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Abstract

The relationship between a neuron’s complex inputs and its spiking
output defines the neuron’s coding strategy. This is frequently and ef-
fectively modeled phenomenologically by one or more linear filters that
extract the components of the stimulus that are relevant for triggering
spikes, and a nonlinear function that relates stimulus to firing proba-
bility. In many sensory systems, these two components of the coding
strategy are found to adapt to changes in the statistics of the inputs, in
such a way as to improve information transmission. Here, we show for
two simple neuron models how feature selectivity as captured by the
spike-triggered average depends both on the parameters of the model
and on the statistical characteristics of the input.

Neuronal dynamics are characterized by nonlinearities that lead to large,
approximately stereotyped voltage excursions, or spikes, that are the basis
for interneuronal signaling. Capturing the relationship between inputs and
the resulting pattern of spike outputs from a given neuron in the form of
a reduced functional model is a focus of sensory neuroscience. In the sense
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that such a model provides a general mapping from input to output, it can
be thought of as the neuron’s “coding strategy”.

Reverse correlation methods (Bryant and Segundo, 1976; de Boer and Kuyper,
1968; Sakai, 1992; Hunter and Korenberg, 1986) provide a means to sam-
ple the statistical characteristics of stimuli that tend to trigger spikes; in
the simplest case, the mean, or spike-triggered average stimulus (STA), is
the optimal linear kernel for predicting the firing rate from the stimulus
(Rieke et al., 1996). Using reverse correlation, one may obtain an approx-
imate functional model for the neuronal input/output transformation in
terms of the input features that drive the system (Meister and Berry II,
1999; de Ruyter van Steveninck and Bialek, 1988; Simoncelli et al., 2004).
These methods may be applied not only to determine how neural systems
are driven by external stimuli, but to extract a model for how specific pat-
terns of synaptic current inputs drive single neurons. This allows one to de-
termine the role that a single neuron with a characteristic complement of ion
channels plays in a circuit: the integration of inputs over a certain timescale
(Slee et al., 2005; Svirskis et al., 2003; Prescott et al., 2006), the detection
of sudden change or highly synchronous events (Abeles, 1982; Slee et al.,
2005; Svirskis et al., 2004), or the selection of certain frequency components
in the input (Izhikevich, 2001; Prescott et al., 2006).

Here, we will derive explicit expressions for the outcome of such a statis-
tical analysis applied to two simple neuron models. We have two goals. The
first is to develop a general framework for understanding how the details
of neuronal dynamics establish or influence the features in the input that
trigger spikes. Second, neuronal systems show adaptation to statistics, in
the sense that the neuron’s coding strategy often changes when driven by
stimuli with different statistical properties. In the case of single neurons,
such effects can modulate or gate the effective computation of the neuron
according to the statistical properties of the signal or the background inputs
(Hasenstaub et al., 2007; Destexhe and Pare, 1999; Fellous et al., 2003). To
identify the rules governing this process, one would like to know to what ex-
tent the observed changes may result from time-independent neuronal non-
linearities and to what extent they must be due to changes in underlying
neuronal parameters. To study this, we will compute how the experimentally
obtained features of two fixed models depend on the statistical properties of
the stimulus, focusing on the variance of a white noise input.

The key points of this paper are:

• The relevant linear filter corresponding to a nonlinear spiking neuron
model is determined by the nonlinear dynamics linearized in a manner
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consistent with the typical operating regime of the system, which is
determined both by its dynamics and by the stimulus conditions. To
characterize this regime, we compute the voltage probability distribu-
tions from the Fokker-Planck interpretation of the models.

• We then use a novel application of the technique of stochastic lin-

earization to map the nonlinear models onto a set of linear models.
By studying both the mapping, determined by an optimization func-
tion relating the linear and nonlinear models, and the related STA
predictions for the equivalent linear system, we can delineate the roles
of different nonlinearities on spike encoding.

• The form of the STA is influenced both by the subthreshold (non)linear
dynamics and the spike afterhyperpolarization.

• Models with similar phase space topology can have STAs whose form is
controlled by different mechanisms. A rapid-onset exponential integrate-
and-fire model (EIF) has no significant subthreshold nonlinearity, and
so its STA is almost completely determined by the probability current
due to spiking. In contrast, the quadratic integrate-and-fire model
(QIF), while superficially similar to the EIF, has an STA whose form
is dominated by the sampling of the subthreshold nonlinearity, with
spiking effects playing a secondary role.

