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Cluster analysis of functional magnetic resonance imaging (fMRI) data
is often performed using gaussian mixture models, but when the time
series are standardized such that the data reside on a hypersphere, this
modeling assumption is questionable. The consequences of ignoring the
underlying spherical manifold are rarely analyzed, in part due to the com-
putational challenges imposed by directional statistics. In this letter, we
discuss a Bayesian von Mises–Fisher (vMF) mixture model for data on
the unit hypersphere and present an efficient inference procedure based
on collapsed Markov chain Monte Carlo sampling. Comparing the vMF
and gaussian mixture models on synthetic data, we demonstrate that the
vMF model has a slight advantage inferring the true underlying cluster-
ing when compared to gaussian-based models on data generated from
both a mixture of vMFs and a mixture of gaussians subsequently nor-
malized. Thus, when performing model selection, the two models are
not in agreement. Analyzing multisubject whole brain resting-state fMRI
data from healthy adult subjects, we find that the vMF mixture model is
considerably more reliable than the gaussian mixture model when com-
paring solutions across models trained on different groups of subjects,
and again we find that the two models disagree on the optimal number
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2 R. Røge, K. Madsen, M. Schmidt, and M. Mørup

of components. The analysis indicates that the fMRI data support more
than a thousand clusters, and we confirm this is not a result of overfitting
by demonstrating better prediction on data from held-out subjects. Our
results highlight the utility of using directional statistics to model stan-
dardized fMRI data and demonstrate that whole brain segmentation of
fMRI data requires a very large number of functional units in order to
adequately account for the discernible statistical patterns in the data.

1 Introduction

In many areas of statistical modeling, data are represented only by a direc-
tion, thus setting the stage for directional statistics (Mardia & Jupp, 2009).
This is perhaps most easily seen when the data consist of measures of direc-
tions in three-dimensional space, such as the directions of radiation beams
used for treatment (Bangert, Hennig, & Oelfke, 2010), directions from the
earth to stars (Mardia & Jupp, 2009), locating emergency transmitters (Gut-
torp & Lockhart, 1988), microphone beamforming (Anderson, Teal, & Po-
letti, 2015), and modeling structure from spherical cameras (Guan & Smith,
2017). One of the most frequently used directional distributions is the von
Mises–Fisher distribution (vMF) (Fisher, 1953; Mardia & El-Atoum, 1976).
The vMF distribution is specified by a concentration parameter and a mean
direction, and because it is part of the exponential family, it has a conjugate
prior. Unfortunately, the normalization constant of the conjugate prior is
not available in closed form, which makes the vMF distribution more chal-
lenging to work with (Nunez-Antonio & Gutiérrez-Pena, 2005) compared
to, say, the gaussian distribution.

Models based on the vMF distribution have been applied to a wide
variety of high-dimensional problems on the unit hypersphere. This in-
cludes document topic modeling (Banerjee, Dhillon, Ghosh, & Sra, 2005;
Gopal & Yang, 2014), the modeling of gene expressions data (Banerjee et al.,
2005; Taghia, Ma, & Leijon, 2014), and modeling line spectral frequencies
(Ma, Taghia, Kleijn, Leijon, & Guo, 2015). Within the field of neuroscience,
normalizing or z-scoring the data is a common step in the preprocessing
pipeline for functional magnetic resonance imaging (fMRI) analysis (Crad-
dock, James, Holtzheimer, Hu, & Mayberg, 2012; Hyde & Jesmanowicz,
2012). By z-scoring, the data are transformed such that each voxel time series
has zero mean and unit standard deviation—that is, each voxel time series
consisting of D brain volumes will be projected onto the hypersphere with
radius

√
D − 1. Since there is no longer any information in the magnitude

of the observations, as all voxels have the same magnitude, the magnitude
can be disregarded and the data modeled using directional statistics. This
makes the von Mises–Fisher a natural first choice for modeling the stan-
dardized fMRI time series. Time series data from several substructures
of the brain, including the insula and striatum, were recently modeled
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Infinite von Mises–Fisher Modeling 3

using a mixture model based on the von Mises–Fisher distributions with
Markov random field to ensure spatial contiguity (Ryali, Chen, Supekar,
& Menon, 2013). The von Mises–Fisher distribution has also been fre-
quently used in modeling fMRI task activations (Lashkari, Vul, Kanwisher,
& Golland, 2010; Lashkari & Golland, 2009) and vectors of functional con-
nectivity with a number of regions of interest (Yeo et al., 2011). These
studies, however, either focused on low-dimensional representations of
high-dimensional time series by extracting task-activated b-maps (Lashkari
et al., 2010; Vul, Lashkari, Hsieh, Golland, & Kanwisher, 2012) or considered
fMRI time series only within a small region of interest (Ryali et al., 2013).
Furthermore, neither of these studies provided a systematic comparison of
the vMF with the gaussian distribution assumption when modeling fMRI.
It is therefore unclear what the benefits of imposing the more challenging
vMF distribution might be, as opposed to applying the well-studied and
simpler gaussian distribution. Despite the directional nature of the z-scored
fMRI time series data, modeling is still most often based on assumptions of
gaussian distributions (Janssen, Jylänki, Kessels, & van Gerven, 2015).

In this letter, we advance the vMF mixture model to large-scale fMRI
clustering. We employ collapsed Markov chain Monte Carlo (MCMC) infer-
ence and exploit nonparametric Bayesian modeling for model order quan-
tification. We apply the developed framework to multisubject whole brain
fMRI segmentation and contrast the performance of the vMF distribution
assumption to the conventional gaussian assumption. We thus present a
thorough comparison with gaussian mixture models based on identical in-
ference procedures, such that we isolate the differences that are caused by
the difference in probabilistic modeling assumptions from what could be
caused by potential difference in inference implementation. We investigate
the models on synthetic data with ground truth as well as on large-scale
multisubject fMRI data and contrast the estimated model order based on
nonparametric Bayesian modeling to the model order estimated using the
predictive distribution based on finite mixtures.

