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Abstract 

 

We present a first-order non-homogeneous Markov model for the interspike-interval 

density of a continuously stimulated spiking neuron.  The model allows the 

conditional interspike-interval density and the stationary interspike-interval density to 

be expressed as products of two separate functions, one of which describes only the 

neuron characteristics, and the other of which describes only the signal characteristics.  

The approximation shows particularly clearly that signal autocorrelations and cross-

correlations arise as natural features of the interspike-interval density, and are 

particularly clear for small signals and moderate noise.  We show that this model 
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simplifies the design of spiking neuron cross-correlation systems, and describe a four-

neuron mutual inhibition network that generates a cross-correlation output for two 

input signals. 

 

1.  Introduction 

 

In recent years there has been considerable effort applied to the challenge of modeling 

the response of integrate-and-fire neurons to periodic stimuli and noise (Tuckwell, 

1988; Bulsara et al., 1994; Bair & Koch, 1996; Plesser & Tanaka, 1997; Plesser, 

1999; Burkitt & Clark, 2000; Plesser & Geisel, 1999; Plesser & Gerstner, 2000; 

Svirskis & Rinzel, 2000; Amemori & Ishii, 2001; Gerstner & Kistler, 2002).  To some 

extent this has been triggered by a broad interest in stochastic resonance (Bulsara et 

al., 1994; Plesser & Tanaka, 1997; Gammatoini et al., 1998), but more generally it has 

been motivated by the desire to have accurate models for a realistic range of neural 

behavior.  When neurons are stimulated with periodic signals, there are a number of 

qualitatively different patterns of response.  For large signals and low noise, phase-

locking between the spiking output and the stimulus is very likely, particularly for 

subthreshold neurons; for superthreshold neurons, more complex effects may occur.  

Given the importance of phase-locking in some models of the sensory system, there 

have been many physiological and theoretical studies on this regime (Tuckwell, 1988; 

Bair & Koch, 1996).  As the signal amplitude reduces and the noise increases, the 

neuron enters a regime where phase-locking is less likely, but there is still very strong 

synchronization between the signal features and the spikes.  It is in this regime that 

stochastic resonance tends to be of interest, and has been extensively studied and 
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modeled (Bulsara et al., 1994; Burkitt & Clark, 2000; Plesser & Tanaka, 1997; 

Gammatoini et al., 1998; Plesser & Geisel, 1999; Shimokawa et al., 1999).   

 

At smaller amplitudes and higher noise, the neuron enters a regime where the spikes 

and the signal features are not coherent, but the distribution of the spikes is still 

affected by the signal.  The model presented in this paper is most relevant in this 

regime.  A number of prior models describe this type of behavior well (Plesser, 1999; 

Amemori & Ishii, 2001; Svirskis & Rinzel, 2000) but these models generally have a 

high burden of complexity in both theory and computation.   

 

In the field of control systems, particular value is placed on models which allow a 

mathematical separation of system parameters and signal parameters, so that the 

response of a system to a signal can be characterized by a transfer function in which 

the signal is multiplied by or convolved with the system function.  In modeling 

neurons, an analogy would be characterisation of the stimulated neuron response in 

terms of a product or convolution of the stationary un-stimulated neural response, and 

the signal.   

 

With well-defined electrochemical relations for a neuron (such as the Hodgkin-

Huxley equations), we can model its behavior to arbitrary degrees of accuracy using 

Monte-Carlo methods; and given the ever-increasing power of computer hardware, 

this becomes a progressively more attractive option.  Under the circumstances, it is 

not unreasonable to ask why we need increasingly complex analytical models such as 

those referred to above, particularly as they inevitably involve a trade-off of accuracy 

for computational brevity.  An analytical model is essentially a theoretical description 
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of a neuron which may include internal variables and input-response relationships; for 

noisy neurons, it is likely to be inherently statistical in nature.  The purposes of such a 

model include: 

 

• Providing insight and a shorthand language for the dynamics of the neuron’s 

behavior. 

• Permitting rapid calculation of ensemble and time-averaged response 

statistics, without resorting to Monte-Carlo methods. 

• Allowing the development of an intuitive understanding of neural behavior, 

from which educated and insightful predictions can be made. 

 

In this paper we propose a first-order homogenous Markov model for the response of 

an integrate-and-fire neuron to a small signal in the phase-continuous regime, which 

allows separation of neuron and signal characteristics.  By phase-continuous, we 

mean that the phase of the input signal is not reset after each spike; the signal itself 

may be discontinuous in the sense of not having a smooth or well-defined derivative 

(for example, it may be a train of spikes from an upstream neuron).  These are 

sometimes referred to as continuous or exogenous or unconstrained signals, 

depending on which subtleties of the situation the authors wish to emphasize.  While 

it is generally accepted that real-world sensory neurons are subject to signals of this 

type, in many studies which have considered the signal-processing properties of 

spiking neuron systems, each reset-to-firing event is treated as a separate and 

independent trial, in order to reduce the analytical complexity (Tuckwell, 1988; Rieke 

et al., 1996; Gerstner & Kistler, 2002).  The use of peri-/post-stimulus time 
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histograms (PSTHs) also encourages the analysis of data with respect to fixed 

stimulus phases. 

 

In the research which follows, we consider successive trials to be non-independent, 

and begin each new integrate-to-firing trial at the phase at which the previous trial 

ended (fired).  The phase is therefore a system variable that is “remembered” from 

one trial to the next (because it is a function of the absolute time t).  We are aware of a 

small number of neuron models which explicitly accommodate phase continuity 

(Plesser, 1999; Burkitt & Clark, 2000; Plesser & Geisel, 1999; Shimokawa et al., 

1999b; Amemori & Ishii, 2001).  The model which we propose retains phase 

continuity, but differs from these prior models in being simpler; allowing a separation 

of neural and signal variables; and encouraging a useful intuitive understanding of 

neurons operating in this regime. 

 

In developing the model, we will start by offering a brief mathematical justification 

for the approach, and show the range of parameters over which its accuracy has been 

established by comparison with Monte-Carlo simulations (i.e. the regime within 

which it is an accurate model).   We demonstrate its application with a variety of 

neuron and signal types, and conclude by illustrating its usefulness with the analysis 

of two simple neural circuits which implement correlation functions.  In particular, we 

describe a neural circuit which arises from this model, which acts to cross-correlate 

two input signals over a wide range of inter-signal time delays. 

 

It should be clear that we do not offer this model as an improvement in accuracy on 

prior models, but rather we suggest that it is more useful.  Utility is more difficult to 
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demonstrate than accuracy.  We have tried to demonstrate this model’s utility in two 

ways: firstly, by showing that it allows prediction of the effect of a small signal on a 

neuron, even when the underlying model for the neuron is unknown or analytically 

intractable; and secondly, by using the new information provided by the model to 

design from scratch a physiologically plausible neuron circuit with specific signal-

processing capabilities. 

 

In the work that follows we make several assumptions that reflect common 

simplifications for modeling purposes.  We assume that the spike times of an 

unstimulated neuron describe a wide sense stationary time series and a stationary 

interspike-interval distribution.  When we apply a stimulus, we represent it as a signal 

which is continuous in time and limited in amplitude and bandwidth, and consider this 

to represent the net effect of a large number of synaptically-coupled inhibitory and 

excitatory input spikes.  We model noise as being Gaussian-distributed noise added 

directly to the membrane potential, regardless of its nominal physiological source 

(which may be diffusion, ion channel action, transmitter packet release, or any other 

stochastic process which may be continuous or quantal in nature).  Although it is not 

important for the development of the model, we consider that the output of a single 

neuron over a long period of time is of interest, in that it throws light on the output of 

a population of neurons over a short period of time. 

