Distance learning in discriminative vector
guantization

Petra Schneidér Michael Biehl, Barbara Hammér

LInstitute for Mathematics and Computing Science, Universit@roningen
P.O. Box 407, 9700 AK Groningen, The Netherlands
{p. schnei der, m bi ehl }@ ug. nl

2|nstitute of Computer Science, Clausthal University of Tealbgy
Julius Albert Strasse 4, 38678 Clausthal - Zellerfeld, Geryna

hanmrer @ n. t u- cl aust hal . de

Abstract

Discriminative vector quantization schemes such as learning vectotizaran
tion (LVQ) and extensions thereof offer efficient and intuitive classfienich are
based on the representation of classes by prototypes. The originaldagtiow-
ever, rely on the Euclidean distance corresponding to the assumptidhetdedta
can be represented by isotropic clusters. For this reason, extenstbeswethods
to more general metric structures have been proposed such asioel@gaptation
in generalized LVQ (GLVQ) and matrix learning in GLVQ. In these apphes¢
metric parameters are learned based on the given classification taskatia data
driven distance measure is found. In this article, we consider full mattapta-
tion in advanced LVQ schemes; in particular, we introduce matrix learnirgg to
recent statistical formalization of LVQ, robust soft LVQ, and we coregthe re-
sults on several artificial and real life data sets to matrix learning in GL\Mgchv
is a derivation of LVQ-like learning based on a (heuristic) cost functibnall
cases, matrix adaptation allows a significant improvement of the clasisificec-
curacy. Interestingly, however, the principled behavior of the modglsrespect
to prototype locations and extracted matrix dimensions shows severattéris-
tic differences depending on the data sets.

Keywords: learning vector quantization, generalized LVQ, robust soft LVQ, met-
ric adaptation

1 Introduction

Discriminative vector quantization schemes such as Iegvector quantization (LVQ)
are very popular classification methods due to their intitjtiand robustness: they
represent the classification by (usually few) prototypesctvitonstitute typical rep-
resentatives of the respective classes and, thus, alloveat dinspection of the given
classifier. Training often takes place by Hebbian learnirgdhghat very fast and simple
training algorithms result. Further, unlike the perceptoothe support vector machine,



LVQ provides an integrated and intuitive classification middr any given number of
classes. Numerous modifications of original LVQ exist whegtend the basic learning
scheme as proposed by Kohonen towards adaptive learniegy faster convergence,
or better approximation of Bayes optimal classificatiomame just a few (Kohonen,
1997). Despite their popularity and efficiency, most LVQesties are solely based on
heuristics and a deeper mathematical investigation of theets has just recently been
initiated. On the one hand, their worst case generalizaiggrability can be limited in
terms of general margin bounds using techniques from caatipotl learning theory
(Hammer et al., 2005; Crammer et al., 2003). On the other hidwedcharacteristic
behavior and learning curves of popular models can exaetiyestigated in typical
model situations using the theory of online learning (Bi&thosh, & Hammer, 2007).
Many questions, however, remain unsolved such as conveegard typical prototype
locations of heuristic LVQ schemes in concrete, finite fragrsettings.

Against this background, researchers have proposed t&mdrVQ which can
directly be derived from an underlying cost function whistoptimized during train-
ing e.g. by means of a stochastic gradient ascent/descemera@ized LVQ (GLVQ)
as proposed by Sato and Yamada is one example (Sato & Yam@@®): lits intu-
itive (though heuristic) cost function can be related to aimization of classification
errors and, at the same time, a maximization of the hypahesairgin of the classi-
fier which characterizes its generalization ability (Hammigal., 2005). The resulting
algorithm is indeed very robust and powerful, however, amcexathematical anal-
ysis is still lacking. A very elegant and mathematically Mfelinded alternative has
been proposed by Seo and Obermayer: in Seo & Obermayer (20@8)tistical ap-
proach is introduced which models given classes as mixafr€aussians. Prototype
parameters are optimized by maximizing the likelihoodorati correct versus incor-
rect classification. A learning scheme which closely redemhvVQ2.1 results. This
cost function, however, is unbounded such that numeristhbilities occur which, in
practice, cause the necessity of restricting updates tofdan awindowclose to the
decision boundary. The approach of Seo & Obermayer (2008)sofin elegant alter-
native: a robust optimization scheme is derived from a mesdtion of the likelihood
ratio of the probability of correct classification versus total probability in a Gaus-
sian mixture model. The resulting learning scheme, roftyQ (RSLVQ), leads
to an alternative discrete LVQ scheme where prototypes daptad solely based on
misclassifications.

RSLVQ gives a very attractive model due to the fact that atlartying model
assumptions are stated explicitly in the statistical fdation — and, they can easily be
changed if required by the application scenario. Besidesyésulting model shows
superior classification accuracy compared to GLVQ in a i€ settings as we will
demonstrate in this article.

All these methods, however, suffer from the problem thasgifacation is based
on a predefined metric. The use of Euclidean distance, foanos, corresponds to
the implicit assumption of isotropic clusters. Such models only be successful if
the data displays a Euclidean characteristic. This is@asily problematic for high-
dimensional data where noise accumulates and disruptddbsification, or hetero-
geneous data sets where different scaling and correlatibtiee dimensions can be
observed. Thus, a more general metric structure would befioéd in such cases. The



field of metric adaptation constitutes a very active rede#opic in various distance
based approaches such as unsupervised or semi-supefuistedicg and visualization
(Arnonkijpanich et al., 2008; Kaski, 200%);nearest neighbor approaches (Strickert et
al., 2007; Weinberger et al., 2006) and learning vector tization (Hammer & Vill-
mann, 2002; Schneider, Biehl, & Hammer, 2008). We will foongmatrix learning in
LVQ schemes which accounts for pairwise correlations dfuiess, i.e. a very general
and flexible set of classifiers. On the one hand, we will irigas¢ the behavior of
generalized matrix LVQ (GMLVQ) in detail, a matrix adaptatischeme for GLVQ
which is based on a heuristic, though intuitive cost funtti©n the other hand, we
will develop matrix adaptation for RSLVQ, a statistical nebfbr LVQ schemes, and
thus we will arrive at a uniform statistical formulation fprototype and metric adap-
tation in discriminative prototype-based classifiers. Vi imtroduce variants which
adapt the matrix parameters globally based on the traimhgrdocally for every given
prototype or mixture component, respectively.