The letter is structured as follows. In section 2, we introduce the gener-
ative models and inference procedure for our nonparametric vMF mixture
model. In section 3, we present results regarding the implementation of the
vMF models. We apply our model to multisubject resting-state fMRI data
and contrast the performance to conventional parametric and nonparamet-
ric gaussian mixture modeling. Finally, in section 4, we present our con-
clusions. In the appendix, we compare our implementation to an existing
implementation based on variational inference (Gopal & Yang, 2014).

2 Methods

Clustering using a mixture of vMF distributions was introduced by Baner-
jee et al. (2005), who proposed an inference procedure using expectation-
maximization (EM). Due to the occurrence of the Bessel function in the vMF
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probability density function, they relied on an approximation to determine
the concentration parameter of the vMF distribution and provided bounds
for the accuracy of the approximation. Focusing on the three-dimensional
case, Bangert et al. (2010) extended the model to a nonparametric “infinite”
vMF mixture, and presented a Markov chain Monte Carlo (MCMC) infer-
ence procedure, combining Gibbs sampling and slice sampling. Recently,
Taghia et al. (2014) and Gopal and Yang (2014) independently proposed
variational inference procedures for finite mixtures of vMF distributions
using the gamma distribution and log-normal distribution, respectively, as
prior for the concentration parameter. The variational inference method re-
quires some extra work to estimate the concentration parameter, which can
be performed using an approximation (Taghia et al., 2014; Gopal & Yang,
2014) or by MCMC sampling (Gopal & Yang, 2014). In contrast to variational
inference, MCMC sampling yields an unbiased estimate of the true poste-
rior and may thus have some advantages over variational inference. The
downside is that it is computationally demanding and may not converge
for larger problems despite providing a useful approximation.

In this letter, we present the Bayesian generative model for clustering di-
rectional data based on vMF distributions. Similar to Bangert et al. (2010)
we formulate a nonparametric mixture model and base our inference on
MCMC sampling; however, we improve on the inference procedure by an-
alytically marginalizing over the mean parameter, as opposed to sampling
it, and we apply the model to high-dimensional problems, where Bangert
et al. (2010) considered only the three-dimensional case. We carefully inves-
tigate the effect of using only few samples to approximate the integration
of the concentration parameter in this collapsed distribution, leading to a
computationally more efficient inference procedure.

2.1 The von Mises–Fisher Mixture Model. In this section, after a brief
review of the vMF distribution, we present the vMF mixture model along
with the numerical approximations, a description of the inference proce-
dure, and posterior quantities used for the subsequent analyses.

2.1.1 The von Mises–Fisher Distribution. The vMF distribution is a dis-
tribution over unit vectors on the hypersphere and is defined by a mean
direction parameter μ ∈ S

D−1, where S
D−1 = {x ∈ R

D : ‖x‖ = 1} and a con-
centration parameter τ ∈ (0,∞). For a given unit vector x ∈ S

D, the vMF
probability density is given by

vMF(x | μ, τ ) = CD(τ ) exp(τμ�x), (2.1)

where

CD(τ ) = τD/2−1

(2π )D/2ID/2−1(τ )
, (2.2)
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and ID/2−1(τ ) is the modified Bessel function of the first kind of order D/2 −
1 and argument τ . The vMF distribution with parameters {μ0, τ0} is in itself
a conjugate prior for the mean direction.

For N observations from a vMF distribution with concentration τ , the
marginal likelihood for τ is given by

p(x1:N | τ ) =
∫

vMF(μ | μ0, τ )
N∏

i=1

vMF(xi | μ, τ )dμ

= CD(τ )N+1

CD

(
τ

∥∥μ0 + ∑N
i=1 xi

∥∥) . (2.3)

Therefore, if we apply a prior given by

f (τ | a, b) ∝ CD(τ )a

CD(bτ )
, (2.4)

with parameters a and b, where a > b > 0, it corresponds to having seen a
observations from a vMF distribution that has the combined length b (cf.
Hornik & Grün 2013). The normalization constant for this prior is not avail-
able in closed form due to the dependence on the modified Bessel functions.
Previous implementations have used either the log-normal or gamma dis-
tribution (Taghia et al., 2014; Gopal & Yang, 2014) as priors, but as Taghia
et al. (2014) showed, the gamma distribution very closely resembles the
above prior we have chosen for our implementation. For our implemen-
tation, there is no computational advantage in using the gamma or log-
normal distributions, and we therefore use that of equation 2.4.

2.1.2 Prior Distributions for Cluster Assignments. A natural choice for a
probability distribution for the cluster assignments, which we denote by z,
is the compound Dirichlet-categorical distribution, also known as the Pólya
distribution: it posits that each observation belongs to cluster k with prob-
ability πk and that the cluster proportions πk are generated from a symmet-
ric Dirichlet distribution with parameter α

K . When the cluster proportions
are marginalized, the resulting Pólya distribution with parameter α > 0 is
given by

Pólya(z | α) = �(α)
�(N + α)

K∏
k=1

�(nk + α
K )

�( α
K )

, (2.5)

where N is the number of observations, K is the number of clusters, and nk is
the number of observations that belong to cluster k. Taking the limit K → ∞
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of the Pólya distribution yields the so-called Chinese restaurant process
(CRP) (Aldous, 1985; Pitman, 2006),

CRP(z | α) = �(α)αK

�(N + α)

K∏
k=1

�(nk), (2.6)

where now K denotes the number of nonempty clusters. Utilizing the
nonparametric nature of the CRP, the number of clusters can be directly
inferred from data, while it must be fixed in advance when using the
Pólya distribution. Both distributions enforce the rich-get-richer principle
in which higher-probability mass is assigned to large clusters, to a degree
controlled by the parameter α. In this work, we have implemented both
variants to assess if the theoretical advantage of the CRP is also apparent in
practice.