 

2.  Modulation of the Probability of Firing Due to a Periodic Stimulus 

 

We want to answer the following question: what effect does a continuous, periodic 

input stimulus have on the distribution of firing intervals for a spiking neuron?  
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Consider a single-compartment neuron whose membrane potential v, in the absence of 

stimulation, is a stationary time signal represented by the integral of some function 

f(v,t,σ),  

0
( ) ( , , )v f v t dt

τ
τ σ= ∫        (1) 

where τ is the interval since the last firing event, at t = 0 in this case, and σ is a noise 

parameter (for example, the standard deviation of some additive Gaussian white 

noise).  The function f may include refractory periods, leakages, drifts and various 

nonlinearities – most single-compartment models may be described in this way.   

 

The firing pattern of the unstimulated neuron is described by a stationary distribution 

or density of firing intervals given by ρ(τ).   Without further knowledge of f(v,τ,σ), we 

cannot make any statement about the shape of ρ(τ).  We can to some extent predict the 

effect on the shape of ρ(τ) of an added stimulus g(t).  Consider g(t) to be periodic with 

zero mean, and period T; to be bandwidth-limited; and to have an amplitude which is 

small in comparison to the firing threshold θ, so that  |g(t)| << θ for all t. The 

membrane potential becomes: 

0

0
( ) ( , , ) ( )

t

t
v f v t kg t dt

τ
τ σ

+
= +∫       (2) 

where g(t) is a current stimulus and k represents the capacitance of the membrane; we 

may set k = 1 for clarity from here on.   

 

In (2) above, we have to treat time explicitly in the potential, and the firing events 

depend on the time of the last firing event (t0) as well as the interval since that event 

(τ).  Each interval is linked in time by the continuity of the signal g(t).  Consider now 

the effect of g(t) on ρ(τ).  It will modulate the slope of v(t) and the steeper the slope, 
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the greater the chance that the neuron will fire.  As the potential approaches the 

threshold θ the rate of change of v(t) is 

∫
+

+=
τ

σ
τ

τ 0

0
)(),,()( t

t
dttgtvf

d
d

dt
dv       (3) 

)(),,()(
00 τσττ

θ
+++=

−→
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v
.     (4) 

The stimulus is an additive modulation on the slope of the unstimulated neuron.  We 

cannot express this as an effect on the interspike-interval density without taking into 

account the explicit dependence on time, so the new ρ(τ) must be expressed as a 

density which is conditional on t0 as well as τ; it is now ρ(τ|t0).  From (3) and (4) it is 

plausible to approximate the time-dependent interspike-interval distribution as:  

( ) ( ) ( )( )0 01AM t wg tρ τ ρ τ τ= + +       (5) 

where w is a constant weight accounting for the relative amplitude of g(t) and θ. This 

approximation indicates that the signal has an additive amplitude-modulating effect 

on the original ρ(τ). The first-order, non-homogenous Markov nature of the process is 

clearly embodied in this approximation.  We will elaborate more on these issues later, 

but at present, we consider the further development of (5).  We use the subscript AM 

to indicate the use of the amplitude-modulated interspike-interval density 

approximation for the time-dependent interspike-interval distribution.  Equation (5) is 

somewhat ad-hoc, but in the absence of a more explicit specification of the neuron 

function f(v,t,σ) than (4), it is as precise as is possible. 

 

Note that the ansatz (5) is dependent on the period of g(t) being relatively short 

compared to the typical length of τ (hereafter ‹τ›), so that ρ(τ) is effectively constant 

across a period T of g(t); in other words T  << ‹τ›.  It is also of questionable causality, 

although the conventional definition of ρ(τ) requires the use of time bins ∆τ in which 
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causality is similarly complicated (an event happening late in the time bin affects the 

density amplitude of the whole bin).  The increase in error as T → ‹τ› is shown in 

Section 2. 

 

Significantly, we have made no assumption about the underlying neural structure and 

dynamics which give rise to ρ(τ); it could at this stage be any one of a wide variety of 

spiking neural models for which (4) is a reasonable description.   

 

Some discussion of the Markov property is required.  The continuous integrate-and-

fire process is Markovian in dv/dt and the continuous membrane voltage (without 

spiking) is the integral of dv/dt and is not Markovian (see Cox & Miller, 1965, p. 

227). The spiking process which resets the neuron produces a sequence of firing 

intervals tk - tk-1 for the unstimulated neuron in which the probability of an interval 

does not depend on the starting time of that interval, and the density of intervals is 

time-invariant. The time-invariance or stationary property of the firing intervals arises 

because the noise process (if white noise) has an autocorrelation function which is a 

delta impulse at the origin, and the neuron is reset after each firing. When the neuron 

is stimulated by a time-dependent stimulus, the time invariance is broken, and the 

probability of a spike interval becomes dependent on the starting time of that interval 

(Plesser & Geisel, 1999; Shimokawa et al., 1999).  The sequence of firing intervals of 

the stimulated neuron is therefore a first-order Markov process (because tk depends 

only on tk-1 and not tk-2, tk-3…) and it is non-homogenous because the probability of 

the firing interval is dependent on time.  Strictly speaking, the first-order property 

only holds for neurons which experience a complete reset after each spike, and would 

not apply to neurons such as the Hodgkin-Huxley type, for example. 



10 

 

The time-dependent or conditional interspike-interval (cISI) density ρ(τ|t0) is not as 

useful as a stationary interspike-interval (ISI) distribution ρ(τ), but marginalizing with 

respect to t0 in order to get a stationary distribution in τ is not trivial. A route forward 

does present itself, however.  We observe that the probability of firing for a specific 

interval τ = tk+1 - tk depends on the joint probability of starting at tk, and firing at tk+1.  

The probability of starting at tk is the probability of the previous interval firing at tk, 

and so is modulated by the amplitude of g(tk).  The probability of firing at tk+1 is 

modulated by g(tk+1); so ρ(τ) for the stimulated neuron must be some function of the 

values of g(t) separated by intervals of τ = tk+1 - tk.  Another way of expressing this is 

that probability of firing with a certain interval depends on the stimulus at both the 

start and the end of the interval.  The stimulus in between these points does not affect 

the slope of the membrane voltage at this time; we are focusing on the limit as v(t) → 

θ.   

 

We note that the conditional densities ρ(tk+1|tk) can be multiplied together to give the 

probability of a sequence of firing times tk, tk+1, tk+2… so that for any train of spikes at 

times t = [t1, t2,… tn] following a reference spike at t0, the spike train density Υn(t) is 

given by: 
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There are many different possibilities opened up by calculating marginal densities on 

Υn(t).  For example, we can calculate the probability that the first and second spikes 

after t0, that is to say t1 and t2, are separated by τ.  We take the sequence of conditional 



11 

probabilities for firing at t1 and then t2 = t1 + τ, and marginalize over all possible 

values of t1:   
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Noting that ρ(τ) is a constant for fixed τ, and that by the common definition of a 

probability density 
0

( ) 1t dtρ
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t
tg 0)(  because g(t) is periodic with 

period T and zero mean; and that with the separation of timescales referred to 

previously,  )(τρ is approximately constant over any interval T, we can approximate 

as follows:  
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where Rgg(τ) is the autocorrelation function of g(t), provided that the separation of 

timescales of ρ(τ) and g(t) is sufficient to allow the use of these approximations.  The 
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interval of the integration can be reduced to the length of one period of g(t) and 

normalized in the usual way.  