1 Models and numerical methods

Change in the effective feature selectivity with driving variance has been
studied for the case of the leaky integrate-and-fire (LIF) model (Paninski et al.,
2003; Paninski, 2006b; Yu and Lee, 2003). In the LIF model, the dynamics
are linear until the voltage reaches an imposed threshold after which the
voltage is immediately reset below threshold. Thus, the LIF contains no
intrinsic excitability, and further, does not allow for the possibility that the
system can cross threshold multiple times before spiking due to noisy inputs.
This discontinous behavior with respect to spike initiation is not found in
biological neurons.

Two simple models with more realistic spike initiation are the quadratic
and exponential integrate-and-fire models (QIF and EIF, respectively) (Ermentrout and Kopell,
1986; Fourcaud-Trocme et al., 2003). Both models are similar in spirit to
the LIF insofar as they replace the afterhyperpolarization mechanism with
a discontinous jump, or after-spike reset, but the point of reset in these
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models occurs at the peak of the spike instead of at the threshold voltage.
This mitigates the effects of the pathological behavior in response to noise
that the discontinuity creates (Paninski, 2006b) by moving it away from
the interesting region of spike initiation. The models are described by an
equation of the form:

τmv̇ = −v + f(v) + (Vr − Vs) δ(v − Vs) + s(t), (1)

where v denotes the membrane voltage, τm is the membrane time constant,
Vs is the voltage that defines the spike height and Vr is the post-spike reset
voltage. The input current, s(t), is a zero-mean gaussian white noise (GWN)
process with correlation function 〈s(t)s(0)〉 = σ2τmδ(t). The delta-function
is shorthand for the act of resetting the voltage to Vr after it reaches Vs. All
of the spike-generating and nonlinear subthreshold dynamics are encoded in
f(v). For the two models studied here, we have:

f(v) =

{

αv2 for the QIF,

g exp
[

v−V∗

g

]

for the EIF.
(2)

We study parameters such that the resting potential is zero and the un-
stable fixed point is at α−1 for both models. This requires us to choose
V∗ = α−1 (1 + gα ln(gα)) and g ≪ V∗. Somewhat paradoxically, despite the
higher order nonlinearity, the choice of small g causes the exponential non-
linearity to turn on over a much tighter range in voltage than the quadratic
nonlinearity of the QIF. We will see that this leads to more linear behavior
of the EIF model below threshold. Thus the two models behave noticeably
differently below threshold while still having the same after-spike dynamics.

1.1 Reverse correlation analysis

Reverse correlation is used to determine characteristics of the stimulus that
are correlated with neuronal response. From a long, random stimulus pre-
sentation s(t) and the resulting spike response times ti, one collects the set
of N current traces that led to a spike, s(τ − ti), over an interval of time
τ = [0,−T ] prior to the spike where T is chosen appropriately to capture
all the stimulus history that is relevant to triggering the spike. The spike-

triggered average or STA, s̄(τ), is found by averaging these samples over
i:

s̄(τ) =
1

N

N
∑

i=1

s(τ − ti). (3)
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1.2 Defining spike times

The results of reverse correlation analysis can depend on how the spike
time is defined. Here, we will look at the STAs with a temporal resolution
that is short compared to the average spike width. Different choices of the
voltage threshold used to define spikes will accordingly lead to STAs that
differ from each other due to temporal jittering of the ensemble of spike-
triggered trajectories. Because we want to understand how the spiking of
the model determines the feature selected from the stimulus ensemble, we
are interested in choosing a threshold that yields an STA that best captures
the role of the stimulus on the approach to the spike but is not sensitive
to stimulus-driven variations in the spike itself. For both models considered
here, this is achieved by selecting the unstable fixed point that separates the
subthreshold region from the spiking region in the absence of noise. Since the
location of the unstable fixed point is a function of the mean input current
and the quadratic form of the nonlinearity, we will call it the dynamical

threshold in accordance with previous work (Izhikevich, 2000; Hong et al.,
2007). For the zero-mean inputs considered here, the dynamical threshold
is Vth = α−1. Thus, we define spike times as the time of the last upward
crossing of the dynamical threshold preceding an after-spike reset.