2.1.3 Mixture Model Specification. Modeling data with a mixture of mul-
tiple vMF distributions is the classical mixture model. To complete model
specification for the finite or the infinite case, we need to include the Pólya
distribution or Chinese restaurant process as prior on the clustering. The
vMF mixture model is then given by the following generative process:

τk | a, b ∼ f (a, b) k = 1, . . . , K, (2.7)

μk | μ0, τ0 ∼ vMF(μ0, τ0) k = 1, . . . , K, (2.8)

xi | μz(i), τz(i) ∼ vMF(μz(i), τz(i) ) i = 1, . . . , N, (2.9)

where xi,μk, and μ0 are vectors on the D-dimensional hypersphere and
f (a, b) the normalized prior for the concentration parameter from equation
2.4. The joint probability of the generative model is given by

p(x1:N,μ1:K, τ1:K | z,μ0, τ0, a, b) =[
N∏

i=1

vMF(xi | μz(i), τz(i) )

] [
K∏

k=1

vMF(μk | μ0, τ0)

]
f (τk | a, b). (2.10)

To marginalize the cluster mean direction parameters, we turn our at-
tention to the terms of the joint distribution related to cluster k, which are
given by

p(xZk ,μk | z,μ0, τ0, τk) =
⎡
⎣∏

i∈Zk

vMF(xi | μk, τk)

⎤
⎦ vMF(μk | μ0, τ0)

(2.11)
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Infinite von Mises–Fisher Modeling 7

= CD(τ0)CD(τ )nk exp(λkm�
k μk), (2.12)

where Zk = {i ∈ 1, . . . , N : zi = k} is the index set of observations in cluster
k and

λk =
∥∥∥∥τ0μ0 + τk

∑
i∈Zk

xi

∥∥∥∥, mk = 1
λk

(
τ0μ0 + τk

∑
i∈Zk

xi

)
. (2.13)

By conjugacy, we can now marginalize μk analytically,

p(xZk | z,μ0, τ0, τk) =
∫

p(xZk ,μk | z,μ0, τ0, τk)dμk = CD(τ0)CD(τk)nk

CD(λk)
,

(2.14)

where nk is the number of elements in cluster k. We further marginalize the
concentration parameter τk:

p(xZk | z,μ0, τ0, a, b) =
∫

p(xZk | z,μ0, τ0, τk) f (τk | a, b)dτk

= CD(τ0)
∫

CD(τk)nk

CD(λk)
f (τk | a, b)dτk. (2.15)

As this unidimensional integral is analytically intractable, we approximate
it using MCMC integration. One approach could be to perform joint MCMC
inference of the cluster labels and the concentration parameters; however,
numerically marginalizing the concentration parameters significantly sim-
plifies the MCMC inference for the cluster labels by allowing for a standard
Gibbs sampling approach. Therefore, we take the approach of marginaliz-
ing the concentration parameters in a separate step, as we discuss next.

2.1.4 MCMC Approximation for the Concentration Parameter. If we simu-
late S samples, {τ (s)

k }, from f (τk | a, b), then the integral in equation 2.15 can
be approximated as

∫
CD(τk)nk

CD(λk)
f (τk | a, b)dτk ≈ 1

S

S∑
s=1

CD(τ (s)
k )nk

CD(λ(s)
k )

. (2.16)

It is possible to use a number of different sampling techniques to simu-
late independent samples from the prior. In our implementation, we used
Metropolis-Hastings sampling, discarded the first 200 samples as burn-in,
and used a thinning factor of 20 to get approximately independent samples.
Note that Metropolis-Hastings sampling does not require the distribution
to be normalized.
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Only when the values of the hyperparameters a or b change, the prior
f (τ | a, b) will change and thus require sampling a new set of of τ

(s)
k ’s. The

number of samples used in the approximation will affect the overall accu-
racy of the algorithm. If only a few samples are used for approximating the
integral, there is a higher risk of accepting a poor proposal for a or b. Simi-
larly, if few samples are used, we might not recover the correct clustering.
However, the computational complexity of the inference procedure scales
linearly with the number of samples used to approximate the integral, and
it is thus beneficial to use as few samples as possible that still provide accu-
rate inference.

The numerical integration requires the evaluation of CD(τ ), which in turn
requires the evaluation of Iν (x) for some values of ν and x. Using the Matlab
function besseli, we noted that issues with overflow or underflow would
sometimes arise. To avoid this issue, we use a large-order approximation
for ν > 10 (Hornik & Grün, 2014):

log Iν (x) ≈
√

x2 + (ν + 1)2 + (ν + 1/2) log
x

ν + 1/2 +
√

x2 + (ν + 1)2

+ 1
2

log x/2 + (ν + 1/2) log
2ν + 3/2
2(ν + 1)

− log 2π

2
. (2.17)

Using this numerical integration, we obtain the following expression for
the collapsed joint distribution (disregarding the prior on the clustering pa-
rameter z):

p(x1:N | z,μ0, τ0, a, b) =
∏

k

CD(τ0)
S

S∑
s=1

CD(τ (s)
k )nk

CD(λ(s)
k )

. (2.18)

2.1.5 Inference. Having analytically marginalized μk and numerically in-
tegrated τk, inference reduces to standard Gibbs sampling for the cluster
assignments z combined with updates for the hyperparameters τ0, a, and b.
For the infinite model with the CRP as a prior for the clustering, the poste-
rior distribution for assigning the ith element to the kth component using
Gibbs sampling is (up to proportionality) given by

p(zi = k | z\i, . . .) ∝ nk

∑S
s=1

CD(τ (s)
k )nk+1

CD

(∥∥τ0μ0+τ
(s)
k [xi+

∑
j∈Zk

x j]
∥∥)

∑S
s=1

CD(τ (s)
k )nk

CD

(∥∥τ0μ0+τ
(s)
k

∑
j∈Zk

x j

∥∥) , (2.19)

with the convention that observation i has been removed from Zzi . This is
derived using Bayes’ theorem and combining equation 2.18 with equation
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2.6. For assigning observation i to a new cluster, this gives (again up to pro-
portionality) the following posterior:

p(zi = K + 1 | z\i, . . .) ∝ αCD(τ0)
S

S∑
s=1

CD(τ (s)
k )

CD
(‖τ0μ0 + τ

(s)
k xi‖

) . (2.20)

We further apply the split-merge algorithm (Jain & Neal, 2004) with accel-
erated merge moves (Røge, Madsen, Schmidt, & Mørup, 2015) for faster
convergence.

The version of the model with the Pólya distribution is identical except
that in the posterior conditional distribution for each cluster in equation
2.19, the factor nk must be replaced by nk + α

K . The split-merge algorithm is
not applicable to finite mixture models, and the procedure is thus omitted
from the inference in that case.