Matrix learning in RSLVQ and GLVQ will be evaluated and congzhin a variety
of learning scenarios: first, we consider test scenariogevhgor knowledge about
the form of the data is available. Furthermore, we compagentkethods on several
benchmarks from the UCI repository (Newman et al., 1998).

Interestingly, depending on the data, the methods showrdift characteristic be-
havior with respect to prototype locations and learnediggtAlthough the classifica-
tion accuracy is in many cases comparable, they display gliffierent behavior con-
cerning their robustness with respect to parameter chaivg¢he characteristics of the
solutions. We will point out that these findings have conseges on the interpretabil-
ity of the results. In all cases, however, matrix adaptaléauls to an improvement of
the classification accuracy, despite a largely increasetbeu of free parameters.

2 Advanced learning vector quantization schemes

Learning vector quantization has been introduced by Kohgkehonen, 1997), and a
variety of extensions and generalizations exist. Here,agad on approaches based on
a cost function, i.e. generalized learning vector quatiinaGLVQ) and robust soft
learning vector quantization (RSLVQ).

Assume training daté¢,, v;}!_, € RY x {1,...,C} are given,N denoting the
data dimensionality an@' the number of different classes. An LVQ netwdik =
{(wj,c(w;)) : RN x{1,...,C}}7, consists of a numben of prototypesw € R
which are characterized by their location in feature spacktheir class label(w) €
{1...,C}. Classification is based on a winner takes all scheme. A data € RY
is mapped to the label£) = c(w;) of the prototype, for whickl(§, w;) < d(€§, w;)
holdsY;j # i, whered is an appropriate distance measure. Hegde,mapped to the
class of the closest prototype, the so-called winner. Qftas chosen as the squared
Euclidean metric, i.ed(¢, w) = (¢ — w)T (¢ — w).

LVQ algorithms aim at an adaptation of the prototypes suel @hgiven data set
is classified as accurately as possible. The first LVQ sch@mgmsed heuristic adap-
tation rules based on the principle of Hebbian learninghsagl VQ2.1, which, for
a given data poing, adapts the closest prototype™ (¢) with the same class label



c(wt(&)) = c(€) into the direction oft: Aw™(¢) = a - (¢ — w™(€)) and the clos-
est incorrect prototype— (£) with a different class label(w = (£€)) # ¢(&) is moved
into the opposite directiomAw ™ = —a - (£ — w™(&)). Here,a > 0 is the learning
rate. Since, often, LVQ2.1 shows divergent behavior, a mindule is introduced, and
adaptation takes place onlydf*™ (¢) andw ™ (¢) are the closest two prototypes&f
Generalized LVQlerives a similar update rule from the following cost fuonti

! wt -
(&) —d(&;, w™(£))
Ecivq = Z P (p Z ( wt(g,)) +d(&;, ’w(ﬁi))) - O

i=1 i=1

® is a monotonic function such as the logistic function or tiheniity which is used
throughout the following. The numerator of a single summizmegative if the clas-
sification of ¢ is correct. Further, a small value corresponds to a claasdit with
large margin, i.e. large difference of the distance to tlses$t correct and incorrect
prototype. In this sense, GLVQ tries to minimize the numienisclassifications and
to maximize the margin of the classification. The denominatzounts for a scaling
of the terms such that the argumentsdofare restricted to the intervél-1,1) and
numerical problems are avoided. The cost function of GLV@ loarelated to a com-
promise of the minimization of the training error and the gy@fization ability of the
classifier which is determined by the hypothesis margin (3esnmer et al. (2003);
Hammer et al. (2005)). The connection, however, is not exée update formulas
of GLVQ can be derived by means of the gradientsfiyvq (see Sato & Yamada
(1996)). Interestingly, the learning rule resembles LVIJA.the sense that the closest
correct prototype is moved towards the considered data paththe closest incorrect
prototype is moved away from the data point. The size of tHaptation step is deter-
mined by the magnitude of terms stemming fréaryq; this change accounts for a
better robustness of the algorithm compared to LVQ2.1.

Unlike GLVQ, robust soft learning vector quantizatida based on a statistical
modelling of the situation which makes all assumptionsiekpthe probability density
of the underlying data distribution is described by a migtorodel. Every component
j of the mixture is assumed to generate data which belongdymae of theC classes.
The probability density of the full data set is given by

m

pEW) = Z Z p(&l5)P @)

i=1 jic(W;)=

where the conditional density(&|;) is a function of prototypev;. For example, the
conditional density can be chosen to have the normalizedregial formp(&|j) =
K(j) -exp f(&, w;, 032), and the prioP(j) can be chosen identical for every prototype
w;. RSLVQ aims at a maximization of the likelihood ratio:

Ersivq = Zlog ( 62 yﬁ/VV;/)) ) 3

wherep(&,, y;|W) is the probability density th&g; is generated by a mixture compo-
nent of the correct clasg andp(&,;|W) is the total probability density of,. This



implies

P& uW) = > p&l)PG) pEIW) =3 plEl) P 4)

Jie(W;)=y;

The learning rule of RSLVQ is derived froirsivg by a stochastic gradient ascent.
Since the value oErsiyq depends on the position of all prototypes, the complete set
of prototypes is updated in each learning step. The gradfemsummand oFrsrvq

for data point(&, y) with respect to a prototypa; is given by (see the appendix)

5 (10 BEHE)) = 6, (PG16) - (J|5))Tj
(1 (5 ) ( (5,’(1)], JQ)
- (1= J|§)77 )

wj

where the Kronecker symbé), . ) tests whether the labelsandc(w;) coincide.
In the special case of a Gaussian mixture model witk= o> and P(j) = 1/m for all
j, we obtain

_d(£7 w)

f(£7w702) = T 992 (6)

whered(£, w) is the distance measure between data ppand prototypaw. Original
RSLVQ is based on the squared Euclidean distance. Thisaspli

(- w)T(E-w) of _

202 T dw

1
f(é,w,0'2> = - ;(ﬁ_w) (7)
Substituting the derivative of in Eq. (5) yields the update rule for the prototypes in
RSLVQ

[ (P(il€) - PUIE)E —wy), c(w;) =1,
w5 =52 { —P(jl€)(€ —w,), c(w;) £y, ®

wherea; > 0 is the learning rate. In the limit of vanishing softness the learning
rule reduces to an intuitive cridparning from mistakef_FM) scheme, as pointed out
in Seo & Obermayer (2003): in case of erroneous classificatite closest correct
and the closest wrong prototype are adapted along the idingoointing to/from the
considered data point. Thus, a learning scheme very sitoile¥Q2.1 results which
reduces adaptation to wrongly classified inputs close taéuwoision boundary. While
the soft version as introduced in Seo & Obermayer (2003%l¢@d good classification
accuracy as we will see in experiments, the limit rule hasesprimcipled deficiencies
as shown in Biehl, Ghosh, & Hammer (2007).