 

In (9), q2,1(τ,t0) represents the distribution of the second spike interval after a spike at 

t0, for all possible values of t1; and as it has no explicit dependence on time apart from 

the signal g(t), we can reasonably say that it represents the distribution of all first-

order spike intervals after some first spike.  Hence q3,2(τ,t1) = q2,1(τ,t0) and so on 

(given the Markov property); we can therefore state ρAM
 (s)(τ) = q2,1(τ,t0).  Note that this 

distribution is not applicable for the first spike interval t1 - t0 after some random start 

time t0, and hence this distribution holds only for the second and subsequent (first-

order) intervals in a continuously stimulated neuron.   

 

2.1 Summary of the Model 

This analysis gives us our basic amplitude-modulated interspike-interval density 

(AM-ISI) model for the time-dependent interspike-interval distribution. The model 

works as follows:  for an unstimulated neuron, we assume there is a known stationary 

interspike-interval density, ρ(τ); when the neuron is stimulated by a periodic stimulus 

g(t), we approximate the conditional and time-dependent interspike-interval density as 

shown previously (we repeat (5) here for clarity): 

( ) ( )( )0 01 ( )AM t wg tρ τ ρ τ τ= + + .      (5) 

We marginalize over t0 as shown above and approximate the phase-continuous 

interspike-interval density with q2,1(τ,t0), to yield a stationary interspike-interval 

density: 

( ) ( )( )( ) 2( ) 1s
AM ggw Rρ τ ρ τ τ= + .      (10) 
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Some of the utility of the model may start to become apparent here.  It suggests that, 

in the absence of any knowledge of a neuron structure except the unstimulated 

interspike-interval distribution, which is relatively easy to determine by observation, 

we can predict the effect of a continuous periodic stimulus on the interval after any 

given spike, and on the stationary interspike-interval distribution.  We are not aware 

of any other neuron model which has this utility.  In the following section, the range 

of parameters for which this approximation is accurate is examined. 

 

Figure 1 gives a brief illustration of the model.  The neuron used in Figure 1 is a 

simple integrate-and-fire neuron given by the function: 

( ) ∫
+

++=
τ

σζτ 0

0
)()(

t

t
dttkgtmv       (11) 

where m is a constant drift, )(tζ  is additive white Gaussian noise with zero mean and 

unit variance, and σ is the root-mean-square (rms) noise amplitude.  Note that for m,  

)(tζ , and g(t) in current form, this equation has been normalized by setting RC = 1, 

where R and C are the membrane resistance and capacitance.   For this simple case, 

there is a standard function for the unstimulated interspike-interval density given by, 

for example, Tuckwell (1988): 
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We stimulate this neuron with a square wave signal, which we approximate 

mathematically as the sum of a Fourier series. This approximation has the benefit that 

we retain a finite, defined bandwidth and continuous derivative for the signal.  The 

approximation appears to work for signals in which this is not the case, as shown in 
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some later examples, but some of the mathematical analysis assumes these properties. 

The approximate square wave signal is given as: 
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Figure 1:  A comparison is shown of the conditional interspike-interval (cISI) 

densities obtained with the AM-ISI model (black) and a Monte-Carlo simulation 

(grey) for one value of the starting phase of the signal in (13), with A=100μV and ω0 

= 80π rad/s.  The cISI density of the AM-ISI model was calculated using (14).  The 
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neuron was a simple integrate-and-fire model with parameters σ=0.1 mV/√Hz, θ=15 

mV, m= 150 mV/s, w = 6.25. 
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Figure 2: A comparison of the phase-continuous interspike-interval (ISI) density 

obtained with the AM-ISI model (black) and a Monte-Carlo simulation (grey) is 

shown for the signal in (13).  The ISI for the AM-ISI model was calculated using (15).   

Note that the square wave signal has been converted into a triangular wave, which is 

the expected result of the autocorrelation operation.  The neural parameters and signal 

were the same as in Figure 1. 

 

In Figure 1, we show the non-phase-continuous case where the stimulus signal has 

been reset to some fixed phase value after each firing event.  This is, therefore, a 

conditional interspike interval – it is the probability of a spike at τ given the signal 

state (phase) at time t0.  Figure 2 shows the phase continuous case, in which each 

interval started at the moment at which the previous interval ended (fired), apart from 

the trivial first interval, which started at t = 0; it is a stationary ISI.  We can consider 
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Figure 1 to be the average of an ensemble of neurons, all of which started integrating 

at the same instant in response to the same signal; whereas Figure 2 represents the 

accumulation of thousands of firing events of a single continuously stimulated neuron. 

At risk of confusion, however, it must be pointed out that Figure 2 would not be 

significantly different if it were an ensemble average, provided that each neuron on 

the ensemble was firing continuously for some short period of time.  The analysis in 

Eq.s 6-9 suggests that the ISI for the second first-order interspike interval (after a 

random start to initiate the first spike interval) is the same as the distribution for all 

first-order interspike intervals in continuous operation, and simulation results verify 

this.  An ISI derived by accumulating a single interval from each of N neurons, is the 

same as one derived by accumulating N intervals from a single neuron, provided that 

for all cases the very first spike interval (which should have a random start time) is 

discarded. 

 

We would like to draw the reader’s attention to the clear autocorrelation effect 

displayed in Figure 2.  This effect has been observed previously in measurements of 

all-order spike intervals from the mammalian auditory nerve (Cariani & Delgutte, 

1996) and in interspike intervals in simulated neurons (Tapson, 1998); and has been 

implemented as a stochastic autocorrelation algorithm in electronic circuits (Tapson & 

Etienne-Cummings, 2007; Folowosele et al., 2007), but as far as we are aware this is 

the first analytical explanation for the effect; this prior work was based on the 

observed phenomenon, without any underlying mathematical basis being proposed.  

This model may also help to explain the effect of correlations in input spikes on the 

output statistics of integrate-and-fire neurons, as observed by several groups (see for 

example Salinas & Sejnowski, 2000; Kuhn et al., 2002). 
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2.2  Evaluation of the Accuracy of the AM-ISI Model 

 

It is important to have a sense of how accurate the AM-ISI model is, in comparison to 

existing models and taking Monte-Carlo simulations as a baseline.  There are a 

number of useful error metrics that we may use; for example, we may compare the 

measured (simulated) response with the model response, or with a measured response 

for the same neuron in the absence of a stimulating signal.  In comparing spike 

probability densities, we have made use of the relative integrated mean square error: 

( ) ( )[ ]
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∫
∞

∞
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0
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τρτ

τρτρτ
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where ρmeasured(τ,t) represents a measured or simulated interval density which may 

depend on time t owing to the presence of a driving signal, and ρmodel(τ,t) is the 

corresponding model density.  This error is intrinsically normalized by the 

denominator.   

