choice for∇, and with a simple choice for the retraction R (see [AMS08,
§4.1.2] for the relevant theory), the geometric Newton method on the quotient manifold
R
n×p
∗ /Op becomes the iteration that maps π(X) to π(X+) by solving

P h
XDξ(X)[ηX ] = −ξX , ηX ∈ HX (20a)

X+ = X + ηX , (20b)

with P h as in (14) and HX as in (17). Note that, in spite of possibly unfamiliar notation, (20)
only involves basic calculus of functions between matrix spaces.

The local superlinear convergence result for the geometric Newton method (20) follows
directly from the local convergence result of the general geometric Newton method (18),
see [AMS08, §6.3]. It states that the iteration converges locally quadratically to the nonde-
generate zeros of ξ. Since we have “quotiented out” the symmetry of F by the action of Op

to obtain ξ, it is now reasonable to hope that the zeros of ξ are nondegenerate.
Note that the proposed geometric Newton method differs from the “canonical” Rieman-

nian Newton algorithm [Smi94] on the quotient Rn×p
∗ /Op, because the affine connection chosen

is not the Riemannian connection on R
n×p
∗ /Op endowed with the Riemannian metric inherited

from the canonical metric in R
n×p
∗ . However, the property of local superlinear convergence

to the nondegenerate zeros still holds (see [ADM+02] or [AMS08]).
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4 A geometric Newton method for Oja’s vector field

In this section, we apply the geometric Newton method on R
n×p
∗ /Op, given in (20), to the

case where the tangent vector field ξ on R
n×p
∗ /Op is defined by the horizontal lift

ξX := P h
X(F (X)), (21)

with P h as in (14) and F as in (1b). The resulting Newton iteration is formulated in
Algorithm 1. Recall the definitions of Rn×p

∗ (8), P h (14), skew (10), HX (17).

Algorithm 1 Geometric Newton for Oja’s vector field

Require: Symmetric positive-definite n× n matrix A; positive integer p < n.
Input: Initial iterate X0 ∈ R

n×p
∗ , i.e., X0 is a real n× p matrix with full rank.

Output: Sequence of iterates (Xk) ⊂ R
n×p
∗ .

1: for k = 0, 1, 2, . . . do
2: Solve the linear system of equations (we drop the subscript k for convenience)

P h
X(AZ − ZXTAX −XZTAX −XXTAZ − Zskew((XTX)−1XTAX)

−Xskew(−(XTX)−1(XTZ + ZTX)(XTX)−1XTAX + (XTX)−1(ZTAX +XTAZ)))

= −
(

AX −XXTAX −Xskew((XTX)−1XTAX)
)

(22)

for the unknown Z ∈ HX .
3: Set

Xk+1 = Xk + Z.

4: end for

Observe that Algorithm 1 is stated as an iteration in the total space Rn×p
∗ of the quotient

R
n×p
∗ /Op. Formally, the sequence of iterates of the Newton method on R

n×p
∗ /Op, for an

initial point π(X0) ∈ R
n×p
∗ /Op, is given by (π(Xk))k∈N, where π is the quotient map (16) and

(Xk)k∈N is the sequence of iterates generated by Algorithm 1.
We point out that (22) is merely a linear system of equations. It can be solved by means

of iterative solvers that can handle linear systems in operator form. Moreover, these solvers
can be stopped early to avoid unnecessary computational effort when the iterate Xk is still
far away from the solution. Guidelines for stopping the linear system solver can be found,
e.g., in [EW96]. In our numerical experiments (Section 5) we have used Matlab’s GMRES
solver.

Algorithm 1 converges locally quadratically to the nondegenerate zeros of ξ. We first
characterize the zeros of ξ, then we show that they are all nondegenerate under the assump-
tion (2).

First note that ξπ(X) = 0 if and only if P h
X(F (X)) = 0, where X ∈ R

n×p
∗ . Under the
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assumption that X ∈ R
n×p
∗ , the following statements are equivalent:

P h
X(F (X)) = 0,

F (X) ∈ im(P a
X),

F (X) = XΩ for some Ω = −ΩT ,

AX −XXTAX = XΩ for some Ω = −ΩT ,

A col(X) ⊆ col(X) and (XTX)−1XTAX −XTAX is skew-symmetric,

A col(X) ⊆ col(X) and (XTX)−1XTAX +XTAX(XTX)−1 = 2XTAX.