3 Matrix learning in advanced LVQ schemes

The squared Euclidean distance corresponds to the impBsiimption of isotropic
clusters, hence the metric is not appropriate if data dimesshow a different scaling



or correlations. A more general form can be obtained by ehterthe metric by a full
matrix

dp (€, w) = (€ —w)TA(E —w), (9)

whereA is anN x N-matrix which is restricted to positive definite forms to cartee
metricity. We can achieve this by substituting= Q7Q, whereQ € RM*~_ Further,

A has to be normalized after each learning step to preventgogitam from degen-
eration. Two possible approaches are to resyict\;; or det(A) to a fixed value, i.e.
either the sum of eigenvalues or the product of eigenvakiesnstant. Note that nor-
malizingdet(A) requiresM > N, since otherwisé\. would be singular. In this work,
we always sefi/ = N. Since an optimal matrix is not known beforehand for a given
classification task, we adaptor 2, respectively, during training. For this purpose, we
substitute the distance in the cost functions of LVQ by th& neeasure

da(€,w) = Y (& — wi) Qi (& — w;). (10)

.3,k

Generalized matrix LVQGMLVQ) extends the cost functiofgryvq by this more
general metric and adapts the matrix paramefgystogether with the prototypes by
means of a stochastic gradient descent, see Schneidel;, 8igahmmer (2008) for de-
tails of the derivation. Note that the constraidts A;; = const. or det(A) = const.
are simply achieved by means of a normalization of the maitftier every adaptation
step.

It is possible to introduce one global matfixwhich corresponds to a global trans-
formation of the data space, or, alternatively, to intraglaa individual matrix?; for
every prototype. The latter corresponds to the possitidigdapt individual ellipsoidal
clusters around every prototype. In this case, the squaseahde is computed by

(&, wj) = (€ —w;)TA;(€ —w,) (11)

We refer to the extension of GMLVQ with local relevance ns by the terntocal
GMLVQ(LGMLVQ) (Schneider, Biehl, & Hammer, 2008).

Now, we extend RSLVQ by the more general metric introduceldn (9). The
conditional density function obtains the fowt¢|j) = K(5) - exp (&, w, 02, Q) with

—(£—w)TOTO(§ — w)

f(£7 w, 027 Q) = 252 ) (12)
O~ Lorae-w) = HAE-w) (13
agjlcm =- % (Z(fi = w;) i (€m — wm)> : (14)
Combining Eq.s (5) and (13) yields the new update rule foiptia¢otypes:
o [ (€)= P(jIE) A —w;), c(w;) =y,
awy= L e e o T ey e



Taking the derivative of the summaititksiyq for training sampleg, y) with respect
to a matrix elemenf);,,, leads us to the update rule (see the appendix)
AQl’m, = - &; .
g
Z [(5y,c(wj) (Py(jl&) — P(j1€)) — (1 = 0y cqw),)) P(ﬂﬁ)) :

(m&wm@mwmﬂ, (16)

whereay > 0 is the learning rate for the metric parameters. The algoritased on
the update rules in Eq.s (15) and (16) will be caltedtrix RSLVQIMRSLVQ) in the

following. Similar to local matrix learning in GMLVQ, it islao possible to train an
individual matrixA; for every prototype. With individual matrices attached liqpeo-

totypes, the modification of (15) which includes the locakmcas A ; is accompanied
by (see the appendix)

Qg

AQj’lm - _ﬁ .

[(5y,c(wj)(Py(j|€) - P(jl§)) — (1 - 5y,c(w,-))P(j|5))'

(mxs—w»h@m—wmaﬂ, (17)

under the constrairk (j) = const. for all j. We term this learning rull®cal MRSLVQ
(LMRSLVQ). Due to the restriction to constant normalizatifactorsK (j), the nor-
malizationdet(A ;) = const. is assumed for this algorithm.

Note that under the assumption of equal prid¥g), a classifier using one pro-
totype per class is still given by the standard LVQ classifger— c(w;) for which
da,; (§,w;) is minimum. In more general settings, nearest prototypssifiaation
should coincide with the class of maximum likelihood ratio fost inputs since proto-
types are usually distant from each other comparect tdnterestingly, the generaliza-
tion ability of this function class has been investigate@amneider, Biehl, & Hammer
(2008) including the possibility of adaptive local matscaNorst case generalization
bounds which depend on the number of prototypes and the hggistmargin, i.e. the
minimum difference between the closest correct and wrootpppe, can be found
which are independent of the input dimensionality (in gaftr independent of the
matrix dimensionality), such that good generalizationatsiity can be expected from
these classifiers. We will investigate this claim in seversgderiments. In addition, we
will have a look at the robustness of the methods with resjpeayperparameters, the
interpretability of the results, and the uniqueness of élagrled matrices.

Although GLVQ and RSLVQ constitute two of the most promisitingoretical
derivations of LVQ schemes from global cost functions, thaye so far not been com-
pared in experiments. Further, matrix learning offers kisty extension of RSLVQ
since it extends the underlying Gaussian mixture model tdsvéhe general form of



arbitrary covariance matrices, which has not been intreduar tested so far. Thus,
we are interested in several aspects and questions whictidshe highlighted by the
experiments:

e What is the performance of the methods on real life data setsfefent charac-
teristics? Can the theoretically motivated claim of goodagalization ability be
substantiated by experiments?

e What is the robustness of the methods with respect to metapsess such as
o2?

e Do the methods provide meaningful (representative) pyptst or does the pro-
totype location change due to the specific learning rule disariminativeap-
proach?

e Are the extracted matrices meaningful? In how far do thefedibetween the
approaches?

e Do there exist systematic differences in the solutions dobg RSLVQ and
GLVQ (with / without matrix adaptation)?