 

In Figure 3 we show the progression of accuracy of the model as the timescales of the 

neuron response and the periodic signal vary.  As discussed earlier, the model is based 

on an assumption that the period of the signal is short relative to the expected value of 

τ, so T << ‹τ›.  Figure 3 shows the error E for a simple integrate-and-fire neuron 

driven by periodic signals over the range T/‹τ› = 0.02 to 3.00.  It can be seen that the 

model is usefully accurate for T/‹τ› in the range (0.02, 1.50), after which the accuracy 

degrades.  We note particularly that there is a minimum in error at approximately 

T/‹τ› =1.  Shimokawa and colleagues have shown that the modulation of the ISIH of a 

leaky integrate-and-fire neuron by a phase continuous signal should be a maximum 

when the signal period is approximately equal to the ISIH peak (which we have 
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denoted ‹τ›), although there is some variation from the 1:1 optimum of time scale 

matching as the neuron parameters change (Shimokawa et al., 1999b).  The error 

minimum seen in Figure 3 is a function of the same effect, although here it is 

complicated by the use of a randomly-weighted harmonic series as a driving signal.  

 

Figure 3:  Error E for a range of relative timescales T/‹τ› for a simple integrate-and-

fire neuron driven by a periodic signal.  The triangle symbols represent the error 

between the AM-ISI model (Eq. 10) and the measured (Monte-Carlo simulated) 

interval distributions.  The square symbols represent the error between the standard 

undriven distribution (Eq. 12) and the measured interval distribution.  The difference 

between these two curves essentially represents the improvement in accuracy gained 

by using the AM-ISI model.  It can be seen that the AM-ISI model’s utility diminishes 

above T/‹τ› = 1.  Each point represents the average of errors for twenty different test 

signals of the form ∑
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The neuron was a simple integrate-and-fire model with parameters σ=0.1 mV/√Hz, 

θ=15 mV, m=100 mV/s and ‹τ› ≈ 137 ms.   

 

We have evaluated the approximation for several neuron models, and in the case of 

the simple integrate-and-fire neuron, we have systematically explored a range of 

neuron and signal parameters.  Signals were constructed by adding up to five Fourier 

components with phases and amplitudes chosen randomly within a defined range, and 

with frequencies chosen randomly from a set which was selected to give a combined 

signal with a period within a maximum range: 

 

 )sin()(
5

1
∑
=

+=
i

iii tatg φω        (17) 

ai a random number from a uniform distribution in [0,1] 

ωi randomly selected from the set 

 1,2,...10;,1000{ =n
nR

 R a random number uniformly distributed in [1, 1.5]} 

iφ randomly selected from a uniform distribution in [0, 2π]. 

 

For these tests, a single value of the optimization parameter w in (9) was used, 

although it was adjusted by the noise variance (i.e. the constant was w=6/√σ).   This 

value was arrived at by evaluating the error between the AM-ISI model and Monte-

Carlo simulations for approximately 2000 combinations of input and neuron 

parameters.  Optimization was carried out for the stationary and phase-continuous 

interspike interval condition (Eq. 10) as this is generally of more interest to 

practitioners (as well as generally being harder to model using other methods).  The 

use of the constant was implemented throughout these tests. 
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Figure 4 shows the range of parameters within which E<0.01 for the AM-ISI model. 

 

 

Figure 4:  These graphs show contours of error, calculated using (16), for 2000 tests 

in which the integrate-and-fire neuron response to randomly generated periodic 

signals was modeled, with differing neural parameters.  The neuron was a simple 

integrate-and-fire model with θ = 15 mV. The black areas have a relative integrated 

mean square error of E < 0.01; that is to say, less than 1% error.  A single value of the 

weight parameter, adjusted for noise (w=6/√σ), was used in these tests. For the data in 

the left hand surface, σ=0.05 mV/√Hz; in the middle surface data, drift m = 0.2 mV/s; 

and in the right hand surface data, the signal amplitude A = 0.3 mV.   

 

As seen in Figure 4, the error increases significantly when the signal amplitude is 

sufficiently large that 1+w2g(t)/σ < 0 for some t.  This condition produces negative 

probability densities, unless we constrain ρAM(τ) = max[ρ(τ) (1+w2g(t)/σ) , 0].  

Applying this constraint is not a complete solution as the normalization 

0
( ) 1AM dρ τ τ

∞
=∫  is then required, and this in turn changes the optimal value of the 

weight w.  Qualitatively, the curves produced by this procedure are a good match to 

the simulated ISIs (see Figure 7 for an example), but we have not evaluated the error 

as it would require optimization of w for each test curve.  
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We conclude from the results in Figure 4, as well as from numerous examples similar 

to Figures 1-2, that there is a significant range of parameters for which this 

approximation is useful and accurate.   

 

2.3.  The Application of the Model to Different Neuron Types 

 

In this section we demonstrate the model’s utility by applying it to different types of 

spiking neuron models.  The models to which we have successfully applied it include 

the simple integrate-and-fire neuron of Section 2.1 above (hereafter the I&F neuron); 

an Ornstein-Uhlenbeck (OU) neuron; and a Hodgkin-Huxley (HH) neuron.  In 

addition to this, but not shown for reasons of brevity, we have also applied this model 

to the OU neuron with a refractory period; to a neuron with a quadratic nonlinear 

leakage term and refractory period; and to a neuron with an arbitrary nonlinear 

leakage consisting of piecewise linear leakages. 

 

 2.3.1 An Ornstein-Uhlenbeck Neuron 

The Ornstein-Uhlenbeck neuron, which can also be described as a noisy, leaky 

integrate-and-fire neuron, is commonly regarded as a useful single-compartment 

model in its compromise of simplicity and accuracy.  The membrane potential is 

typically described as follows:   

( ) )()()()( ttiVtv
dt

tdv
Lm σζτ ++−−=       (18) 

where RCm =τ , the membrane time constant, is the product of the membrane 

resistance R and capacitance C; VL is the resting potential of the neuron; i(t) is the 

stimulus signal and σ, ζ and v are the rms noise amplitude, noise process, and 
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membrane potential, as before.  In addition, the model requires a defined threshold 

membrane voltage θ at which level the neuron will produce a spike; a reset potential 

Vreset, to which the membrane will be reset, which may or may not be equal to VL; and 

an optional hyperpolarizing barrier, or reflective lower bound to v(t): v(t)  ≥ vhyp.   

 

Figures 5 and 6 show the conditional interspike-interval (cISI) and phase-continuous 

interspike-intervals (ISI) respectively for an Ornstein-Uhlenbeck neuron implemented 

using commonplace values (Dayan & Abbott, 2001). 

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

0 200 400 600 800 1000

time [ms]

in
te

rv
al

 d
en

si
ty

 

 

Figure 5:  Conditional ISI for an OU neuron driven by an arbitrary periodic signal, 

with the AM-ISI model (black) and a Monte-Carlo simulation (grey).   The signal was 

generated as described in Section 2.2, with ω0 = 10π rad/s and with a constant drift 

component.  Although there is some mismatch at low spike densities, the shape and 

periodicity of the model response is clearly appropriate.  Neuron parameters were mτ  

= 10ms, θ = -54mV, Vreset = -80mV,  VL = -70mV, σ=0.1 mV/√Hz, w = 9.00. 
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Figure 6:  Phase-continuous ISI for an OU neuron with the AM-ISI model (black) 

and a Monte-Carlo simulation (grey), driven by an arbitrary periodic signal (the same 

neuron and signal as in Figure 5).  The shape and position of features in the model and 

measured ISIs correspond well.  The error (using (16)) between the curves was E = 

3.2 × 10-3. 