To infer the hyperparameters τ0, a, and b, we use Metropolis-Hastings
sampling. The parameter τ0 is required to be positive, and we therefore use
a log transform to facilitate the use of the symmetric normal distribution as
a proposal distribution. Furthermore, the parameters a and b have the con-
straint that a > b > 0, and we therefore apply the appropriately truncated
gaussian proposal distributions. We impose the improper and relatively un-
informative prior p(θ ) = θ−1 on each of the hyperparameters τ0,s, a, and b,
with the additional constraint that a ≥ b. We keep μ0 parameter fixed at the
mean of the data.

2.1.6 Multiple Data Set Analysis. The models can be straightforwardly
extended to multiple data sets that share the clustering configuration. To
construct the generative model in this case, we use the CRP or Pólya distri-
bution as prior for the clustering configuration and then take the product
of the joint distribution in equation 2.10 over the multiple data sets. This
approach is frequently used in fMRI data analysis when fMRI scans from
multiple subjects are acquired, and it is not unreasonable to assume that
the clustering should be the same over subjects after spatial normalization
(Craddock et al., 2012). In our implementation, the subjects share the same
hyperparameters for τ0, a, and b, while μ0 is fixed for each subject as the
mean time series of all voxels from the subject.

2.1.7 Posterior Quantities. We can use Bayes’ theorem to obtain the pos-
terior probability for the concentration parameter:

p(τk | x, a, b) = p(x | τ, a, b)p(τ | a, b)∫
p(x | τ, a, b)p(τ | a, b)dτ

. (2.21)

This is proportional to
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p(τk | x, a, b) ∝ CD(τk)nkCD(τk)a

CD(λk)CD(bτk)
. (2.22)

This enables us to compute the radii of the confidence regions and the pos-
terior curves for the concentration parameter.

Similarly, we can obtain the posterior probability for the mean direction
conditioned on the concentration:

p(μk | X , τk, μ0, τ0) ∝ p(X | μk, τk)p(μk | τ0, μ0) ∝ exp(λkm�
k μk).

(2.23)

Since this is the functional form of a vMF distribution, we know the nor-
malization constant and obtain

p(μk | X , τk, μ0, τ0) = CD(λk) exp(λkm�
k μk). (2.24)

2.2 Gaussian Mixture Model. For comparison, we include two ver-
sions of the gaussian mixture model with both the Pólya distribution and
CRP as priors for the clustering configuration for comparing the difference
between modeling data on the hypersphere and ignoring the underlying
manifold. The gaussian mixture model with the CRP prior is known as
the infinite Gaussian mixture model and was introduced by Rasmussen
(1999).

The multivariate gaussian mixture model can be defined with the co-
variance matrix being either a scaled identity matrix (spherical), a diag-
onal matrix (elliptical), or a full matrix. The computational complexity of
models with the spherical or elliptical covariance scales linearly in D, while
the full covariance model scales with D2, thus rendering it intractable for
large problems. The gaussian models with the spherical covariance struc-
ture most closely resemble that of the vMF distribution, and for complete-
ness, we include both the spherical and elliptical gaussian mixture models
in our analyses.

The generative model for the mixture of gaussians with axis-aligned el-
liptical covariance structure is given by

σ 2
m,k|ν, γ ∼ IG(ν, γ ) m = 1, . . . , D k = 1, . . . , K,

(2.25)

μk|γ , σ2
k ∼ N

(
μ0,

1
λ

diag(σ2
k )

)
k = 1, . . . , K, (2.26)

xi|μzi
, σ2

k ∼ N (μzi
, diag(σ2

k )) i = 1, . . . , N, (2.27)

where IG is the inverse gamma distribution and diag(σ2
k ) the diagonal ma-

trix with the elements of σ2
k on the diagonal. The collapsed joint distribution

is, in concordance with the procedure for the vMF-based model, obtained
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by marginalizing over the mean μk and noise σ2
k parameters

p(x1:N, z | θ) =
K∏

k=1

∫∫ ∏
i∈k

p(X , z | μk, σ
2
k )p(μk | σ2

k )p(σ2
k )dμkdσ2

k

=
K∏

k=1

D∏
m=1

(λ/[nk + λ])1/2γ ν�(nk/2 + ν)

(2π )nk/2�(ν)Rnk/2+ν

mk

, (2.28)

where

Rmk = γ + 1
2

(
σ̄ 2

mk + λμ2
0m

− (x̄k + λμ0m )2

nk + λ

)
, (2.29)

and σ̄ 2
mk = ∑

n∈Zk
x2

mn and x̄k = ∑
n∈k xn. For the spherical gaussian mixture

model, the generative model is given by

σ 2
k |ν, γ ∼ IG(ν, γ ) k = 1, . . . , K, (2.30)

μk|σ 2
k , λ ∼ N

(
μ0,

σ 2
k

λ
I

)
k = 1, . . . , K, (2.31)

xi|μk, σ
2
k ∼ N (μzi

, σ 2
k I) i = 1, . . . , N, (2.32)

and the collapsed joint distribution is given by

p(x1:N, z | θ) =
K∏

k=1

(λ/[nk + λ])D/2γ ν�(Dnk/2 + ν)

(2π )Dnk/2�(ν)RDnk/2+ν

k

, (2.33)

where, with σ̄ 2
k = ∑

n∈k ‖x‖ and x̄k = ∑
n:zn=k xn,

Rk = γ + 1
2

(
σ̄ 2

k + λ‖μ0‖2 − ‖x̄k + λμ0‖2

nk + λ

)
. (2.34)

We apply the same inference procedure as with the vMF mixture model
with suitable priors and transformations on the hyperparameters.

2.2.1 Predictive Analysis. To evaluate how well the model, when esti-
mated on training data, is able to characterize unseen test data, we evaluate
the predictive likelihood, which in general is given by

p(x∗ | X ) =
∫

p(x∗ | θ)p(θ | X )dθ, (2.35)
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where X is training data, x∗ is test data, and θ are the parameters of the
model.