We first test the methods on two artificial data sets where tiieiying density is
known exactly, which are designed for the evaluation of maiaptation. Afterwards,
we compare the algorithms on benchmarks from UCI (Newmah,et398).

4 Experiments

With respect to parameter initialization and learning emeealing, we use the same
strategies in all experiments. The mean values of randorsessilof training samples
selected from each class are chosen as initial states ofrtitetypes. The hyper-
parameter? is held constant in all experiments with RSLVQ, MRSLVQ anccab
MRSLVQ. The learning rates are continuously reduced in these of learning. We
implement a schedule of the form

Q

ai(t) = Tre(t—1)

(18)

(¢ € {1,2}), wheret counts the number training epochs. The factdetermines the
speed of annealing and is chosen individually for everyiappbn. Special attention
has to be paid to the normalization of the relevance matridéth respect to the inter-
pretability, it is advantageous to fix the sum of eigenvaloes certain value. Besides,
we observe that this approach shows a better performandeamihg behaviour com-
pared to the restriction of the matrices’ determinant. R teason, the normalization
>-;Ai; = 1is used for the applications in Sec. 4.1 and the last apjitan Sec.
4.2, since we do not discuss the adaptation of local mattloer®. We initially set
A= % - 1, which results indy being equivalent to the squared Euclidean distance.
Note that, in consequence, the distance measure in RSLV@hY® has to be nor-
malized to one as well to allow for a fair comparison with ®spto learning rates.



Accordingly, the RSLVQ- and GLVQ prototype updates and thecfion f in Eq. (7)
have to be weighted by/N. Training of local MRSLVQ in the first applications of
Sec. 4.2 requires the normalizatidet(A;) = 1. The local matrices\; are initialized
by the identity matrix in this case.

4.1 Artificial Data

In the first experiments, the algorithms are applied to thi§icaal data from Bojer et
al. (2001) to illustrate the training of an LVQ-classifiersked on the alternative cost
functions with fixed and adaptive distance measure. Thesktal and 2 comprise
three-class classification problems in a two dimensionatspEach class is split into
two clusters with small or large overlap, respectively (Big 1). We randomly select
2/3 of the data samples of each class for training and usethaining data for testing.
According to the a priori known distributions, the data igresented by two prototypes
per class. Since we observe that the algorithms based or3bé@Rcost function are
very sensitive with respect to the learning parameterrggstislightly smaller values
are chosen to train a classifier with (M)RSLVQ compared to I{KQ. We use the
settings

GM)LVQ: a; = 0.005, as = 0.001
(M)RSLVQ: a; =5-107%, ap = 1- 1074

¢ = 0.001 and perform 1000 sweeps through the training set. The segrdsented in
the following are averaged over 10 independent constatiatof training and test set.
We apply several different values from the interval [0.001, 0.015] and present the
simulations giving rise to the best mean performance orr#ieing sets.

The results are summarized in Tab. 1. They are obtained hdthyperparameters
settingso?,;(RSLVQ) = 0.002 ando?2,,(MRSLVQ) = 0.002, 0.003 for data set 1
and 2, respectively. The use of the advanced distance neegiglats only a slight im-
provement compared to the fixed Euclidean distance, simcdistributions do not have
favorable directions to classify the data. On data set 1, @Bvid RSLVQ show nearly
the same performance. However, the prototype configuatidentified by the two
algorithms vary significantly (see Fig. 1). During GLVQitiag, the prototypes move

Table 1: Mean rate of misclassification (in %) obtained by the differ@gorithms on
the artificial data sets 1 and 2 at the end of training. Theegln brackets are the
variances.

Data set 1 Data set 2
Algorlthm Etrain Etest Etrain Etest

GLVQ 2.0(0.02) 2.7(0.07) 19.2(0.9) 24.2(1.9)
GMLVQ 2.0 (0.02) 27(0.07) 186(0.7) 23.0(1.6)
RSLVQ 1.5(0.01) 3.7(0.04) 12.8(0.07) 19.3(0.3)

MRSLVQ 1.5(0.01) 3.7(0.02) 12.3(0.04) 19.3(0.3)




close to the cluster centers in only a few training epoctsylt@g in an appropriate
approximation of the data by the prototypes. On the contpaptotypes are frequently
located outside the clusters, if the classifier is traindtl thie RSLVQ-algorithm. This
behavior is due to the fact that only data points lying claséhe decision boundary
change the prototype constellation in RSLVQ significansigeg Eq. (8)). As depicted
in Fig. 2, only a small number of training samples are lyinghie active region of the
prototypes while the great majority of training sampleaiatt only tiny weight values
in Eq. (8) which are not sufficent to adjust the prototypeshi data in reasonable
training time. This effect does not have negative impacthendassification of the
data set. However, the prototypes do not provide a reasergigroximation of the
data.

The prototype constellation identified by RSLVQ on data set2esents the classes
clearly better (see Fig. 1). Since the clusters show sigmifioverlap, a sufficiently
large number of training samples contributes to the legrpimcess (see Fig. 2) and
the prototypes quickly adapt to the data. The good apprdiomaf the data is ac-
companied by an improved classification performance coetptr GLVQ. Although
GLVQ also places prototypes close to the cluster centeesusle of the RSLVQ-cost
function gives rise to the superior classifier for this daga Jhis observation is also
confirmed by the experiments with GMLVQ and MRSLVQ.

To demonstrate the influence of metric learning, data setgemerated by em-
bedding each samplg¢ = (&,&) € R? of data set 2 inR!° by choosing: &3 =
& +m, ... & = &1+ na, Wheren; comprises Gaussian noise with variances 0.05, 0.1,
0.2 and 0.5, respectively. The featutgs. . ., &1 contain pure uniformly distributed
noise in [-0.5, 0.5] and [-0.2, 0.2] and Gaussian noise withances 0.5 and 0.2, re-
spectively. Hence, the first two dimensions are most infokedo classify this data
set. The dimensions 3 to 6 still partially represent dimamdi with increasing noise
added. Finally, we apply a random linear transformatiorh@stamples of data set 3 in
order to construct a test scenario, where the discrimigatiructure is not in parallel
to the original coordinate axis any more. We refer to thi:det data set 4. To train
the classifiers for the high-dimensional data sets we useahe learning parameter
settings as in the previous experiments.