 

Figures 5 and 6 suggest that the approximation is a useful tool for predicting the shape 

of the ISI in the OU neuron, within an appropriate range of signal parameters.  Note 

that in this example, the basic unstimulated ISI was obtained by measurement (using 

Monte-Carlo simulation) rather than by calculation, to demonstrate that a priori 

knowledge of neuron parameters is not necessary.  That this approximation may still 

be used when the neuron model is unspecified, and is only accessible in terms of its 

unstimulated ISI, is a significant advantage which we elaborate on in the following 

section. 
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2.3.2  A Hodgkin-Huxley Neuron 

 

The AM-ISI model may in principle be applied to any spiking neuron for which the 

response of the membrane potential near threshold can be modeled by Eq. 4.  We 

have applied it to the standard Hodgkin-Huxley model (Hodgkin & Huxley, 1952; 

Dayan & Abbott, 2001) – the implementation is described in Appendix I.  We show 

that the approximation is still useful for this model, despite the fact that the overall 

process is no longer strictly first-order Markovian (as the Hodgkin-Huxley neuron 

does not reset to an identical state after each firing event) and therefore the derivation 

in Section 2 above is less appropriate.   

 

Figure 7 shows the cISI and Figure 8 the phase-continuous ISI for a Hodgkin-Huxley 

neuron driven by an arbitrary periodic signal. 
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Figure 7: Conditional ISI for a Hodgkin-Huxley neuron driven by an arbitrary 

periodic signal, with the AM-ISI response model (black) and a Monte-Carlo 

simulation (grey).   The upper graph shows the full non-zero spread of the distribution 

and the lower graph shows detail from the centre of the cISI.  The signal was 

generated as described in Section 2.2, with A = 2×10-3 mA.cm-2, ω0 = 200π rad/s and 

with a constant drift component; w = 13.0 for the model. The signal amplitude is at 

the upper limit for which the model is usefully accurate, as can be seen by the 

mismatch for intervals at which the densities are very low – the accuracy breaks down 

when there are regions in τ with no spikes; nonetheless, the salient features of the cISI 

are correctly modeled in respect of position and amplitude.  The neuron parameters 
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were standard for the model (Dayan & Abott, 2001) and the implementation is 

described in Appendix I. 

 

Figure 8: Phase-continuous ISI for a Hodgkin-Huxley neuron, as in Figure 7, driven 

by an arbitrary periodic signal, with the AM-ISI response model (black) and a Monte-

Carlo simulation (grey).   The upper graph shows the full non-zero spread of the 

distribution and the lower graph shows detail from the centre of the ISI.  The signal 

was generated as described in Section 2.2, with ω0 = 200π rad/s and with a constant 

drift component.  Although there is some mismatch at low spike densities, the shape 

and periodicity of the model response is clearly appropriate.  The absence of the 

lowest peak in the simulation results is, we believe, due to the approximation 
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becoming inaccurate when the negative signal slope exceeds the neuron drift in 

magnitude; larger than appropriate signals were used in these figures for visual 

clarity. 

 

The success of the AM-ISI model in predicting the response of the Hodgkin-Huxley 

neuron demonstrates how the separation of the neuron and the stimulation into 

separate factors allows a useful prediction to be made, even when the underlying 

neural model is not analytically helpful.  All that is required is the ISI of the 

unstimulated neuron, provided the signal meets the criteria in respect of timescales 

and amplitude. 

  

2.4  Accuracy of the Autocorrelation Function 

In a further example, we wish to draw attention to the accuracy of the autocorrelation 

product.  In this case, we use a standard Ornstein-Uhlenbeck neuron (an integrate-

and-fire neuron with ohmic leakage).  As a stimulus, we use a pseudorandom noise 

(PRN) sequence.  The use of PRN sequences requires some motivation as their use 

may not be well known to neuroscientists.  PRN sequences are apparently random 

binary digital (bit) sequences which are constructed so that they have the appearance 

of noise, and they have sharp peaks at zero delay in the autocorrelation function; they 

are in that sense a binary approximation to delta-correlated white noise.  However, it 

is possible to construct sets of PRN sequences which have very low mutual cross-

correlation, i.e. they are orthogonal or nearly so.  Hence, if we correlate one of these 

sequences with itself, we get a well-defined autocorrelation peak at zero delay, but if 

we cross-correlate it with a different member of the set, we get no significant cross-

correlation peak at any delay.  These sets of codes are used in many electronic 
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systems to embed or encode information in a noise-like form, usually by multiplying 

the information with the PRN code, either in the time or frequency domain.  This 

modulated signal is then transmitted for several epochs of the PRN code.  The 

encoded information is recovered by cross-correlating the received signal with the full 

set of codes.  Those codes which do not match to the original modulating code return 

low cross-correlations, whereas the code which does correspond to the modulating 

code produces a significant cross-correlation peak.  This is the basis for the code-

based multiplexing of signals in code-division multiple access (CDMA) 

telecommunications systems such as the GSM mobile telephone network.  This is also 

the method by which time information is transmitted by the satellites of the Global 

Positioning System (GPS) –each satellite repeatedly broadcasts a unique code, and the 

receiver cross-correlates its input with local copies of all possible codes.  The 

correlogram for each local code will contain a peak at a position corresponding to the 

time delay between the local code and the received code, and that time delay can be 

used to infer the time of flight of the signal from the satellite, and hence the distance 

to the satellite.     

 

The particular PRN sequences we use are Gold codes, as used in the GPS system.  

Gold codes are a set of 36 PRN sequences, 1023 bits in length, which have been 

chosen to have extremely sharp autocorrelation peaks (one bit in width) and to be 

nearly orthogonal with each other, thereby making them very useful for CDMA 

communications systems (Sarwate & Pursley, 1980).  The autocorrelation function of 

a PRN code should be relatively flat, with a single sharp peak at intervals 

corresponding to the 1023-bit code length.   
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Pseudorandom codes might seem at first sight to be peculiarly non-biological signals 

to use in a spiking neuron system.  From our point of view they have some significant 

advantages.  Their noise-like character is not dissimilar to the quasi-random spiking 

input that most neurons receive – there may be a weak argument that sine waves are 

more representative of the input to the auditory system, but most real sounds (and real 

auditory nerve signals) are quite irregular, and there are no useful analogies to the sine 

wave in vision input.  More importantly, the sharp correlation peaks produced by 

PRN codes allow exact determination of the presence and accuracy of autocorrelation 

and cross-correlation terms; so we will introduce their use here and return to it in 

Section 3.  In addition, the correlation peaks obtained when autocorrelating or cross-

correlating PRN codes are independent of the signal envelope (which is flat) and the 

phase (which is random), hence emphasizing that what we obtain is a real 

mathematical correlation and not some strange artifact of the integrate-and-fire 

process.  Another way of putting this is that it represents a correlation of encoded 

information rather than other more superficial signal features.  Finally, the increasing 

use of noise signals in physiological experiments, either as direct neural stimulation or 

as auditory input, suggests that the correlative properties of noise-stimulated neurons 

are of interest to the neuroscience community.   

 

A comprehensive overview of the properties and uses of pseudorandom sequences is 

provided in Golomb (1981), and Proakis (2000) explains their use in modern digital 

telecommunications. 

 

In the system of Figure 9, we have used a 1023-bit code with bit length of 0.1 ms, so 

the code length is 0.1023s.  The codes were shifted to have zero mean (i.e. bit levels 
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of ±0.5) and amplitude scaled to a bit amplitude of 100μV.  The code was repeated 

continuously. 