1.3 Model simulation

In discrete-time with time step h, the nonlinear models in equation 1 were
realized as:

vn+1 = vn +
h

τm
(−vn + f(vn)) + σ

√

h

τm
ξn , (4)

if vn+1 ≥ Vs, then vn+1 → Vreset . (5)

where the ξn are drawn from a gaussian distribution with zero mean and
unit variance. For all figures in this paper, simulations were run with a time
step of h = τm/200 until 2 × 105 spikes were accumulated. The noise was
generated with randn in Matlab R2007b. Parameters used in simulation:
α = 1, τm = 1, Vs = 25, Vr = −0.2, g = 1

10 , and V∗ = 0.77.

2 Numerical results

We computed the STA numerically for a range of values of the stimulus
standard deviation σ for both models. Results are shown in figure 1. The
STA at all values of σ has two components: an extended feature and a sharp
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upward step at the time of the spike. For the feature, two different types of
behavior appear. For large σ, the STAs are approximately decaying expo-
nentials for which, as the standard deviation increases, the decay timescale
decreases and the amplitude increases. Thus, at larger σ, the QIF and EIF
models perform approximately linear leaky integration, where the effective
leakiness depends on the standard deviation. For very small σ, the STAs
are non-monotonic, with the peak amplitude occurring well before the spike
time.

3 Approximate STA for finite standard deviations

To best understand how details of the models influence the STAs, we would
like to be able to calculate the STAs analytically. In the zero standard
deviation limit, the STA can be analytically calculated for the QIF via
a large deviations principle and path integral methods (Paninski, 2006a;
Badel et al., 2008a; Wilson and Steyn-Ross, 2008), but that type of analysis
does not extend to finite σ. However, path integral methods can be applied
for arbitrary σ to perfectly linear models with no reset. As noted previously
(Hong et al., 2007), the observation that the STA is an exponential implies
that the subthreshold dynamics of the model are effectively linear. Since the
STAs of the nonlinear models are roughly exponential for larger standard
deviations, we should be able to introduce a linear approximation to the
nonlinear models that captures the qualitative behavior of the STA and
helps explain in detail how the STA arises from the form of the nonlinearity.

The main idea is as follows. While it is impossible to derive complete,
time-dependent statistical distributions for these models, we can get the
steady-state distribution from the Fokker-Planck equation. This distribution
gives us information about how the properties of the stimulus and spiking
dynamics determine how the system samples its subthreshold nonlinearities.
We will then use the steady-state distribution to map the nonlinear models
onto linear models and thus compute an approximation to the STA. Since
the linear model follows from the steady-state distribution, we can think of
the linear model as describing the “time-averaged dynamics” of the nonlinear
models.

3.1 The steady-state distribution

A key ingredient for understanding the behavior of the spiking models and
for determining an analytically tractable mapping of a nonlinear model to
a linear model is the steady-state probability distribution for the voltage
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in response to an input with given statistical characteristics. This proba-
bility distribution, pN (v), can be computed from the Fokker-Planck equa-
tion (Paninski et al., 2003; Brunel and Latham, 2003; Lindner et al., 2003;
Fourcaud-Trocme et al., 2003), which for models of the form given in equa-
tion 1 is:

∂pN (v, t)

∂t
=

∂

∂v

[(

v − f(v)

τm

)

pN (v, t)

]

+
σ2

2τm

∂2pN (v, t)

∂v2

+R(t) [δ(v − Vr)− δ(v − Vs)] , (6)

where R(t) is the time-dependent mean firing rate that needs to be deter-
mined self-consistently in solving the equation. This is a continuity equation
for pN (v, t) which expresses that the evolution of the distribution is driven
by the deterministic nonlinear driving force, diffusion, and spiking. We are
interested in the steady-state distribution, for which ∂pN

∂t
= 0 and R(t) goes

to the mean rate R. Using standard methods (Risken, 1996), one can show
that the steady state distribution is:

pN (v) =
2Rτm
σ2

e
−1

σ2 (v2−2F (v))
∫ Vs

max(v,Vr)
dv′ e

1

σ2 (v′2−2F (v′)), (7)

where F (v) =
∫

f(v)dv, and the mean firing rate is the normalization con-
stant.

This distribution is the product of a Boltzmann factor, controlled entirely
by the nonlinear dynamics, F (v), preceding a spike, and a spiking flux term
which carries the dependence on the spike parameters Vr and Vs. Since
we are mainly interested in behavior below the unstable fixed point, or
dynamical threshold, and the models considered here have reset voltages,
Vr, near the resting potential, the contribution of the spiking flux term does
not depend strongly on the form of F (v), but does depend strongly on the
location of Vr.