Table 2: Mean rate of misclassification (in %) obtained by the diffeér@gorithms on
the artificial data sets 3 and 4 at the end of training. Theegln brackets are the
variances.

Data set 3 Data set 4
Algonthm Etrain Etest Etrain Etest

GLVQ  235(0.1) 38.0(0.2) 31.2(0.1) 41.0(0.2)
GMLVQ 12.1(0.1) 24.0(0.4) 14.5(0.1) 30.6(0.5)

( (
RSLVQ  4.1(0.1) 33.2(0.5) 11.7(0.1) 36.8(0.2)
MRSLVQ 3.9(0.1) 29.5(0.4) 8.0(0.1) 32.0(0.2)
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(c) Data set 3. Left: GMLVQ prototypes. Right: MRSLVQ protpes. The plots
relate to the first two dimensions after projecting the daththe prototypes with
Qamrvg andQarrsLv Q. respectively.

Figure 1: Artificial training data sets and prototype constellati@entified by GLVQ,
RSLVQ, GMLVQ and MRSLVQ in a single run.
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(a) Data set 1. Left: Attractive forces.
the hyperparameter? = 0.002.

(b) Data set 2. Left: Attractive forces. Right: Repulsivectes. The plots relate to
the hyperparameter? = 0.002.

Figure 2: Visualization of the update factof&, (j|€) — P(j|€)) (attractive forces)
andP(j|€) (repulsive forces) of the nearest prototype with correctiacorrect class
label on data sets 1 and 2. It is assumed that every data pailassified correctly.
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The obtained mean rates of misclassification are reportda@lin 2. The results
are achieved using the hyperparameter settif@ﬁ(RSLVQ) = 0.002, 0.003 and
o2,:(MRSLVQ) = 0.003 for data set 3 and 4, respectively. The performance of GLVQ
clearly degrades due to the additional noise in the data.edewyby adapting the met-
ric to the structure of the data, GMLVQ is able to achieve lyghe same accuracy on
data sets 2 and 3. A visualization of the resulting relevana&ix Agarrv g is pro-
vided in Fig. 4. The diagonal elements turn out that the aigartotally eliminates the
noisy dimensions 4 to 10, which, in consequence, do not iboiér to the computation
of distances any more. As reflected by the off-diagonal etemehe classifier addi-
tionally takes correlations between the informative disiens 1 to 3 into account to
quantify the similarity of prototypes and feature vectdrderestingly, the algorithms
based on the statistically motivated cost function shoangtioverfitting effects on this
data set. Obviously, the number of training examples ingpgdication is not sufficient
to allow for an unbiased estimation of the correlation neaiof the mixture model.
MRSLVQ does not detect the relevant structure in the daticiiritly to reproduce
the classification performance achieved on data set 2. Hpectve relevance matrix
trained on data set 3 (see Fig. 4) depicts, that the algotbes not totally prune out
the uninformative dimensions. The superiority of GMLVQ st application is also
reflected by the final position of the prototypes in featurecep(see Fig. 1). A compa-
rable result for GMLVQ can even be observed after trainirgdlyorithm on data set
4. Hence, the method succeeds to detect the discrimindtivetsre in the data, even
after rotating or scaling the data arbitrarily (see Figl. 4)

4.2 Real life data

Image segmentation data set

In a second experiment, we apply the algorithms to the imagenentation data set
provided by the UCI repository of Machine Learning (Newmaale 1998). The data
set contains 19-dimensional feature vectors, which enddterent attributes of 33
pixel regions extracted from outdoor images. Each regi@ssgned to one of seven
classes (brickface, sky, foliage, cement, window, pathssg). The features 3-5 are
(nearly) constant and are eliminated for these experimé&ss further preprocessing
step, the features are normalized to zero mean and uninearid he provided data is
split into a training and a test set (30 samples per clasgdorihg, 300 samples per
class for testing). In order to find useful values for the lippeameter in RSLVQ and
related methods, we randomly split the test data in a vadidatnd a test set of equal
size. The validation set is not used for the experiments GithLVQ. Each class is
approximated by one prototype. We use the parameter setting

(Local) G(M)LVQ: a7 = 0.01, ag = 0.005, ¢ = 0.001
(Local) (M)RSLVQ:«a; = 0.01, g = 0.001, ¢ = 0.01

and test values fos2 from the interval [0.1, 4.0]. The algorithms are trained $or
few thousand epochs. In the following, we always refer toakgeriments with the
hyperparameter resulting in the best performance on théatein set. The respective
values arer2 , (RSLVQ) = 0.2, 02 ,(MRSLVQ) = 0.75 ando2,,(LMRSLVQ) = 1.0.

opt opt opt
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The obtained classification accuracies are summarizedbin 3a For both cost
function schemes the performance improves with increasargplexity of the dis-
tance measure, except for Local MRSLVQ which shows overtjtéffects. Remark-
ably, RSLVQ and MRSLVQ clearly outperform the respectiveM@.methods on this
data set. Regarding GLVQ and RSLVQ, this observation islsbiased on different
prototype constellations. The algorithms identify simi@for classes with low rate of
misclassification. Differences can be observed in caseatbfypes, which contribute
strongly to the overall test error. For demonstration pagsowe refer to classes 3 and
7. The mean class specific test errors gie, = 25.5% andel,,, = 1.2% for the
GLVQ classifiers and?,,, = 10.3% ande],,, = 1.2% for the RSLVQ classifiers. The
respective prototypes obtained in one cross validatiorarervisualized in Fig. 3. It
depicts that the algorithms identify nearly the same reprigive for class 7, while
the class 3 prototypes reflect differences for the alteradé@arning strategies. This
finding holds similarly for the GMLVQ and MRSLVQ prototypdsowever, it is less
pronounced (see Fig. 3).