In case we are given a test data set that shares the same clustering and has
a one-to-one correspondence with the training data, such that each test ob-
servation has a known corresponding training observation, the predictive
likelihood can be computed directly from the MCMC approximation. After
generating a sample of M parameter sets from the posterior, {θ(m)} ∼ p(θ|X ),
we can compute the Monte Carlo estimate:

p(x∗ | X ) ≈ 1
M

M∑
m=1

p(x∗ | θ(m) ). (2.36)

In case we are given a new observation but no information regarding
which cluster it belongs to, we can compute the predictive likelihood by
the following procedure. First, we sum over each cluster,

p(x∗ | X ) =
K∑

k=1

p(zx∗ = k | X )p(x∗ | X , zx∗ = k), (2.37)

where p(zx∗ = k | X ) is the posterior predictive distribution of the cluster-
ing. For the infinite models, we need to sum over all populated clusters, as
well as one unpopulated cluster. We evaluate the expression by approxima-
tion using samples drawn from the posterior distribution during inference,

p(x∗ | X , zx∗ = k)

=
∫

p(x∗ | X , zx∗ = k, τ0, z, a, b)p(τ0, z, a, b | X )d{τ0, z, a, b}

= 1
M

M∑
m=1

p(x∗ | X , zx∗ = k, τ (m)
0 , z(m), a(m), b(m) ). (2.38)

We can compute part of this expression analytically and part with MCMC
samples from the posterior of τk as given by equation 2.22:

p(x∗ | X , zx∗ = k, τ0, z, a, b)

=
∫∫

p(x∗ | μk, τk)p(μk | X ,μ0, τ0)dμk p(τk | X , a, b)dτk

=
∫

CD(τk)CD(λ(s)
k )

CD(λ∗(s)
k )

p(τk | X , a, b)dτk, (2.39)

where λ
∗(s)
k = ‖λkmk + τkx∗‖.
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Infinite von Mises–Fisher Modeling 13

2.3 Initialization. It is not clear how the hyperparameters of the models
are best initialized. If the parameters initially set such that the level of noise
in the model is much too high compared to the variance of the data, the
MCMC sampler will often collapse everything into one cluster and learn
hyperparameters that reinforce that solution. Similarly, if the level of noise
is too low, all elements are often placed in singleton clusters. In both cases,
the model is initialized near a bad local posterior mode, which the MCMC
sampler struggles to escape from.

We therefore investigate several different initialization strategies that
build on the idea of providing an appropriate initialization of the cluster-
ing followed by Metropolis-Hastings proposals to infer reasonable values
for the hyperparameters before running the full inference procedure.

2.4 Measures of Cluster Validity. We use two methods to quantify and
compare the quality of the clustering methods on fMRI data: reliability of
inferred clustering and the homogeneity and cluster separation of the in-
ferred clustering.

To quantify the reliability of the inferred clusters, we use three frequently
used measures of similarity between clusterings: normalized mutual infor-
mation (NMI; Strehl & Ghosh, 2002), adjusted mutual information (AMI;
Vinh, Epps, & Bailey, 2010), and the adjusted Rand index (AR; Hubert &
Arabie, 1985). The NMI and AMI measures have several variants, and we
have used the following:

NMI = MI(zz, z2)√
H(z1)H(z2)

(2.40)

and

AMI = MI(zz, z2) − E[MI(zz, z2)]
max(H(z1), H(z2)) − E[MI(zz, z2)]

, (2.41)

where MI(zz, z2) is the mutual information between clusterings zz and z2,
H is the entropy, and E[MI] is the expected mutual information, which is
the expectation for random clusterings of the given number of clusters. The
adjusted Rand index is given by

AR = RI − E[RI]
max(RI) − E[RI]

, (2.42)

where RI is the Rand index and E[RI] is the expected Rand index. These
adjusted measures are a way of compensating for the fact that two random
clusterings tend to have a higher Rand index and normalized mutual infor-
mation as the number of clusters increases and should therefore be a better
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measure for comparing the reliability of two clusterings that have a differ-
ent number of clusters.

The silhouette index (SI) is a measure of both the homogeneity of clusters
and intercluster distance (Goutte, Toft, Rostrup, Nielsen, & Hansen, 1999;
Craddock et al., 2012). For observation i, the silhouette value is given by

Si = bi − ai

max(ai, bi)
, (2.43)

where ai is the average distance from observation i to the observations in
the same cluster and bi is the minimum average distance from observation
i to the remaining clusters. In this letter, we use the correlation of the time
series as the distance measure similar to Craddock et al. (2012) and report
the silhouette index averaged over all observations.

2.5 Implementation. Both the gaussian and the vMF mixture mod-
els have been implemented in Matlab in an object-oriented framework.
This means that the code for the Gibbs and split-merge sampling can
be reused and that the framework is easily extendable with additional
statistical clustering models. Our code and examples are available at
https://brainconnectivity.compute.dtu.dk.

Variational-inference-based vMF clustering models have previously
been applied to a variety of document topic modeling data sets (Gopal &
Yang, 2014). The code is not available online, and we therefore compare the
results of our implementation to theirs on the publicly available CNAE-9
data set (Gopal & Yang, 2014) based on normalized mutual information be-
tween the inferred clusters and ground truth. This comparison can be found
in the Appendix, where we observe that our implementation is at least on
par with the variation inference based procedure.

3 Results and Discussion

To analyze aspects of the proposed vMF model related to the MCMC inte-
gration technique and initialization strategy and to illustrate and compare
the model to the GMM, we first applied the models to synthetic data simu-
lated from the generative model such that ground truth about the clustering
was known. Next, we applied the model to a multisubject resting-state fMRI
data set and compared the results with the GMM approach.

3.1 Analysis of MCMC Integration. The computational complexity of
the inference procedure scales linearly with the number of samples used to
approximate the integral described in section 2.4; however, if an insufficient
number of samples is used, the inference procedure will not provide a good
data fit.

https://brainconnectivity.compute.dtu.dk
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Figure 1: The likelihood of the model as a function of the number of MCMC
samples used to approximate the integral. The data used for this comparison are
generated according to the vMF model with parameters D = 50, N = 200, K =
10. The red graph is a close-up of the blue.