3.2 Stochastic linearization

We turn to a set of techniques known as stochastic linearization (SL) (see
(Socha, 2005) for an extensive review) to model and understand the behavior
of the STA of the nonlinear models. In the SL approach, one seeks the
parameters of a linear model that optimally capture the properties of the
nonlinear model in a regime of interest. In our case, we are interested in
the linear model that best captures the approach of a nonlinear model to
threshold for a given input standard deviation, but we are unconcerned with
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the dynamics of the spike itself. Thus, we search for an equivalent linear
model of the form:

τmv̇ = −kσv + cσ + s(t), (8)

where we make no attempt to model the spike or the reset (Gerstner and Kistler,
2002). This linear model is simply an Ornstein-Uhlenbeck process (Risken,
1996), and it has the associated steady-state probability distribution:

pL(v) =

√

kσ
πσ2

exp

[

−
kσ
σ2

(

v −
cσ
kσ

)2
]

. (9)

To determine the parameters of the optimal linear model, we must se-
lect an optimization function that maps the nonlinear model onto the linear
model. There are no unique methods for choosing optimization functions
that will yield good results (Socha, 2005), and different functions will gen-
erally yield different results. We focus on two optimization functions which
give weight to different properties of the nonlinear model.

3.3 Minimizing the Kullback-Leibler divergence

The Kullback-Leibler divergence (DKL) measures the similarity of two prob-
ability distributions (Cover and Thomas, 2006). To map the nonlinear mod-
els to sets of linear models, we can use the DKL to minimize the difference
between the subthreshold part of the nonlinear steady-state distribution
and the matched linear model’s steady-state distribution. The DKL for this
problem is:

DKL (pN ||pL) =

∫ Vth

−∞

dv
pN (v)

ZN
ln

pN (v)

ZNpL(v)
, (10)

where ZN =

∫ Vth

−∞

pN (v).

To find the optimal linear model with this criterion, we minimize the DKL

with respect to kσ and cσ. Doing so yields

kσ =
σ2

2
(

E [v2]− E [v]2
) ,

cσ = kσE [v] , (11)

where E [. . .] = Z−1
N

∫ Vth

−∞

pN (v) [. . .] .
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In the σ → 0 limit, k0 = 1 and c0 = 0, corresponding to the classical
linearization around the fixed point of a nonlinear model. These expressions
show that minimizing the DKL amounts to simply estimating the mean and
variance below threshold. This criterion is only sensitive to the probability
distribution itself and has no knowledge of the underlying dynamics.

3.4 Minimizing the energy below threshold

An alternative optimization criterion is to optimize the mean square error
in the energy, or first integral of the nonlinear models, below threshold. The
energy of the nonlinear model is

E =
v2

2
− F (v),

and so the optimization criterion for kσ and cσ is

I = E

[

(

v2

2
(1− kσ) + cv − F (v)

)2
]

, (12)

where F (v) and E [. . .] are defined as before. This criterion amounts to
trying to match the Boltzmann part of the distributions, taking spiking into
account only through the bias it provides to the expectation value. This
piece is primarily sensitive to the specifics of the dynamics below threshold
and is less sensitive to the overall shape of the distribution than the DKL

is. Minimizing I yields:

kσ = 1− 2
E
[

v2F (v)
]

E
[

v2
]

− E [vF (v)]E
[

v3
]

E [v4]E [v2]− E [v3]2

cσ =
E [vF (v)]E

[

v4
]

− E
[

v2F (v)
]

E
[

v3
]

E [v4]E [v2]− E [v3]2
(13)

Again, in the σ → 0 limit, k0 = 1 and c0 = 0. In this case, we see that
the optimal parameters are directly sensitive to the form of the nonlinearity
below threshold and that the shape of the probability distribution only enters
through the expectation values.

3.5 The meanings of the optimization criteria

The two optimization criteria give different weights to different roles of the
nonlinearity. The DKL criterion is sensitive to the net statistical distribu-
tion below threshold, regardless of whether it comes about due to the spike
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or the subthreshold nonlinearity, whereas the energy criterion is primarily
sensitive to the form of the subthreshold nonlinearity. Accordingly, we can
expect that the linear model, for a given nonlinear model and input stan-
dard deviation, found by the different criteria will be different. Specifically,
for nonlinear models whose optimal linear equivalents are best described by
the energy criterion, the parameters kσ and cσ will be closely related to the
form of the subthreshold nonlinearity but may not be very sensitive to the
overall details of the voltage distribution below threshold. In contrast, for
models with linear equivalents that are best described by the DKL criterion,
the parameters may have essentially no relation with the subthreshold non-
linearity, but rather describe global statistical properties set by the mean
and variance of the voltage distribution.

