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Abstract

The hypothesis that the phasic dopamine response reports a reward prediction error has
become deeply entrenched. However, dopamine neurons exhibit several notable deviations from
this hypothesis. A coherent explanation for these deviations can be obtained by analyzing the
dopamine response in terms of Bayesian reinforcement learning. The key idea is that prediction
errors are modulated by probabilistic beliefs about the relationship between cues and outcomes,
updated through Bayesian inference. This account can explain dopamine responses to inferred
value in sensory preconditioning, the effects of cue pre-exposure (latent inhibition) and adaptive
coding of prediction errors when rewards vary across orders of magnitude. We further postulate
that orbitofrontal cortex transforms the stimulus representation through recurrent dynamics,
such that a simple error-driven learning rule operating on the transformed representation can
implement the Bayesian reinforcement learning update.

1 Introduction

The phasic firing of dopamine neurons in the midbrain has long been thought to report a reward
prediction error—the discrepancy between observed and expected reward—whose purpose is to
correct future reward predictions (Eshel et al., 2015; Glimcher, 2011; Schultz et al., 1997). This
hypothesis can explain many key properties of dopamine, such as its sensitivity to the probability,
magnitude and timing of reward, its dynamics over the course of a trial, and its causal role in
learning. Despite its success, the prediction error hypothesis faces a number of puzzles. First, why
do dopamine neurons respond under some conditions, such as sensory preconditioning (Sadacca
et al., 2016) and latent inhibition (Young et al., 1993), where the prediction error should theoret-
ically be zero? Second, why do dopamine responses appear to rescale with the range or variance
of rewards (Tobler et al., 2005)? These phenomena appear to require a dramatic departure from
the normative foundations of reinforcement learning that originally motivated the prediction error
hypothesis (Sutton and Barto, 1998).

This paper provides a unified account of these phenomena, expanding the prediction error hypoth-
esis in a new direction while retaining its normative foundations. The first step is to reconsider
the computational problem being solved by the dopamine system: instead of computing a single
point estimate of expected future reward, the dopamine system recognizes its own uncertainty by
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computing a probability distribution over expected future reward. This probability distribution
is updated dynamically using Bayesian inference, and the resulting learning equations retain the
important features of earlier dopamine models. Crucially, the Bayesian theory goes beyond ear-
lier models by explaining why dopamine responses are sensitive to sensory preconditioning, latent
inhibition and reward variance.

The theory presented here was first developed to explain a broad range of associative learning
phenomena within a unifying framework (Gershman, 2015). We extend this theory further by
equipping it with a mechanism for updating beliefs about cue-specific volatility (i.e., how quickly
associations between particular cues and outcomes change over time). This mechanism harkens
back to the classic Pearce-Hall theory of attention in associative learning (Pearce and Hall, 1980;
Pearce et al., 1982), as well as to more recent Bayesian incarnations (Behrens et al., 2007; Mathys
et al., 2011; Nassar et al., 2010; Yu and Dayan, 2005). As shown below, volatility estimation is
important for understanding the effect of reward variance on the dopamine response.

2 Temporal difference learning

The prediction error hypothesis of dopamine was originally formalized by Schultz et al. (1997) in
terms of the temporal difference (TD) learning algorithm (Sutton and Barto, 1998), which posits
an error signal of the form:

δt = rt + γV̂t+1 − V̂t, (1)

where rt is the reward received at time t, γ ∈ [0, 1] is a discount factor that down-weights distal
rewards exponentially, and V̂t is an estimate of the expected discounted future return (or value):

Vt = E

[∑
k=0

γkrt+k

]
. (2)

By incrementally adjusting the parameters of the value function to minimize prediction errors,
TD learning gradually improves its estimates of future rewards. One common functional form,
both in machine learning and neurobiological applications, is linear function approximation, which
approximates the value as a linear function of features xt: Vt = w>xt, where w is a vector of
weights, updated according to ∆w ∝ x>t δt.