We thus have an equation of the form Y B + BY = 2B, where B := XTAX is symmetric
positive definite, hence its eigenvalues βi, i = 1, . . . , p, are all real and positive. The Sylvester
operator Y 7→ Y B + BY is a linear operator whose eigenvalues are βi + βj , i = 1, . . . , p,
j = 1, . . . , p [Gan59, Ch. VI]. All these eigenvalues are real and positive, thus nonzero, hence
the operator is nonsingular, from which it follows that the equation Y B +BY = 2B has one
and only one solution Y . It is readily checked that this unique solution is Y = I. We have
thus shown that XTX = I. The result is summarized in the following proposition.

Proposition 4.1 Let P h be as in (14) and let F be Oja’s vector field (1b). Then X ∈ R
n×p
∗ is

a zero of the projected Oja vector field P h(F ) if and only if A col(X) ⊆ col(X) and XTX = I.

In other words, the full-rank zeros of the projected Oja vector field P h(F ) are the full-rank
zeros of Oja’s vector field F . This means that we do not lose information by choosing to
search for the zeros of ξ (21) instead of F (1b).

It remains to show that the zeros of ξ are nondegenerate. Let π(X∗) be a zero of ξ,
which means that AX∗ = X∗X

T
∗ AX∗ and XT

∗ X∗ = I. The task is to show that the Jacobian
operator Jξ(π(X∗)), or equivalently its lifted counterpart

Jξ (X∗) : im(P h) → im(P h) : Z 7→ P h
X∗

(

D(P h(F ))(X∗)[Z]
)

, (23)

is nonsingular. To this end, consider the operator

J : Rn×p → R
n×p : Z 7→ D(P h(F ))(X∗)[Z]. (24)

Note that Jξ (X∗) is the restriction of J to im(P h). Consider the decomposition R
n×p =

im(P p) ⊕ im(P s) ⊕ im(P a) and recall that im(P h) = im(P p) ⊕ im(P s). We show that the
corresponding block decomposition of J is as follows:





∗ 0 0
? ∗ 0
? ? 0



 ,

where “*” denotes nonsingular operators. It then directly follows that the upper two-by-two
block of J , which corresponds to Jξ(X∗), is nonsingular.

We show that the 11 block (i.e., the “pp” block) is nonsingular. This block is the operator
from im(P p

X∗
) to im(P p

X∗
) given by

Z 7→ P p
X∗

D(P h(F ))(X∗)[Z] = P p
X∗
AZ − P p

X∗
ZXT

∗ AX∗.

8



(In obtaining this result, we have used the relations XT
∗ X = I, skew(XT

∗ AX∗) = 0, P p
X∗
X∗ =

0.) In view of the hypothesis that the eigenvalues of A are all simple, this operator is known
to be nonsingular; see, e.g., [LE02, ASVM04].

We show that the 22 block (i.e., the “ss” block) is nonsingular. This block is the operator
from im(P s

X∗
) to im(P s

X∗
)

X∗S 7→ P s
X∗

(

D(P h(F ))(X∗)[X∗S]
)

= −X∗(SX
T
∗ AX∗ +XT

∗ AX∗S).

(We have used the relation AX∗ = X∗X
T
∗ AX∗ to obtain this expression.) In view of the

previous discussion on the Sylvester operator, this operator is nonsingular.
This completes the proof that the zeros of ξ are nondegenerate. Consequently, for all X0

sufficiently close to some Si (6), the sequence (Xk) generated by Algorithm 1 is such that
XkOp converges quadratically to Si. Recall that Si is the set of all orthonormal matrices
whose column space is the ith invariant subspace of A.

5 Numerical experiments

In this section, we report on numerical experiments for both the plain Newton and the ge-
ometric Newton method, derived in Section 2 and Section 4, respectively. The experiments
were run using Matlab. The machine epsilon is approximately 2 · 10−16.