3.6 STA of the linear model

To find the STA for the linear model and compare it to numerical simula-
tions, we move to discrete time by defining t = nh, where n is an integer and
h is the time step. For clarity of notation, we identify v(t) = v(nh) ≡ vn.
The linear model in equation 8 is equivalently described by the forward
transition probability distribution:

p (vn+1|vn) =

√

τm
2πσ2h

exp

[

−
τm
2σ2h

(

vn+1 −

(

1−
hkσ
τm

)

vn −
hcσ
τm

)2
]

.

(14)
Also of use are the steady-state probability distribution, pL(v), given in
equation 9, and the backward transition probability distribution, p(vn|vn+1),
which can be derived with Bayes’ rule:

p (vn|vn+1) =
p(vn+1|vn)pL(vn)

pL(vn+1)
,

=

√

τm
2πσ2h

exp

[

−
τm
2σ2h

(

vn −

(

1−
hkσ
τm

)

vn+1 −
hcσ
τm

)2
]

,

(15)

for small h
τm

. Notice that the linear model is statistically reversible (Weiss,
1975): the backward transition distribution is the time reversal of the for-
ward, vn ⇄ vn+1. Since the model is linear, the STA follows from the spike-
triggered voltage, v̄, via:

s̄(t) = τm ˙̄v(t) + kσ v̄(t)− cσ , (16)

s̄n = (v̄n − v̄n−1)
τm
h

+ kσ v̄n−1 − cσ. (17)
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The spike-triggered voltages of the linear model can be found exactly with
the following recipe. We start at the spike time, t = 0 (n = 0)—the first
time for which v > Vth and v̇ > 0.

The mean voltage at the spike time, v̄0, is given by:

v̄0 =

∫

∞

−∞

dv0 v0 p(v0|spike) (18)

The spike-triggered voltage distribution, p(v0|spike), follows from the threshold-
crossing condition. The probability of finding a voltage v0 at the spike time
is given by the probability that v0 is above Vth, multiplied by the probability
that v0 was arrived at from voltages v−1 that were below threshold, summed
over all possible subthreshold values of v−1:

p(v0|spike) = Z−1
0 H(v0 − Vth)

∫ Vth

−∞

dv−1p(v0|v−1)p(v−1), (19)

where p(v−1) is the unconditioned distribution of voltages prior to the spike
and is given by the steady state distribution in equation 9, p(v0|v−1) is
the forward transition distribution, H(v0 − Vth) is the Heaviside function
representing the probability for v0 to be above threshold, and Z0 is the
normalization constant.

The mean voltage at the time immediately preceding the spike, v̄−1, is
determined by averaging over all voltages below threshold that can transition
to voltages above threshold in the next time step, and can be found from

v̄−1 =

∫

∞

−∞

dv−1 v−1 p(v−1|spike), (20)

p(v−1|spike) = Z−1H(Vth − v−1)

∫

∞

Vth

dv0 p(v−1|v0)p(v0|spike), (21)

where Z is the normalization constant for this distribution. Similarly, the
remaining v̄n for n ≤ −2 are given by:

v̄n =

∫

∞

−∞

dvn . . . dv−1 vn p(vn|vn+1) . . . p(v−1|spike). (22)

Equation 22 is exact for a linear model but is impractical to use. With-
out noticeable loss of accuracy for the simulations considered in this paper,
numerous simplifications can be made. For a discussion of approximations
to v̄0 and v̄−1, see the appendix.
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Via the central limit theorem, the v̄n for n ≤ −2 can be simplified as:

v̄n ≈

∫

∞

−∞

dvn vn p(vn|v̄n+1). (23)

Since these are all gaussian integrals over an infinite domain, the mean
value is the most likely value and so the remaining averages are arrived at
recursively to give:

v̄n =

(

1−
hkσ
τ

)

v̄n+1 +
hcσ
τ

for n ≤ −2. (24)

Using the fact that h
τm

≪ 1, this recursion relation can be solved in terms
of the exponential function and gives:

v̄n =
cσ
kσ

+

(

v̄−1 −
cσ
kσ

)

exp

[

kσ(n+ 1)h

τm

]

for n ≤ −1. (25)

The STA immediately follows from equation 16, and is:

s̄n =

{

2kσ

(

v̄−1 −
cσ
kσ

)

exp
[

kσ(n+1)h
τm

]

n ≤ −1,

kσ v̄0 + (v̄0 − v̄−1)
τm
h

n = 0.
(26)

For the linear model, the STA is simply given by the exponential filter up to
a singular piece at the spike time that arises from requiring that threshold
be crossed from below.