In the complete serial compound (CSC) representation, each cue is broken down into a cascade
of temporal elements, such that each feature corresponds to a binary variable indicating whether
a stimulus is present or absent at a particular point in time. This allows the model to generate
temporally precise predictions, which have been systematically compared to phasic dopamine sig-
nals. While the original work by Schultz et al. (1997) showed good agreement between prediction
errors and dopamine using the CSC, later work called into question its adequacy (Daw et al., 2006;
Gershman et al., 2014; Ludvig et al., 2008). Nonetheless, we will adopt this representation for its
simplicity, noting that our substantive conclusions are unlikely to be changed with other temporal
representations.
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3 Reinforcement learning as Bayesian inference

The TD model is a point estimation algorithm, updating a single weight vector over time. Gershman
(2015) argued that associative learning is better modeled as Bayesian inference, where a probability
distribution over all possible weight vectors is updated over time. This idea was originally explored
by Dayan and colleagues (Dayan and Kakade, 2001; Dayan et al., 2000) using a simple Bayesian
extension of the Rescorla-Wagner model (the Kalman filter). This model can explain retrospective
revaluation phenomena like backward blocking that posed notorious difficulties for classical models
of associative learning (Miller et al., 1995). Gershman (2015) illustrated the explanatory range of
the Kalman filter by applying it to numerous other phenomena. However, the Kalman filter is still
fundamentally limited by the fact that it is a trial-level model and hence cannot explain the effects
of intra-trial structure like the interstimulus interval or stimulus duration. It was precisely this
structure that motivated real-time frameworks like the TD model (Sutton and Barto, 1990).

The same logic that transforms Rescorla-Wagner into the Kalman filter can be applied to transform
the TD model into a Bayesian model (Geist and Pietquin, 2010). Gershman (2015) showed how the
resulting unified model (Kalman TD) can explain a range of phenomena that neither the Kalman
filter nor the TD model can explain in isolation. In this section, we describe Kalman TD and its
extension to incorporate volatility estimation. We then turn to studies of the dopamine system,
showing how the same model can provide a more complete account of dopaminergic prediction
errors.

3.1 Kalman temporal difference learning

To derive a Bayesian model, we first need to specify the data-generating process. In the context
of associative learning, this entails a prior probability distribution on the weight vector, p(w0), a
change process on the weights, p(wt|wt−1), and a reward distribution given stimuli and weights,
p(rt|wt,xt). Kalman TD assumes a linear-Gaussian dynamical system:

w0 ∼ N (0, σ2wI) (3)

wt ∼ N (wt−1,Q) (4)

rt ∼ N (w>t ht, σ
2
r ), (5)

where I is the identity matrix, Q = diag(q1, . . . , qD) is a diagonal diffusion covariance matrix, and
ht = γxt+1 − xt is the discounted temporal derivative of the features. Under these assumptions,
the value function can be expressed as a linear function of the features, Vt = w>xt, just as in the
linear function approximation architecture for TD (though in this case the relationship is exact).

Given an observed sequence of feature vectors, Bayes’ rule stipulates how to compute the posterior
distribution over the weight vector:

p(wt|x1:t) ∝ p(x1:t|wt)p(wt). (6)

Under the generative assumptions described above, the Kalman filter can be used to update the
parameters of the posterior distribution in closed form. In particular, the posterior is Gaussian
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with mean ŵt and covariance matrix Σt, updated according to:

ŵt+1 = ŵt + αtδ̄t (7)

Σt+1 = Σt + Q− αtα
>
t

λt
, (8)

where ŵ0 = 0, Σ0 = σ2wI, αt = (Σt + Q)ht is a vector of learning rates, and

δ̄t =
δt
λt

(9)

is the prediction error rescaled by the marginal variance

λt = h>t αt + σ2r . (10)

Like the original TD model, the Kalman TD model posits updating of weights by prediction error,
and the core empirical foundation of the TD model (see Glimcher, 2011) also applies to Kalman TD.
Unlike the original TD model, the learning rates change dynamically in Kalman TD, a property
important for explaining phenomena like latent inhibition, as discussed below. Another deviation
from the original TD model is the fact that weight updates may not be independent across cues;
if there is non-zero covariance between cues, then observing novel information about one cue will
change beliefs about the other cue. This property is instrumental to the explanation of various
revaluation phenomena (Gershman, 2015), which we explore below using the sensory precondition-
ing paradigm.

3.2 Volatility estimation

One unsatisfying, counterintuitive property of the Kalman TD model is that the learning rates do
not depend on the reward history. This means that the model will not be able to capture changes
in learning rate due to variability in the reward history. There is in fact a considerable literature
suggesting learning rate changes as a function of reward history, though the precise nature of such
changes is controversial (Le Pelley, 2004; Mitchell and Le Pelley, 2010). For example, learning is
slower when the cue was previously a reliable predictor of reward (Hall and Pearce, 1979). Pearce
and Hall (1980) interpreted this and other findings as evidence that learning rate declines with
cue-outcome reliability. They formalized this idea by assuming that learning rate is proportional
to the absolute prediction error (see Roesch et al., 2012, for a review of the behavioral and neural
evidence).