To analyze how many samples are needed, we generated a small data
set according to the model (we fixed the clustering to K = 10 with 20 ele-
ments in each cluster), generated τk ∼ N (τavg, τstd) for (τavg, τstd) = (30, 2),
and finally generated xi ∼ vMF(e1, τk), where e1 is the first canonical unit
vector for each i = 1, . . . , N. This procedure was used for the generation of
each of the synthetic data sets used for the analyses in this section. We then
varied the number of samples used to approximate the integral. The results
are presented in Figure 1. With only one sample used to approximate the
integral, the standard deviation of the approximated integral is less than 3%
of the actual value.

In order to answer the question of how many samples are needed for
inference to converge, we generated a number of data sets and ran the in-
ference procedure with a varying number of samples used to approximate
the integral. From the results given in Figures 2a and 2b, we observe that on
data sets with low variance in the concentration parameter between clus-
ters, it is sufficient with only one sample, whereas increasing variance also
increases the required number of samples.

For each of the following applications, we used 30 samples for the ap-
proximation of the integral based on ad hoc tests on each of the data sets.

3.2 Analysis of Initialization. To investigate the impact of initializa-
tion, we compared four initialization strategies on synthetic data:

ones: Initializing all elements to the same cluster followed by the evalu-
ation of 100 MCMC proposals for each hyperparameter

rand: Initializing each label at random among K clusters followed by the
evaluation of 100 MCMC proposals for each hyperparameter
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Figure 2: The effect of different numbers of samples used in approximating the
integral on inference. As the clusters differ more in concentration parameter,
the more samples are needed for sufficient inference. The colored regions are
± the standard deviation over six restarts on different data sets. The data used
for this comparison are generated according to the vMF mixture model with
parameters D = 50, N = 200, K = 10, avg(τk) = 30.

Figure 3: Comparing four initialization strategies. The solid lines are the mean
of the runs, and the colored areas are ± the standard deviation. The data used
for this comparison are generated according to the vMF model with parameters
D = 50, N = 200, K = 10, τavg = 35, τstd = 2.

KM: Initializing the clustering to a K-means solution followed by the
evaluation of 100 MCMC proposals for each hyperparameter

KMrand: Like KM but assigning each label at random after learning hy-
perparameters

We initialized the model with each of the four initialization strategies
and performed 200 MCMC iterations to infer the clustering and param-
eters. We repeated this six times, and the results are given in Figure 3.
We achieve must faster convergence with the K-means initialization but
also observe that the other initialization strategies reach similar solutions
when the models have converged. For the remainder of the letter, we have
used the KMrand initialization strategy as it avoids initializing to a local
minimum.
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3.3 A Three-Dimensional Example. To illustrate the model, we gen-
erated a small three-dimensional data set of six clusters with 40 elements
in each cluster. We generated the mean directions from a vMF distribu-
tion with mean direction as the third canonical unit vector e3 and τ0 = 0.01.
For each cluster, we generated the concentration parameter randomly from
N (50, 202).

We ran three samplers using either 1, 3, or 100 samples to estimate the
integral and stopped the inference chains after 200 Monte Carlo iterations.
For each of the three runs, we present the clustering from the highest like-
lihood sample in Figures 4a to 4c. The circles on the spheres represent the
95% credibility regions. To emphasize the difference, we plot the posterior
distribution for the concentration parameters for the prior and for each of
the clusters in Figure 4d.

Finally, we present the log joint probability and the NMI for each itera-
tion of the inference chains in Figures 4e and 4f. There are significant dif-
ferences in the inference using only a single sample, while the difference
between using 3 and 100 samples is negligible. For the chain with a single
sample, we see that the mode of the posterior densities is concentrated too
heavily around the prior compared to the other two chains, and therefore
the confidence regions are either too small or too large.

3.4 Comparison of GMM and vMF. The comparison of mixture models
based on different probability distributions on simulated data sets is inher-
ently dependent on the parameters used for generating the data, such as
the probability distribution used for generating the data, number of obser-
vations, number of clusters, and the temporal dimension of the data. The
parameters used for generating the data set in this section are selected to
illustrate the differences between using gaussian and vMF-based mixture
models.

To analyze the differences between using a gaussian and vMF-based
mixture model, we generated several data sets according to the genera-
tive model for both the mixture of vMF distributions and the mixture of
gaussians that is subsequently normalized to the unit sphere. Each data
set is generated with N = 1000 observations with D = 240 divided into
K = 50 clusters of equal size and vary the average and standard deviation
of the noise of each cluster such that avg(σk) = std(σk) and avg(τ ) = std(τ )
for each of the k = 1, . . . , K clusters for the gaussian and vMF-based data,
respectively. We apply standard K-means and run inference in the vMF,
GMMs, and GMMd models for 100 MCMC iterations with identical ini-
tializations, which the plots of the log-likelihood (not included) indicate are
sufficient for convergence. For each level of noise, we repeat the experiment
20 times.

The highest likelihood sample is selected for each sampling chain, and
the AMI with the true clustering in given in Figure 5. We see a clear ad-
vantage for the vMF model on data generated from a mixture of vMFs for
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Figure 4: The 3D example. The data on the sphere are presented on the top.
The center color denotes the actual clustering, and the border is the clustering
inferred. The 95% credibility region is marked by the black circle. For the gen-
erated data, the model is able to infer the correct clustering.

average concentration parameters of the generated data between avg(τk) =
50 and 85 and a minor advantage to the vMF model when the noise is higher
than avg(σk) = 10 for data generated from a mixture of gaussians.

Next, we explored how the gaussian and vMF nonparametric models
handled data generated from a mixture of vMFs with parameters N =
100, K = 5, D = 30, τ0 = 30, τstd = 25, and τmean = {20, 25, and 30} for high
noise, medium noise, and low noise data sets, respectively. For each of the



NECO_a_01000-Roge MITjats-NECO.cls July 7, 2017 22:36

U
nc

or
re

ct
ed

Pr
oo

f

Infinite von Mises–Fisher Modeling 19

Figure 5: Results on the two simulated data sets based on adjusted mutual in-
formation (AMI).

three settings, we generated τk ∼ N (τmean, τstd) and then generated the data
set. We ran the infinite vMF, GMMs, and GMMd models for 200 MCMC it-
erations for each dataset.