The varying classification performance of the two latterhmods also goes back to
different metric parameter settings derived during tragni Comparing the relevance
matrices (see Fig. 4) shows that GMLVQ and MRSLVQ identify #ame dimensions
as being most discriminative to classify the data. The featwhich achieve the high-
est weight values on the diagonal are the same in both casésoR, that the feature
selection by MRSLVQ is more pronounced. Interestinglyfedénces in the prototype
configurations mainly occur in the dimensions evaluated ast important for classi-
fication. Furthermore, based d;/v ¢, distances between prototypes and feature
vectors obtain much smaller values compared to the MRSL\&frirn This is depicted
in Fig. 5 which visualizes the distributions of the distasmdd anddK to the closest
correct and incorrect prototype. After normalization, 90%all test samples attain
distancesiJ < 0.2 by the GMLVQ classifiers. This holds for only 40% of the featur
vectors, if the MRSLVQ classifiers are applied to the datais Tiservation is also

Table 3: Mean rate of misclassification (in %) obtained by the différ@gorithms on
the image segmentation and letter data set at the end dhiyaifihe values in brackets
constitute the variances.

Image segmentation data Letter data
A|90”thm Etrain Etest Etrain Etest
GLVQ 15 2 (0.0 17.0(0.003) 28.4(0.002) 28.9(0.003)
GMLVQ 1 (0.002) 10 2(0 004) 29.3(0.002) 30.2(0.002)
LGMLVQ 4 8 (2-107%) 6 (0.004) 14.3(3-10-%) 16.0(0.002)
RSLVQ .4 (0.003) .5(0.003) 21.9(0.001) 23.2(0.005)
MRSLVQ 3(4-107%) 1 (0.002) 21 7(0.001) 22.9(0.004)
LMRSLVQ 7 (6-107%) 6 (0.004) 3(1-107%)  6.2(8-107%)
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Figure 3: Visualization of the class 3 and class 7 prototypes of theggreegmenta-
tion data set. Top: Prototypes identified by GLVQ and RSLVQtt&m: Prototypes
identified by GMLVQ and MRSLVQ.

reflected by the distribution of the data points and the pypts in the transformed
feature spaces (see Fig. 6). After projection v,/ rv ¢ the data comprises very
compact clusters with high density, while the samples antbpypes spread wider in
the coordinate system detected by MRSLVQ.

Finally, we discuss how the performance of RSLVQ, MRSLVQ badal MRSLVQ
depends on the value of the hyperparameter. Fig. 7 dispgt@ysvolution of the mean
final validation errors with varying2. It can be observed that the valuépt, where
the curves reach their minimum, increases with the comgylexithe distance measure.
Furthermore, the range of achieving an accuracy close to the performanceggj
becomes wider for MRSLVQ and Local MRSLVQ, while the RSLVQnamishows a
very sharp minimum. Hence, it can be stated that the methedsnhe less sensitive
with respect to the hyperparameter, if an advanced metusdd. Forr2 close to zero,
all algorithms show instabilities and highly fluctuatinguteing curves.

Letter data set

The Letter data set from the UCI repository (Newman et a8 onsists of 20 000
feature vectors which encode 16 numerical attributes afikstnd-white rectangular
pixel displays of the 26 capital letters of the English alpdta The features are scaled
to fit into a range of integer values between 0 and 15. This skitas also used in
Seo & Obermayer (2003) to analyse the performance of RSLV@eXtftact one half
of the samples of each class for training the classifiers aedfaurth for testing and
validating, respectively. The following results are agsa over 10 independent con-
stellations of the different data sets. We train the classifivith one prototype per
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(b) Image segmentation data set. Left: GMLVQ matrix. Right: MIRQ matrix
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(c) Tiling micro array data set. Left: GMLVQ matrix. Right: MR8Q matrix

Figure 4: Visualization of the relevance matricédsobtained during GMLVQ- and
MRSLVQ-training, when applied to the artificial data set I3 image segmentation
data set and the tiling micro array data set in a single rure dlements\;; are set

to zero in the visualization of the off-diagonal elementsheTmatrices in 4(b) are
normalized to) , A;; = 1 for this visualization after training.
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Figure 5: Distributions of distancegJ andd K to closest correct and closest incorrect
prototype of the test samples observed with global and ldissdnce measures on the
image segmentation data set and the letter data set. Farthigsis, the matrices are

normalized toy _, A;; = 1 after training.

17



O Class1 . O Class1
O Class2 . . . O Class2
06 . B Class3 06 e td . B Class3
o O Class4 LR P O Class4
04 e B Class5 0.4 B Class5
B O Class6 O Class6
02 o B Class7 02t ¢ B Class7
. = .
o o of e
P, . -
LY # A
-04 “fmel, -04
&.
-0.6 o~ -0.6
-
-08 08
-02 o 02 04 06 08 02 0 02 04 06 08

(@) Image segmentation data set. Left: Transformation Qighs v ¢. Right:
Transformation wit2y/ rsrv -

1
B Class5 . B Ciasss

14

1 -08 -06 -04 -02 0 02 04 06 08 -1 -08 -06 -04 -02 0 02

(b) Letter data set. Left: Transformation of class 5 data W@GM LVQ:
Right: Transformation of class 5 data WIEszRSLVQ.

Figure 6: Visualization of the image segmentation data set (clasofitlee letter data
set) with respect to the first two dimensions after projectidth the global transfor-
mation matrice$) obtained during GMLVQ- and MRSLVQ-training, respectivélige
local transformation matrice® derived during Local GMLVQ- and Local MRSLVQ-
training). For this visualization the matrices are noraedi to)", 7, = 1 after

training.
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Figure 7: Mean validation errors obtained on the image segmentatita set by
RSLVQ, MRSLVQ and Local MRSLVQ using different setting ofetinyperparame-
terso?.
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class respectively and use the learning parameter settings