 

Figure 9:  A comparison of the phase-continuous ISI obtained from the AM-ISI 

model (black) and simulated (gray) Ornstein-Uhlenbeck neuron is shown for a 1023-

bit pseudorandom code input.  It can be seen that the sharp peaks in the 

autocorrelation function are matched in the AM-ISI model and Ornstein-Uhlenbeck 

simulation; the inset shows the two curves displaced vertically for clarity.  For a 

1023-bit PRN code with bit period of 0.1 ms, we expect autocorrelation peaks at 

intervals of 102.3ms, as shown.  Neuron parameters were mτ  = 10ms, θ = -54mV, 

Vreset = -80mV,  VL = -70mV, σ=0.1 mV/√Hz, w = 3.00, with the signal scaled to a bit 

amplitude of 100μV.  The mismatch in overall shape between the model and 

measured ISI is due to the noise-like nature of the PRN code, which effectively 

increases the noise parameter, thereby causing a higher, earlier peak in the ISI.  The 
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regular peaks in the measured ISI are an inaccuracy arising from the use of larger than 

appropriate signal amplitudes, to achieve visual clarity. 

 

Figure 9 suggests that the presence of the autocorrelation function in the ISI is not an 

artifact of the signal envelope, or some other type of artifact; that the precision in time 

of the correlation is very high; and that the process outlined in (5)-(10) provides a 

reasonable description of the properties of the system dynamics. 

 

3.  Cross-Correlation Systems 

 

One of the advantages of this model is the ease with which it allows single neuron 

response to small periodic signals to be predicted, both intuitively and 

mathematically.  In this section, we will show how the model allows us to design and 

analyze two different neural systems for cross-correlating input signals. 

 

 We have seen in the above sections that single neurons can produce an output that 

contains the autocorrelation function of the input stimulus.  Autocorrelation functions 

play a significant part in many neural processes; for example, psychoacoustic effects 

such as the pitch shift and missing fundamental effects can be explained if the 

auditory nerve is able to produce an autocorrelation function of the auditory input 

(Colburn, 1966).  However, cross-correlations are much more widely useful in both 

biological neural processing and electrical engineering.   

 

The standard method for cross-correlation in spiking neurons is the coincidence 

detector.  In vision systems this is referred to as an enhanced motion detector (EMD) 
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(Reichardt & Egelhaaf, 1988; Borst & Egelhaaf, 1989).  EMDs are only capable of 

providing correlation output at fixed delays; the mechanisms which we will describe 

here give correlations over an extended range in time.  Cross-correlation forms a basic 

process in many sensory systems – particularly the auditory and vision systems 

(Reichardt & Egelhaaf, 1988; Borst & Egelhaaf, 1989; Jeffares 1948; Colburn, 1996) 

– as well as in associative memory systems (Hassoun, 1993), so a robust cross-

correlation circuit may have some utility in modeling these systems.  The foundations 

of coincidence detection are set out by Srinivasan and Bernard (1976), in a paper 

which describes a mechanism of neural multiplication by a product of probabilities; it 

is this same mechanism, with the probabilities separated in time, that produces the 

correlations observed in the current work. 

 

We show here two methods for producing cross-correlation functions using spiking 

neurons, which have emerged as a result of the explicit separation of autocorrelation 

and neuron dynamics offered by this model.  These methods are inherently 

engineering circuits rather than biologically plausible neural systems, but we think 

they are important as a proof of physical feasibility.  That is to say, they show that the 

autocorrelation and cross-correlation are not ex post facto artefacts of the 

mathematical analysis, but are inherent properties of the spike trains.  We conclude by 

showing how the most useful circuit could be implemented as a physiologically-

plausible four-neuron mutual inhibition network. 
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3.1  Cross-Correlation Extraction from the Autocorrelation Function 

 

The requirement in this case is to correlate an unknown input signal with a known or 

reference signal.  The resulting cross-correlation function gives an indication of the 

similarity between signals over a range of time delays.  We can extract the cross-

correlation function from the difference of the unknown and reference signals, say f(t) 

and g(t) respectively, as follows: 
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        (19) 

For real-valued signals Rfg(τ) = Rgf(-τ) so we do not get the cross-correlation out 

completely unambiguously; nonetheless there are many situations in which the 

following function is useful: 

 

 Rff(τ) + Rgg(τ) - R(f-g)(f-g)(τ) = Rfg(τ)+ Rfg(-τ).                (20)  

 

As an example of how these signals can be extracted, we have constructed an 

electronic circuit (Tapson & Etienne-Cummings, 2007), consisting of two analog 

integrate-and-fire neurons and a digital accumulator, which is able to extract the 

function in (20) above.  A block diagram of the circuit is shown in Figure 10.   It 

consists of integrate-and-fire neurons constructed using simple operational amplifier 

integrators, with digital counters which count the time since the last firing event.  The 

output of each neuron is indicated by an event line, which goes momentarily high 

when the neuron fires, and eight digital lines which carry the parallel output state of 
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an 8-bit counter.  These lines are fed into a differential histogram accumulator.  Each 

time the upper neuron in Figure 10 fires, the accumulator bin corresponding to its 

counter output is incremented (for example, if the count is 233 when the neuron fires, 

bin 233 is incremented by one).  Each time the lower neuron fires, the appropriate bin 

is decremented.  The state of each bin of the differential accumulator therefore reflects 

the difference in interspike-interval densities between the two input signals, thereby 

directly implementing the subtraction as shown in Equation (21) which follows 

below.   

 

We have tested this system extensively with a number of different signals, including 

sums of sinusoids, and digital signals such as the pseudorandom codes mentioned in 

Section 2. 

 

The particular architecture used in this system is based on the expectation that one 

signal will be a reference signal, and the other an unknown signal, whose similarity 

and phase delay with respect to the reference is of interest.  Actual electronic 

implementation is shown in Tapson & Etienne-Cummings (2007), and further results 

in Folowosele et al. (2007). 
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Figure 10:  Architecture of a circuit which extracts cross-correlation terms for two 

signals using electronic spiking neurons and the approach in (19) - (21).  For strictly 

correct implementation of (21) the “down” count should subtract two spikes for each 

firing event.  Further details of an electronic implementation can be found in Tapson 

& Etienne-Cummings (2007). 

 

In Figure 11 we demonstrate how this arrangement would extract the cross-correlation 

products from a smooth, more real-world signal.  The signal is shown in the top panel 

of Figure 11; it is a sum of five sine waves, with frequencies taken randomly from a 

harmonic series of ten possible frequencies, with random amplitudes and phases.  This 

signal was cross-correlated with a copy of itself, delayed by a fixed time (150 ms in 

this example).  We call the signal g(t) and the delayed copy g(t+θ) in the analysis 

which follows. 
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Figure 11:  Signals in the extraction of cross-correlation components by a system 

such as that in Fig 10.  Curve A shows the signal g(t) (constructed as described in the 

text).  Curve B shows the cross-correlation components Rg(t)g(t+θ)+R g(t+θ)g(t) calculated 

mathematically. Curves C and D show the ISIs of the neurons receiving the reference 
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g(t) (D) and (reference minus unknown) g(t)-g(t+θ) signals (C).  Curve E shows the 

differential ISI.  Curve F shows the center portion of the differential ISI (bold line), 

with the cross-correlation curve B (fine line) scaled and overlaid for comparison.  The 

horizontal scale is time in ms.  The neurons were simple I&F models with σ=0.1 

mV/√Hz, θ=15 mV, m= 40 mV/s. 