Results, based on the number of clusters in the highest-likelihood sam-
ple, are presented in Figure 6. It is clear that the vMF-based nonparametric
models infer a number of clusters much closer to the truth compared to both
the spherical and elliptical gaussian mixture models. This emphasizes the
importance of modeling data using directional statistics in determining the
complexity of a data set.

3.5 Resting-State fMRI Analysis. Functional brain connectivity can
be assessed by analyzing fluctuations in the blood oxygenation level–
dependent signal (BOLD). Statistical dependencies across brain areas are
typically measured by correlation such that highly correlated regions con-
stitute estimates of functional networks. Resting state (i.e., fMRI recorded
during rest, without explicit task) has become prominent for probing func-
tional connectivity in the resting brain (Biswal et al., 2010). Often these
functional networks are extracted by defining a seed region and evaluating
correlation to this region throughout the brain (Biswal, Yetkin, Haughton,
& Hyde, 1995). Rather than specifying seeds, clustering methods extract
prominent latent activation profiles and identify corresponding brain net-
works (Craddock et al., 2012). These latent class models are useful as they
do not rely on a priori specification of seeds and can provide an overview
of the functional organization across large high-dimensional data sets. The
interpretation of these networks hinges on their reliability. However, la-
tent variable models can be plagued by issues of reproducibility across
data splits; thus, reliability is an important issue to address for their utility
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Figure 6: Results from nonparametric synthetic analysis. In the top image of
each, the NMI between the inferred solutions and truth for each repetition of the
experiment can be seen, and on the bottom, histograms of the inferred number
of clusters in the solutions. We see that the vMF-based nonparametric mixture
models in general find solutions closer to the truth in terms of both NMI and
the inferred number of clusters.

(Strother et al., 2002; Thirion, Varoquaux, Dohmatob, & Poline, 2014;
Churchill, Madsen, & Mørup, 2016). As correlation is formed by the inner
product of standardized fMRI time series, thus naturally complying with
the vMF distribution assumptions, the vMF mixture model is attractive for
clustering resting-state fMRI data as clusters are explicitly formed by their
correlation to the extracted latent activation profiles.

In this study, we apply the clustering models to a resting-state fMRI data
set consisting of 30 healthy subjects scanned on a Siemens 3T MRI scanner.
The data set has been previously used in Andersen et al. (2014). During the
functional scans, the participants were instructed to keep their eyes closed
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Figure 7: The normalized mutual information (NMI), rand index (AR), and ad-
justed mutual information (AMI) between groups of five subjects.

and refrain from any voluntary motor or cognitive activity while the 480
brain volumes were scanned over 20 minutes with a repetition time of 2.49 s.

Data were preprocessed using the SPM12 software package (SPM12,
Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk
/spm/software/spm12/) with the following steps: (1) rigid body realign-
ment, (2) coregistration, (3) spatial normalization to the Montreal Neuro-
logical Institute (MNI) 152 template, (4) reslicing of images into MNI space
at 3 mm isotropic voxels, and (5) spatial smoothing was applied with a
6 mm full-width, half maximum isotropic gaussian filter. Finally, a rough
gray matter mask consisting of 48,799 voxels was applied.

We divide the data set into two groups of five subjects, and for each
group we select the first 240 brain volumes, allowing us to quantify the
generalizability of the clustering to new subjects. Then we apply the para-
metric models (vMF, GMMs, and GMMd) with number of clusters, K =
{50, 100, 250, 500, 750, 1000, 1250, 1500} to the time series data using the
KMrand initialization strategy. For each model, we perform 100 MCMC it-
erations and repeat the process four times on each of the two data sets for
each of the three models and for each of the four settings of K, resulting in
a total of 96 runs. Note that although we apply sampling-based inference,
the solutions found will be subject to local maxima and suffer from poor
mixing due to the size of the problem.

We evaluate the results based on three different metrics of similarity be-
tween the clusterings inferred across the two groups of five subjects: nor-
malized mutual information (NMI), adjusted mutual information (AMI),
and the adjusted Rand index (AR). The results are presented in Figure 7,
and in Figures 8 and 9, the best likelihood sample from the vMF, GMMs,
and GMMd models are visualized with axial slices and surface plots for
the solutions with 100 and 250 regions of interest. The GMMd model in a
slightly different formulation with a distance-dependent Chinese restau-
rant process prior on the clustering has produced promising results in

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Figure 8: Visual comparison of axial slices of the solutions from the vMF,
GMMs, and GMMd clustering methods for K = 100 and K = 250.

Figure 9: Visual comparison of the surface of the clustering solutions from the
vMF, GMMs, and GMMd clustering methods for K = 100 and K = 250.

parcellating the Striatum (Janssen, Jylänki, Kessels, & van Gerven, 2015).
The results here clearly show that the vMF-based model outperforms both
the models based on gaussian densities in terms of all three measures of
similarity of the obtained clusterings, thus providing a more reliable whole
brain segmentation.

The results with silhouette score emphasize the utility of the vMF-based
mixture model, as seen in Figure 10.

As an example, we inspect the segmentation of the striatum and the
insula as delineated by the automated anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002) by visualizing the highest likelihood sample
of the K = 100 and the K = 250 vMF parcellations. (See Figure 11.) For both
the striatum and the insula, we see a clear symmetry across hemispheres
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Figure 10: The silhouette index for the brain clusterings from the parcelations
on the groups of five subjects.

Figure 11: Coronal brain slices and a surface visualization of the segmentation
of the insula (left) and the striatum (right) for the highest-likelihood sample of
the vMF clustering.
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Figure 12: The predictive likelihood as a function of the number of clusters is
shown in panel a for both with the parametric models and noparametric vMF
mixture models. In panel b is a comparison between the repetitions of the ivMF
and iGMMs models.

for the K = 100 with a compelling delineation of both the putamen and the
caudate. The insula is divided into four clusters: one for the posterior part,
two for the central transitional region, and one for the anterior (Menon &
Uddin, 2010). The putamen is subdivided into two regions and the caudate
into three. The subdivision of the caudate and the putamen appears to be
in general agreement with that reported by Janssen et al. (2015), where a
rostral and caudal part of the putamen can be consistently identified, as
well as a dorsal and rostral part of the caudate. Possibly due to the coarser-
grained clustering at K = 100, a subdivision of the dorsal putamen was
not seen, and the division of the ventral caudate appears slightly differ-
ent from that of Janssen et al. (2015). For the K = 250, as expected, we see
further subdivision of both the striatum and the insula. Some of the clusters
are now separated across hemispheres, but the symmetry is still clear, and
the division of the striatum is still in general agreement with Janssen et al.
(2015).