(Local) G(M)LVQ: a; = 0.05, az = 0.005
(Local) (M)RSLVQ:a; = 0.01, az = 0.001

andc = 0.1. Training is continued for 150 epochs in total with differealuesc?
lying in the interval [0.75, 4.0]. The accuracy on the vafida set is used to select
the best settings for the hyperparameter. With the settirj’gg{RSLVQ) = 1.0 and
02,+(MRSLVQ, Local MRSLVQ) = 1.5, we achieve the performances stated in Tab.
3. The results depict that training of an individual metodc évery prototype is partic-
ularly efficient in case of multi-class problems. The adtaptaof a global relevance
matrix does not provide significant benefit because of theehuagiety of classes in
this application. Similar to the previous application, B®LVQ-based algorithms out-
perform the methods based on the GLVQ cost function. Thergrpats also confirm
our preceding observations regarding the distributiongthtice values induced by the
different relevance matrices. Since global matrix adagtadoes not have significant
impact on the classification performance, we relate to tmeilsitions with Local GM-
LVQ and Local MRLSVQ in Fig. 5. It depicts that the distaneesanddK assume
larger values when the training is based on the RSLVQ cosgttifum Accordingly,
the data distributions show similar characteristics asaaly described for the image
segmentation data set after projection Withrgyrvo and$Q; ryvrsrvo (see Fig.
6). Remarkably, the classification accuracy of Local MRSLWith one prototype
per class is comparable to the RSLVQ results presented ir&S2bermayer (2003),
achieved with constant hyperparamet@rand 13 prototypes per class. This obser-
vation underlines the crucial importance of an appropriis¢éance measure for the
performance of LVQ-classifiers. Despite the large numbgrasbmeters, we do not
observe overfitting effects during training of local relega matrices on this data set.
The systems show stable behaviour and converge within a0trtg epochs.

Tiling microarray data

Finally, we apply the algorithms to the analysis of tilingonuarray data. The clas-
sification task consists in separating exonic and introegians ofC.eleganswhich
are characterized by 24 features obtained from expressé@asunements. The data set
contains 4120 samples, with 2587 and 1533 data points pameig to exonic and
intronic regions, respectively. For more detailed infotimmabout the data we refer to
Biehl, Breitling, & Li (2007). All features are normalized zero mean and unit vari-
ance. We extract 50% of the class 1 and class 2 data for tgaamid use 25% of both
classes for testing and validation. One prototype per éassployed to represent the
data. The results presented in the following are avaragedld/random compositions
of training, test and validation set. The learning paransedee chosen as follows

GMLVQ: a; =5-1073, ap =5-104
(M)RSLVQ: a; =1-1073, ap = 5- 104

andc = 0.05. Training is continued for 800 and 500 epochs, respecivehe final
mean rates of misclassification on the test sets for GLVQ aktl\® are 14.5%

19



-- GLVQ -~ RSLVQ

R AN amvo MRSLVQ
LAY y v ---cemY 15 ---ccm
; | ¥y
v ¥ v
\ v
v oo g v
Vv ! Ve v ¥ ¥
v. 0y v v A
v v £ 3 v % »V.

vV v PRS2 y 3 ¥ 2 y
LR MRS 1 vy o % 3o VvVvVg,g ¥V’VV¥V373 ~
B 5 4

\ 4 %:V}V“z S \ /V,vv\ r
M | Knﬂ;ﬂx’%:rg\—ﬂggﬂiﬂsviflva'VEE:
<, a
By gl Sgad ‘:E’ui\\ “uuuug\gu:juuuuguuj' Bga®
05 EB‘B’EE‘K En‘B\E‘B’EE!Jn( K| 05| “aﬂ‘r oS Bg a8
o s N 2]
] g o, ¥
NI ‘s | o
o

10 15 10 15
Dimension Dimension

Figure 8: Visualization of prototypes and class conditional meanSNE of class 1
(squares) and class 2 (triangles) identified by G(M)LVQt)lehd (M)RSLVQ (right)
on the tiling microarray data.

+ 0.01% and 11.4%+0.01%. Fig. 8 (left) visualizes the optimized prototypes in
comparison with the class conditional means (CCM). We alestitat GLVQ pushes
the prototypes away from the cluster centers. The behavwsodue to the fact that
this prototype constellation reduces the mean valuéidf— dK) compared to the
CCM serving as prototypes (see Fig. 9). On the contrary, théotypes detected
during GMLVQ-training finally saturate close to the classditional means and yield
a better approximation of the data set. Nevertheless, tiwidim is able to further
reduce the mean distan¢é./ — dK) by means of the additional adaptation of the
distance measure (see Fig. 9). We observe that metric tegibaised on the GLVQ cost
function clearly simplifies the classifier for this data F&t.reflected by the eigenvalue
profile of Agarrv g (see Fig. 4) the system discriminates the data based on aely o
linear combination of the original features.

The performance of RSLVQ and MRSLVQ is almost equal in alleekpents. The
algorithms achieve 11.06% 0.005% and 11.1%t 0.003% mean rate of misclassi-
fication on the test sets (with?,,(RSLVQ) = 0.01 ando2,,(MRSLVQ) = 0.05).
Even though, in a learning scenario with only two prototypbke performance of the
different RSLVQ variants depends only weakly on the valued{Biehl, Ghosh, &
Hammer, 2007). In RSLVQ, the hyperparameter only conttasprototypes distance
to the decision boundary. Sinoépt is very small in our experiments, the prototypes
converge close the decision boundary (see Fig. 8, right}. distance becomes larger
with increasing valuer?, but the location of the decision boundary remains almost
unchanged. Witly? = agpt, the MRSLVQ prototypes saturate close to the class con-
ditional means (see Fig. 8, right). Due to the additionalpsat#on of the metric,
the prototypes distance to the decision boundary increadgsnildly with increasing
o2. Instead, we observe that the eigenvalue profil& becomes more distinct for large
values of the hyperparameter. However, in comparison to GRIIMRSLVQ still per-
forms only a mild feature selection on this data set (see4jigrhe matrixA obtained
with the optimal hyperparameter in MRSLVQ shows a cleargmeice for the same
feature as the GMLVQ matrix, but it exhibits a large numbenohzero eigenvalues.
Further, the overall structure of the off-diagonal elersesftthe matrices seems very
similar for GMLVQ and MRSLVQ. This observations indicatést, by introducing
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Figure 9: Distrubutions of the differencel( — d K') observed for the tiling microarray
data set based on different prototype settings. The disiibs for the CCM and the
GLVQ prototypes rely on the Euclidean distance. The distiim for the GMLVQ
prototypes is based on the adapted distance measure.

matrix adaptation into this setting, an inspection of trassifier becomes possible by
looking at the most relevant feature and correlations fdmnthe methods. We would
like to point out that matrix learning provides valuableigtg into the problem. A
comparison with the results presented in (Biehl, BreitliRd-i, 2007) shows that ma-
trix learning emphasizes essentially the same singlerfesias found in the training of
diagonal relevances. For instance, the so-cattedting temperaturesf the probe and
its neighbors (features 19—-23) are eliminated by GMLVQ Wwtparallels the findings
in (Biehl, Breitling, & Li, 2007). Matrix learning, howeveyields additional insight:
for instance, relatively large (absolute) values of otighnal elements,;, cf. Fig. 6,
indicate that correlations between the so—catledfect match intensitesnd mismatch
intensitiesare taken into account.