 

The model is used to predict the output of the system shown in Figure 10 as follows:  

the outputs of the neurons are 
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This final result may be applied to predict the differential ISI curve in the lowest two 

panels of Figure 11.  It can be seen that there is a good match for practical purposes 

between the model and the simulated results, and that this system can be used to 

extract the cross-correlation terms from the two input signals. 

 

 

3.2  Direct Cross-Correlation  

 

Consider the (somewhat contrived) arrangement of two integrate-and-fire neurons in 

Fig 12.  This architecture has been designed so that each neuron remains in an 

inhibited state after firing, until the other neuron fires.   
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Figure 12:  A simple network of two neurons, in which neuron IFN1 is stimulated by 

signal x(t), and neuron IFN2 by signal y(t).  Each spike from IFN1 starts the next 

cycle of IFN2, and inhibits IFN1 until IFN2 spikes.  Each spike from IFN2 starts a 

cycle of IFN1, and inhibits IFN2 until IFN1 spikes.  The potentials on the right show 

the sequence of integrate-and-fire events (with inhibit/start dependencies marked with 

dotted arrows). 

 

We can use our AM-ISI model to predict the firing distributions of the neurons, as 

follows.  We consider the probability densities for the sequence of firing where IFN2 

fires at t0 (and is thereafter inhibited); IFN1 fires at t1, disinhibiting IFN2; and then 

IFN2 fires at t1 + τ.  Note that the neurons are constrained to spike alternately by the 

architecture.  The neurons have the same unstimulated interspike-interval distribution 

ρ(τ), but their conditional interval distributions ρn1(τ|t) and ρn2(τ|t) are different 

because they are subject to different stimuli. 
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The cross-correlation function for signals x(t) and y(t) is present explicitly in (23).  

Note that this interval distribution on τ is not a standard interspike interval, but 

represents a joint interspike-interval distribution of IFN1 and IFN2.  The cross-

correlation can be extracted by a differential histogram, similar to that shown in the 

circuit in Figure 10.   

 

In order to demonstrate this circuit, we have used it in a typical CDMA situation, 

where the amplitude and phase of a particular Gold code has to be extracted from a 

signal containing several codes.  In this case, x(t) would be our input signal, which is 

a linear sum of several Gold codes; and y(t) would be the reference signal, containing 

only one code.  The cross-correlation function should contain only the cross-

correlation peak indicating the amplitude and phase of the matching Gold code in x(t).   

 

Figure 13 shows the autocorrelation function of x(t), which is a linear mixture of two 

Gold codes; this would represent a received signal consisting of a code of interest, 

delayed by some unknown time or phase Δθ, mixed with an unwanted, interfering 
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code.  The cross-correlation function of x(t) and y(t) is shown; this would represent 

the desired product of a demodulation, as it would indicate the amplitude and phase of 

the code in x(t) which we desire to detect; and the outputs of both of the neurons.  It 

can be seen that the neurons have extracted the desired amplitude and phase, with 

opposite polarities of phase delay Δθ as expected.  This shows that the system is able 

to unambiguously extract the cross-correlation components from the two input 

signals. 
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Figure 13:  This shows, from top to bottom:  autocorrelation function of the input 

signals x(t) and y(t) (they have identical autocorrelation functions); cross-correlation 

function of x(t) and y(t); the stationary interspike-interval density of IFN2; the 

stationary interspike-interval density of IFN1.  It can be seen the IFN outputs do not 

include the autocorrelation function, but only (and separately) the positive and 

negative cross-correlation terms for the Gold code that was common to both the input 

and reference signals.  Curves have been displaced vertically for clarity.  Note that 

because the model output of IFN1 includes Rxy(τ), and the output of IFN2 includes 
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Ryx(τ) = - Rxy(τ), the sign of the phase delay is opposite in their outputs.  The phase 

delay was 300 bits in a 1023 bit code.  Neurons were simple I&F models with σ=1.25 

mV/√Hz, θ=1000mV, m= 7.5 mV/ms.   

 

3.3  Physiological Implementation 

 

It might be considered that the circuits shown above are not physiologically plausible.  

We can recast the circuit of Figure 12 in the form of two reciprocal inhibition 

networks combined into a four-neuron mutual inhibition network (Matsuoka, 1987) 

using physiologically plausible neurons, as shown in Figure 14.  Combinations of 

half-center oscillator networks such as these are believed to form central pattern 

generators (CPGs) in animal locomotion, for example (Cohen et al., 1988; Grillner et 

al., 1998; Grillner, 2003). 

 

Figure 14.  A four-neuron mutual inhibition network constructed from two reciprocal 

inhibition networks (half center oscillators).  All connections are inhibitory.  HC1 and 

HC2 are implemented to give bursting behavior, so that they provide sustained 

inhibition to IFN1 and IFN2 alternately.  If HC1 is bursting, HC2 and IFN1 are 

inhibited.  When IFN2 integrates and fires, this halts the bursting of HC1, allowing 

HC2 to begin bursting and thereby sustaining the inhibition of HC1 and IFN2 until 
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v1(t) 
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IFN1 fires.  The signals x(t) and y(t), and v1(t) and v2(t) correspond to those in Figure 

12. 

 

The circuit of Figure 14 requires little fine-tuning to work; the most important tuning 

issue is that the neurons IFN1 and IFN2 should have a hyperpolarization limit, so that 

when they are disinhibited at the start of an integrating cycle, the membrane potential 

starts from a consistent level.   The purpose of the inhibitory connections between 

IFN1 and IFN2 is to ensure that each is at this level immediately following a firing 

event of the other, thereby ensuring that the integration starts at a time and level 

determined by the firing event of the other. 

Figure 15 shows typical waveforms from a network of the type shown in Figure 14. 

 

 

Figure 15:  Typical trajectories of the membrane potentials v(t) for the neurons IFN1, 

IFN2, HC1 and HC2 as shown in Figure 14.  The curves have been displaced 

vertically for clarity.  The vertical scale is indicated by the marker at left, and the 

threshold value for each neuron is indicated by a dotted line.  Each neuron had a 

hyperpolarizing barrier Vhyper = θ-12.5 mV.  It can be seen that neuron HC1 maintains 
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IFN1 in a hyperpolarized state until IFN2 fires; the additional inhibitory connection 

from IFN2 to IFN1, shown in Figure 14, ensures that IFN1 begins integrating at a 

consistent time and potential relative to the firing of IFN2.  Similarly, IFN2 is 

inhibited by HC2, with additional inhibition provided by the firing of IFN1.  The 

neurons were based on the standard OU model, with network equations and 

parameters given in Appendix I. 

 

The output from a circuit implemented as in Figures 14 and 15 is indistinguishable 

from that in Figures 12 and 13, provided that care is taken with the implementation.  

Note however that the firing intervals are no longer first-order intervals for a single 

neuron, but first-order intervals for alternate spikes of IFN1 and IFN2 (this applies to 

both the Figure 12 and Figure 14 implementations).  

 

The circuits and results shown in Figures 10-15 demonstrate that we are able to 

construct useful neural circuits using an intuitive approach which is enabled by the 

simplicity of the model described in this paper.  In addition, it throws some light on a 

possible method for cross-correlation in physiological neural systems.   

 

3.3.1  Downstream Processing of Interspike Interval Outputs 

 

While the differential histogram circuit shown in Figure 10 provides a means for 

useful extraction of the cross-correlation in an engineering application, it remains to 

be confirmed whether ISI-based representation can be found in the nervous system. 