3.7 Comparison to numerics

For the QIF, the energy criterion qualitatively captures the time constant
at all σ and correctly matches the amplitude of the STA at high σ (see
figures 2A and 3C). Conversely, the DKL criterion is much less accurate.
While it too predicts qualitatively correct time constants, the amplitude
of the predicted STAs is much too large (not shown). This is because the
DKL criterion strongly weights the effects of the after-spike reset and total
probability mass, and thus biases the resting potential of the linear model
too far below threshold. Thus, the STA for the QIF is primarily determined
by the form of the subthreshold nonlinearity and is less sensitive to the
escape from the subthreshold domain due to spiking. Figure 3A shows how
the optimal linear model relates to the subthreshold nonlinearity in this
case.

For the EIF, however, the energy criterion gives kσ ≈ 1 for all σ. While
this is not surprising given the effectively linear subthreshold dynamics, it
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does not agree with the numerics. The DKL criterion, on the other hand,
applied to the EIF leads to qualitative agreement between the linear mod-
els and numerics (see figures 2B and 3D). This confirms the idea that the
changes in the STA in the EIF can only be due to the reduction in the time
spent below threshold because of spiking, and that the small amount of non-
linearity below threshold for the parameters used is not relevant except at
small σ (see figure 3B for further discussion). These changes in the STA are
analogous to those studied previously by Paninski (Paninski et al., 2005).

The singular upward step at the spike time arises from the condition that
threshold must be crossed from below—that v̇ must be positive—to elicit a
spike (Aguera y Arcas et al., 2003; Hong et al., 2007). This “delta-function”
component, shown in figures 1C and 1D, appears here so prominently be-
cause we have chosen the spike-defining threshold to be at a voltage for
which the stimulus is still relevant to spiking. This step does not vanish
in the continuous-time limit. The value of the step can be calculated ap-
proximately (see appendix) with good agreement with simulation data (see
figure 4). This mode occasionally appears in experimental STAs when the
spike waveform is slow (R. Mease, personal communication). It is usually
not seen because the threshold is generally drawn well into the intrinsically
excitable domain of the voltage and so a condition on v̇ does not significantly
constrain the stimulus in that situation.

4 Discussion

Due to nonlinearity, LN characterizations of neural systems show depen-
dence on stimulus statistics, even without changes in the underlying dy-
namical parameters (Theunissen et al., 2000; Yu and Lee, 2003; Borst et al.,
2005; Gaudry and Reinagel, 2007; Gill et al., 2008; Westwick and Kearney,
2003). In particular, by changing only the input standard deviation, the
effective computation changes its functional form and timescale. We have
explored the consequences of this for two reduced naturally-spiking neu-
ron models, the quadratic and exponential integrate-and-fire models. In
determining the linear filter or filters characterizing the model, our work
differs significantly from previous approaches (Gerstner and Kistler, 2002;
Hong et al., 2007; Wilson and Steyn-Ross, 2008; Badel et al., 2008a) in that
the point of linearization is not taken, as is classically done, to be the
equilibrium point; rather, we allow the subthreshold voltage distribution
to determine the optimal point of linearization. This distribution carries
information about the form of the nonlinearities, the mean firing rate, and
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the stimulus itself. These properties account for changes in the effective
linear model with stimulus variance. We find that despite these models’ su-
perficial similarities, different mechanisms are primarily responsible for this
form of adaptation. The key difference between the models is that the QIF
is nonlinear below threshold, qualitatively corresponding to a neuron with
hyperpolarizing currents that are activated below threshold, while the EIF
is mostly linear below threshold. Both models have been successfully fit to
neuronal data from a variety of neuron types (Izhikevich, 2004; Rauch et al.,
2003; Badel et al., 2008b).