As mentioned in Section 1, the plain Newton method performs poorly due to the fact that
the zeros of the cost function F are not isolated. To illustrate this, we consider a symmetric
positive definite matrix A ∈ R

6×6 with uniformly distributed eigenvalues in the interval [0, 1]
and 100 different initial iterates X0 ∈ R

6×3. Each of the initial iterates is computed as

X0 = X∗ + 10−6E ,

where X∗ is such that F (X∗) = 0 and E is a 6× 3 matrix with random entries, chosen from
a normal distribution with zero mean and unit variance. The simulation is stopped after 50
iterations. One representative example is given in Figure 1. In Figure 1 (a), the norm of
F (X) is given for each iteration step. Close to the solution, the system matrix gets singular
and the algorithm deviates from the optimal point. In Figure 1 (b), we present the evolution
of the norms of the three components K,XΩ, and XS of the update vector Z,

Z = X⊥K +XΩ +XS ,

where X⊥ is the orthogonal complement of X, Ω is a skew-symmetric matrix and S is a
symmetric matrix. We see that, even when the K and XS component are very small, XΩ is
quite large. This concords with the fact that the kernel of the Hessian at a stationary point
X is {XΩ : ΩT = −Ω}.

Next, we study the geometric Newton method, derived in Section 4. Again, we consider
n = 6, p = 3 and a symmetric positive definite matrix A ∈ R

6×6 with uniformly distributed
eigenvalues in the interval [0, 1]. We perform 104 experiments with a single matrix A but with
different initial iterates X0 ∈ R

6×3
∗ with random entries, chosen from a normal distribution

with zero mean and unit variance. In Figure 2, we show the number of runs that converged
to each of the eigenspaces of A. The dominant eigenspace is marked by “123”. In general,
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Figure 1: Plain Newton method

“ijk” stands for the eigenspace spanned by the ith, jth, and kth eigenvectors 1. Let W be the
matrix of all eigenvectors. We declare that the algorithm has converged to eigenspace “ijk”
when the norms of the ith, jth, and kth columns of the matrix XTW are all greater than 10−10

after 50 iterations and the norms of the rest of the columns are smaller than 10−10. It appears
that the basin of attraction of the dominant eigenspace is the largest. In our experiment, all
the runs have converged to one of the 20 possible eigenspaces. In general, there may be cases
where the algorithm does not converge to any of the eigenspaces. This may occur when the
initial iterate X0 is very close to the boundary of one of the basins of attraction. However,
these cases are rare. Finally, the superlinear convergence rate of the algorithm is illustrated
in Figure 3.

6 Conclusion

We have investigated the use of Newton’s method to compute superlinearly the zeros of Oja’s
vector field (1b). Due to a symmetry in the vector field by the action of the orthogonal group,
its zeros are never isolated, which causes the plain Newton method to behave poorly. We
have proposed a remedy that consists in “quotienting out” the symmetry. This led to the
formulation of a geometric Newton algorithm that seeks the zeros of a projection of Oja’s
vector field. We have shown that the zeros of the projected vector field are the same as the
zeros of the original vector field. Moreover, these zeros are nondegenerate. This means that by
quotienting out the action of the orthogonal group, we have removed just enough symmetry
to make the zeros nondegenerate. In view of the nondegeneracy property, it follows directly
from the convergence theory of the abstract geometric Newton method that the resulting
algorithm converges locally superlinearly to the zeros of Oja’s vector field.

Invariant subspace computation has been and still is a very active area of research.
As a method for invariant subspace computation, it is doubtful that the proposed algo-

1For convenience, we consider an eigenvalue decomposition, where the eigenvalues of A are put in descending
order.
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Figure 2: Geometric Newton method

rithm can outperform the state-of-the-art methods. In particular, the Grassmann-based ap-
proach [EAS98, LE02, AMS04], that can be thought of as quotienting out the action of the
whole general linear group instead of the orthogonal group, leads to a Newton equation that
lives in a smaller subspace of Rn×p and that can be solved in fewer flops. When n≫ p, how-
ever, the number of operations to compute the iterates is of the same order. Moreover, the
Grassmann-based algorithm does not possess the remarkable feature of naturally converging
towards orthonormal matrices, i.e., without having to resort to orthogonalization steps such
as Gram-Schmidt.

The problem of computing the zeros of Oja’s vector field was also an occasion for intro-
ducing the quotient manifold R

n×p
∗ /Op, that seems to have received little attention in the

literature, in contrast to the more famous Grassmann and Stiefel manifolds. In later work,
we will further analyze the geometry of this quotient manifold, which was just touched upon
in this paper, and we will show how it can be used in the context of low-rank approximation
problems.
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