5 Conclusions

We have considered metric learning by matrix adaptatiomsicriominative vector quan-
tization schemes. In particular, we have introduced thiscgle into soft robust learn-
ing vector quantization, which is based on an explicit sta@l model by means of
mixtures of Gaussians, and we extensively compared thitodeto an alternative
scheme derived from an intuitive but somewhat heuristi¢ @asction. In general,

it can be observed that matrix adaptation allows to imprbeectassification accuracy
on the one hand, and it leads to a simplification of the classifhd thus better in-
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terpretability of the results by inspection of the eigenwes and eigenvalues on the
other hand. Interestingly, the behavior of GMLVQ and MRSL¥lbws several prin-
cipled differences. Based on the experimental findingsfat@wing conclusions can
be drawn:

o All discriminative vector quantization schemes show goedagalization behav-
ior and yield reasonable classification accuracy on sewmathmark results
using only few prototypes. RSLVQ seems particularly sufi@dthe real-life
data sets considered in this article. In general, matrisnieg allows to further
improve the results, whereby, depending on the settingfitireg can be more
pronounced due to the huge number of free parameters.

e The methods are generally robust against noise in the datarabe inferred
from different runs of the algorithm on different splits dfetdata sets. While
GLVQ and variants are rather robust to the choice of hyparpaters, a very
critical hyperparameter of training is the softness patame for RSLVQ. Ma-
trix adaptation seems to weaken the sensitivity w.r.t. plaisameter, however, a
correct choice o2 is still crucial for the classification accuracy and efficgn
of the runs. For this reason, automatic adaptation schemne$ should be con-
sidered. In Seo & Obermayer (2006), a simple annealing setfenv? is in-
troduced which yields reasonalbe results. We are currerdiking on a scheme
which adaptsr? in a more principled way according to an optimization of the
likelihood ratio showing first promising results.

e The methods allow for an inspection of the classifier by meditise prototypes
which are defined in input space. Note that one explicit gbalrsupervised
vector quantization schemes suchkameans or the self-organizing map is to
represent typical data regions be means of prototypese $irecconsidered ap-
proaches are discriminative, it is not clear in how far thiggerty is maintained
for GLVQ and RSLVQ variants. The experimental findings destate that
GLVQ schemes place prototypes close to class centres atatypes can be in-
terpreted as typical class representatives. On the cgnR&1LVQ schemes do
not preserve this property in particular for non-overlayptlasses since adap-
tation basically takes place based on misclassificationtheoflata. Therefore,
prototypes can be located outside the class centers whilgairang the same
or a similar classification boundary compared to GLVQ schemghis prop-
erty has already been observed and proven in typical modeltins using the
theory of online learning for the limit learning rule of RSQY learning from
mistakes, in Biehl, Ghosh, & Hammer (2007).

o Despite the fact that matrix learning introduces a huge rarrobadditional free
parameters, the method tends to yield very simple solutidrish involve only
few relevant eigendirections. This behavior can be subiatad by an exact
mathematical investigation of the LVQ2.1-type limit legam rules which result
for smallo? or a steep sigmoidal functiod, respectively. For these limits, an
exact mathematical investigation becomes possible, atidig that a unique so-
lution for matrix learning exist, given fixed prototypesgahat the limit matrix
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reduces to a singular matrix which emphasizes one majoneidige direction.
The exact mathematical treatment of these simplified limli¢és is subject of
ongoing work and will be published in subsequent work.

In conclusion, systematic differences of GLVQ and RSLVQesnbs result from the
different cost functions used in the approaches. This dedua larger sensitivity of
RSLVQ to hyperparanmeters, a different location of prgtesywhich can be far from
the class centres for RSLVQ, and different classificatioouescies in some cases.
Apart from these differences, matrix learning is clearlyéficial for both discrimi-
native vector quantization schemes as demonstrated inxfiegiments.

A Derivatives

We compute the derivatives of the RSLVQ cost function withpext to the proto-
types, the metric parameters, and the hyperparameterse §arerally, we compute
the derivative of the likelihood ratio with respect to anyaraeter®; # £. The con-
ditional densities can be chosen to have the normalizedreqial formp(&|j) =
K(j) - exp f(§ wj,07,9;). Note that the normalization factd (;j) depends on the
shape of component If a mixture of N-dimensional Gaussian distributions is as-
sumed,K (j) = (2r02)(=~/2) is only valid under the constrainlet(A;) = 1. We
point out that the following derivatives subject to the citiod det(A;) = const. Vj.
With det(A;) = const. Vj, the K(j) as defined above are scaled by a constant fac-
tor which can be disregarded. The condition of equal deteantifor all j naturally
includes the adaptation of a global relevance matrix A;, V.
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J
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and(b)

S AEI 2 (X ruwe)
c#y ’ b gie(w;) Ay
- Op(&lJ)

y ((w]) ( ) 00,

OK(j)

f(£7w770 Q; )

=20~
Z yC(’UJJ) ( )expf(gawjvajzagj) (a(_) +K(j)
J

P,(i|€) and P(:|£) are assignment probabilities,

P(i)K (i) exp f(& wi, 02,Q;)

e = (€ yIW)
— P(Z)K(Z) expf(ngivo-izaﬁi)
Zj:c(wj):y P(j)K(]) expf(ﬁ,wj,af-,Qj)
(|£) ()K()expf(€7w270,79)

p(E[W)
P(i)K (i) exp f (€, wi, 07, %)
~ X, PO)K () exp f(€,w;,0%,9))

P,(i|€) corresponds to the probability that samglis assigned to componehbof the
correct clasg and P(i|€) depicts the probability thg is assigned to any component
of the mixture.

The derivative with respect to a global parameter, e.g. bajlmatrix2 = ; for all j
can be derived thereof by summation.
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