We then applied the vMF model on the two data sets with number of
clusters varying between 200 and 3000, again with the KMrand initializa-
tion strategy. After 100 MCMC iterations, we stopped the sampler and com-
puted the predictive likelihood on the left-out group of subjects based on
the hyperparameters and clustering configuration from the highest likeli-
hood sample. In Figure 12, the results of this predictive analysis are given
and show that the nonparametric models require on the order of a few
thousand parcels to explain the data. These results are consistent with the
analysis in Thirion et al. (2014), where Ward clustering of task-activated b-
maps evaluated based on goodness of fit showed support for up to 5000
clusters.

Finally, we employ the nonparametric models, again using the KMrand
initialization strategy assigning the voxels to 1000 clusters at random af-
ter the hyperparameters have been learned for 100 MCMC iterations. Each
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run of the vMF-based model is presented as a circle in Figure 12a whereas
box plots of the number of clusters inferred as well as NMI across the two
groups of subjects are presented in Figure 12b. These results do not solve
the problem of determining the number of functional units in the brain but
suggest that whole brain fMRI segmentation requires on the order of a few
thousand clusters to adequately account for the functional organization of
the fMRI data and that the nonparametric models by identifying a large
number of clusters are not overfitting to the data.

4 Conclusion

In this letter, we presented a thorough comparison of the effect of mod-
eling directional data using vMF-based distributions in comparison to as-
suming the data are gaussian distributed considering both synthetic data
and large-scale clustering of resting-state whole brain fMRI time series. We
demonstrated a significant improvement in terms of the stability of solu-
tions across groups of subjects when correctly imposing that the data reside
on a hypersphere over the standard assumption of gaussian distributed ob-
servations. We have further shown that it is computationally feasible to ap-
ply sampling-based inference on multisubject whole brain fMRI time series
data.

The predictive analysis shows that employing Bayesian nonparametrics
can be a cheap substitute for using the computationally expensive, predic-
tive cross-validation in determining the complexity of the data. Both the
predictive cross-validation analysis and the Bayesian nonparametric anal-
ysis show that the resting-state fMRI data set supports a number of clusters
on the order of a few thousand, which is in correspondence with recent
findings (Thirion et al., 2014).

A variational inference–based implementation of the vMF mixture
model has been proposed in two recent contributions (Taghia et al., 2014;
Gopal & Yang, 2014). It could be interesting to compare the MCMC- and
VI-based model implementations on both synthetic data and real problems
based on ability to model the problem and computational complexity. We
suspect there is a trade-off between VI being vulnerable to local minima
with the MCMC implementation being more computationally expensive.

Modeling directional data using the appropriate directional distribu-
tions shows great promise, and this is an area worth more attention. A natu-
ral extension of this work would be to employ more advanced distributions
on the hypersphere that has a more complex covariance structure, such as
the Kent or Fisher Bingham distribution. We considered mixture modeling
applications; however, we anticipate that the use of the vMF distribution
may be useful in general when modeling standardized fMRI time series.
The developed vMF clustering algorithm has been implemented in Matlab
and is available from the authors at https://brainconnectivity.compute.dtu
.dk.

https://brainconnectivity.compute.dtu.dk
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Figure 13: NMI with truth of the methods implemented. The solid black line is
the result of averaging 10 repetitions of the VI implementation of the mixture
of vMF model reported by Gopal et al. (2014).

Appendix: Document Topic Modeling

Document topic modeling is an application where variational inference–
based vMF models have shown great promise (Gopal & Yang, 2014), and to
confirm that our implementation of sampling-based inference is at least on
par with the VI vMF, we apply our clustering method to the CNAE-9 data
set.

The CNAE-9 data set consists of 1080 documents, and each document
is a vector of the frequency of occurrence for 857 words: N = 1080 and
D = 857. The documents are divided into nine categories, and the true
clustering is thus available. Before clustering, we perform term frequency–
inverse document frequency (tf-idf) on the data set, a standard preprocess-
ing step for topic modeling and known to increase performance (Salton &
McGill, 1983). First, we use the parametric models with the number of clus-
ters set to K = 10 and apply the initialization method KMrand such that
we use the K-means solution only to compute reasonable hyperparame-
ters and then continue with a random initialization of the clustering. We re-
peat this process 60 times, and in each repetition, all models are initialized
to the same K-means solution for the initial parameter estimation and the
same random initialization afterward. We perform 500 MCMC iterations
for each model and repetition and select the highest likelihood sample for
comparison.

In order to confirm that the difference between the vMF- and GMM-
based models is not a question of mixing, we continue a spherical GMM
model from each of the vMF clustering solutions and perform another 500
MCMC iterations. Similarly, for each of the spherical GMM solutions, we
continue in a vMF model for 500 MCMC iterations. The results are pre-
sented and compared to Gopal and Yang (2014) in Figure 13.
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Figure 14: The predictive likelihood on the 10%. hold-out data. The line is the
result of running the vMF models with a fixed number of clusters averaged over
36 repetitions, and the black dots are the result of 36 repetitions of the nonpara-
metric vMF models.

We use the same initialization procedure for the nonparametric vMF
model and observe that it converges to around 300 clusters. In order to val-
idate that the data have support for that number of clusters, we ran finite
models with the number of clusters varying from 10 to 300 on a training set
that consists of 90% of the data and computed the predictive likelihood on
the hold-out set. These results are in Figure 14. We see that the nonparamet-
ric implementations of the vMF model can use the more advanced inference
steps in split-merge to increase the predictive performance and that the in-
ferred number of clusters is in a regime also supported by the predictive
likelihood on hold-out test data.
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