 For example, it is known that cross-correlation is represented in the auditory system 

(in the inferior colliculus) for sound localization (Hancock & Delgutte, 2004; 
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Shackleton et al., 2005).  Furthermore, there is evidence that cross-correlation also 

plays a role in pitch detection (Cedolin & Delgutte, 2005).  For the latter, it is 

postulated that a functional ISI must be computed by populations of neurons in order 

to have a place code for pitch, where individual neurons in the population are broadly 

tuned to a preferred ISI and the response of said neurons represents the frequency of 

occurrence of the preferred ISI.  Moreover, Arbarbanel & Salathi (2006) have recently 

demonstrated a neural circuit based on Hodgkin-Huxley neurons that is capable of 

detecting specific ISI sequences.  Whether these biological systems can perform the 

specific ISI computation proposed in this paper is still an open question, however, for 

detection of simple peaks of significant salience in the ISI, the Arbarbanel & Salathi 

method should suffice.  

 

4.  Conclusions 

 

We have presented a simple approximate model for the interspike-interval density of a 

continuously stimulated integrate-and-fire neuron, which acknowledges the Markov 

nature of the response.  The model allows both the conditional interspike-interval 

density and the phase-continuous stationary interspike-interval density to be 

expressed as products of a term involving only the neural characteristics, and a term 

involving only the signal characteristics.  The approximation shows particularly 

clearly that signal autocorrelations and cross-correlations arise as natural features of 

the interspike-interval density, particularly for small signals and moderate noise, in a 

wide range of neural types. 
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Appendix I:  Simulation and Implementations 

 

A 1.  General Simulation Methods 

Neural models were simulated using MATLAB.  Given the wide number of neuron 

types modelled, and the importance of noise in the model, it was decided to avoid 

using variable-timestep algorithms for integration, but rather to use a simple 

rectangular approximation x(t+Δt) = x(t) + Δt(dx/dt) with sufficiently small timesteps 

to ensure accuracy and stability (and in particular, to ensure sufficient noise 

bandwidth).  Timesteps of 1 and 10 μs were used according to the situation, with 

consistent use of one timestep for each model.  The typical update expression for an 

OU neuron membrane, corresponding to (17) would therefore be of the form: 

v=v-(v-vl)/tm+randn*sigma+signal(mod(t,T)+1); 
 

where v is the membrane potential, vl the reversal potential, tm the membrane time 

constant (in terms of the timestep, not real time), randn a MATLAB function which 

generates normally-distributed random numbers with unity variance, sigma the noise 

amplitude, signal the signal vector, t the time index, and T the length of the signal 

vector (usually the period of the signal fundamental).  The noise and signal would be 

in voltage form, hence there being no need to scale them with membrane impedances.  

The signal would be prescaled prior to the operation above, and have any DC drift 

component added at the same time, to reduce the number of iterated calculations. 

 

When a baseline ISI for the unstimulated neuron was required, these were calculated 

using (16) for I&F neurons, and generated by simulation in the case of OU and HH 

neurons.  A series of tests were performed to compare curves from (16) with 
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simulated unstimulated I&F neurons, in order to provide a measure of the number of 

spikes required in a simulation to provide a reasonably smooth and accurate baseline 

ISI.  It was found that ISIs of 107 spikes would reliably give errors of E < 10-3, as 

would ISIs of 106 spikes if these were post-filtered with a simple sliding window 

average across bins.  This conclusion was tested for OU and HH neurons by 

measuring the error between baseline ISIs for identical neurons, e.g. by measuring the 

errors between two supposedly identical ISIs.  In calculating errors using (16), it was 

assumed that a baseline ISI with an error E < 10-3 was sufficiently accurate for 

calculating model errors of  E ≥ 10-2, i.e. an order of magnitude margin of accuracy 

between the baseline and the tested ISI was considered to be adequate. 

 

When measuring ISIs for stimulated neurons, in most cases the simulation was run 

until approximately 106 spikes had accumulated in the ISI, although a numerical test 

for “smoothness” of the ISI, based on rms variation between adjacent bins, was also 

used in some cases to terminate simulation.  For the data used for figures in this paper, 

visual smoothness was often used as a criterion for terminating the simulation. 

 

A 2.  The Hodgkin-Huxley Model 

The Hodgkin-Huxley model used in this work was that described in Dayan & Abbott, 

2001, as follows: 

A
I

i
dt

tdvc e
mm +−=)(  

where cm is the membrane capacitance per unit area, im is the membrane current per 

unit area, Ie is the electrode current (which we can use to denote a generic external 

current source or sink) and A is the membrane area.  The membrane current depends 

on the leakage and ionic currents, conductances (g) and reversal potentials (E): 
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where the subscripts L, K and Na refer to leakage, potassium and sodium channels 

respectively.  n, m and h are activation variables governed by: 
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dx
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where x ∈  (m,n,h) is the relevant activation variable.  The specific rate functions α, β 

are: 

))55(1.0exp(1
)55(01.0)(

+−−
+=

v
vvnα   

))65(0125.0exp(125.0)( +−= vvnβ  

))40(1.0exp(1
)40(1.0)(
+−−

+=
v

vvmα   

))65(0556.0exp(4)( +−= vvmβ  

))65(05.0exp(07.0)( +−= vvhα   

))35(1.0exp(1
1)(

+−+
=

v
vnβ  

for αx, βx in ms-1 and v in mV. 

 

The conductance, reversal potential and membrane parameters used were gL = 0.003 

mS/ mm2, gK = 0.036 mS/ mm2, gNa = 1.2 mS/mm2, EL = -54.3mV, EK = -77mV, ENa 

= 50mV, A =1.26×10-5 cm2 and cm = 1 μF/cm2.  The initial values of v, n, m and h 

were -65mV, 0.318, 0.053, and 0.595 respectively.   

 

In simulation, the differential equations were recast as difference equations with a 

timestep of 10μs. For both the conditional and phase-continuous simulation the 

neuron was never reset after spiking, but simply allowed to free-run after the initial 
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start.  A threshold of -15mV was used to define the spiking level; in conditional 

simulation, the signal (but not the neuron) was reset to its starting phase after an 

upward transition across this threshold.  For continuous stimulation, a spike event was 

recorded at the time of transition, but neither signal nor neuron were reset at any 

stage. 

 

A 3.  The Four-Neuron Mutual Inhibition Network 

 

The four-neuron mutual inhibition network was modeled using the framework 

provided by Matsuoka (1987), using OU neurons.  The network is described using 

vectors of weights and a connection matrix as follows: 

mAgσζyasvvτm +++×−+−=
dt
d  

where s is the vector of reversal potentials (scaled for impedance), a is the neuron 

connection matrix, y is the neuron output (spike) vector, and all the other variables 

have their usual meaning, but are vectors rather than scalars.  The values used for the 

network were: 
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A mV.  The output spike matrix y had elements of unity if 

a spike occurred for the corresponding neuron in a given timestep, or zero otherwise. 
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This network was used successfully, but incurred occasional errors as a result of 

having two neurons spike simultaneously in the same timestep.  The precedence of 

apparently simultaneous spikes was forced by adjusting a as follows: 

⎥
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a .  This violates the inhibition-only structure of the 

network; the alternative would be to increase the timestep precision or tolerate the 

small number of errors. 

 

 

 