Thus, both the neuron’s intrinsic properties and the statistics of the
background or of the driving stimulus ensemble determine the effective fil-
tering properties of the system. This shows one means by which modulating
the statistics of the input can effectively gate the transmission of different
types of input or stimulus features through the system (Hasenstaub et al.,
2007; Destexhe and Pare, 1999; Fellous et al., 2003). While this analysis fo-
cused on very simple model neurons, the methods we describe generalize to
more complex, higher dimensional neuronal models, although analytical so-
lutions are unlikely. These simple examples give a clear insight into intrinsic
modulation of feature selectivity.

Our previous treatments of this problem (Aguera y Arcas et al., 2003;
Aguera y Arcas and Fairhall, 2003; Hong et al., 2007) concentrated on the
case where spikes are well-separated, so that the effects of spike history are
explicitly separated from the role of the stimulus in determining the proba-
bility of generating a spike. Another approach to this problem is to include
an explicit spike-history term in the generative model (Gerstner and Kistler,
2002; Paninski et al., 2004; Powers et al., 2005). Here, the spike history
is incorporated into the computation of features due to the effects of the
mean firing rate on the steady-state distribution of threshold escape and
reset. These results underscore the difficulty in inferring information about
underlying biophysical parameters from the output of reverse correlation,
independent of a consideration of the stimulus properties.
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Appendix: Approximating the singular piece of the

STA

In numerical investigation, we find that there is a simple approximation for
the average voltage at the spike time, v̄0, for the range of σ considered in this
paper and the use of the dynamical threshold for spike triggering. In our
hands, this relationship does not seem to follow from an obvious perturbative

calculation. For the QIF and EIF, we find to first order in σ
√

h
τm

:

v̄0 ≈ Vth −
cσ
kσ

+ fσ

√

h

τm
(27)

where f = 0.85 is the result of a fit to the exact integral in equation 18 for
different σ, h, and τm.

The exact integral for the average voltage at the time immediately pre-
ceding the spike, v̄−1, can also be approximated with an error of a few parts
in a thousand. The distribution, p(v−1|spike), can be approximated as:

p(v−1|spike) ≈
H(Vth − v−1)p(v−1|v̄0)
∫ Vth

−∞

dv−1p(v−1|v̄0)

(28)

To first order in σ
√

h
τm

, where v̄0 is given by equation 27, it is possible to

show that:

v̄−1 ≈ Vth −
cσ
kσ

− σ

√

h

τm

(

√

2

π
+ f

(

2

π
− 1

)

)

(29)

Taken together, this shows that the singularity in the STA at the spike
time, which is given by v̇, goes as σ

√

τm
h
. See figure 4 for numerical results.
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Figure 1: The STAs for (A) the QIF and (B) the EIF (using the L2-norm
for easy visual comparison), triggered on Vth = α−1, for various σ with the
upward step at t = 0 removed. Note that at small σ, the STA is non-
monotonic while, at large σ, it is approximately a decaying exponential. As
representative examples, the STA in real units is shown (C) for the QIF for
σ = 0.3 and (D) for the EIF for σ = 3 with the last time-step included.
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Figure 2: Comparison between the numerical STA (solid) and the STA
predicted by equation 26 (dashed). (A) For the QIF, numerical results
(solid) are compared to the prediction from stochastic linearization via the
Energy criterion (dashed). In this case, the DKL criterion predicts STA
amplitudes that are too large (not shown) (B) For the EIF, numerical results
(solid) are compared to the prediction from SL via the DKL criterion. In
this case, the Energy criterion predicts kσ ≈ 1 for all σ (not shown).
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Figure 3: The left column refers to the QIF and its optimization via the
energy criterion, and the right, the EIF via the DKL. (A) This figure shows
how the linear model corresponding to the energy criterion for σ = 2 for the
QIF corresponds to the full nonlinear model. In gray, we see the steady-
state voltage distribution. The quadratic nonlinearity is shown dashed and
the optimal linear model as determined by the energy criterion is the solid
line. We see that the linear model in this case is closely related to the
average slope of the quadratic nonlinearity below threshold. (B) In contrast,
for the EIF, using the DKL criterion, the optimal linear model does not
correspond closely with the exponential nonlinearity. This is indicative of
the fact that the adaptation of the STA in the EIF is due primarily to
the spiking reset, as evinced by the STA results (see figure 2). (C,D) The
steady state distributions of the (QIF,EIF) models (solid lines) are compared
to their linear model approximations (dashed).
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Figure 4: The value of the STA in the singular component at the time of the
spike, s̄(0), for all cases studied in this paper. As explained in the appendix,
the value is approximately linear in σ and model-independent.
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