A similar mechanism can be derived from first principles within the Kalman TD framework. We
have so far assumed that the diffusion covariance matrix Q is known, but the diagonal elements
(diffusion variances) q1, . . . , qD can be estimated by maximum likelihood methods. In particular,
we can derive a stochastic gradient descent rule by differentiating the log-likelihood with respect
to the diffusion variances:

∆qd = ηh2td
δ̄2t − 1

λt
, (11)

where η is a learning rate. This update rule exhibits the desired dependence of learning rate on
the unsigned prediction error (δ̄2), since learning rate for cue d increases monotonically with qd.
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Figure 1: Sensory preconditioning: simulation of Sadacca et al. (2016). In the sensory pre-
conditioning phase, animals are exposed to the cue sequences A→B and C→D. In the conditioning
phase, B is associated with reward, and D is associated with nothing. The intact OFC model shows
elevated conditioned responding and dopamine activity when subsequently tested on cue A, but
not when tested on cue C. The lesioned OFC model does not show this effect, but responding to B
is intact.

3.3 Modeling details

We use the same parameters as in our earlier paper (Gershman, 2015): σ2w = 1, σ2r = 1, and
γ = 0.98. The volatilities were initialized to qd = 0.01 and then updated using a meta-learning rate
of η = 0.1. Stimuli were modeled with a 4-time-step CSC representation and an intertrial interval
of 6 time-steps.

4 Applications to the dopamine system

We are now in a position to resolve the puzzles with which we started, focusing on two empirical
implications of the TD model. First, the model only updates the weights of present cues, and hence
cues that have not been paired directly with reward or with reward-predicting cues should not
elicit a dopamine response. This implication disagrees with findings from a sensory preconditioning
procedure (Sadacca et al., 2016), where cue A is sequentially paired with cue B and cue C is
sequentially paired with cue D (Figure 1). If cue B is subsequently paired with reward and cue D
is paired with nothing, cue A comes to elicit both a conditioned response and elevated dopamine
activity compared to cue B. The TD model predicts no dopamine response to either A or B. The
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Figure 2: Latent inhibition: simulation of Young et al. (1993). The acquisition of a dopamine
response to a cue is slower for pre-exposed cues (Pre) compared to novel cues (NoPre).

Kalman TD model, in contrast, learns a positive covariance between the sequentially presented
cues. As a consequence, the learning rates will be positive for both cues whenever one of them is
presented alone, and hence conditioning one cue in a pair will cause the other cue to inherit value.

In the latent inhibition procedure, pre-exposing a cue prior to pairing it with reward should have
no effect on dopamine responses during conditioning in the original TD model (since the prediction
error is 0 throughout pre-exposure), but experiments show that pre-exposure results in a pronounced
decrease in both conditioned responding and dopamine activity during conditioning (Young et al.,
1993). The Kalman TD model predicts that the posterior variance will decrease with repeated
pre-exposure presentations (Gershman, 2015) and hence the learning rate will decrease as well.
This means that the prediction error signal will propagate more slowly to the cue onset for the
pre-exposed cue compared to the non-pre-exposed cue.

A second implication of the TD model is that dopamine responses at the time of reward should
scale with reward magnitude. This implication disagrees with the work of (Tobler et al., 2005), who
paired different cues half the time with a cue-specific reward magnitude (liquid volume) and half
the time with no reward. Although dopamine neurons increased their firing rate whenever reward
was delivered, the size of this increase was essentially unchanged across cues despite the reward
magnitudes varying over an order of magnitude. Tobler et al. (2005) interpreted this finding as
evidence for a form of “adaptive coding,” whereby dopamine neurons adjust their dynamic range
to accommodate different distributions of prediction errors (see also Diederen and Schultz, 2015;
Diederen et al., 2016, for converging evidence from humans). Adaptive coding has been found
throughout sensory areas as well as in reward-processing areas (Louie and Glimcher, 2012). While
adaptive coding can be motivated by information-theoretic arguments (Atick, 1992), the question
is how to reconcile this property with the TD model.

The Kalman TD model resolves this puzzle if one views dopamine as reporting δ̄t (the variance-
scaled prediction error) instead of δt (Figure 3).1 Critical to this explanation is volatility updating:

1Preuschoff and Bossaerts (2007) made an essentially identical suggestion, but did not provide a mechanistic
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Figure 3: Adaptive coding: simulation of Tobler et al. (2005). Each cue is associated with
a 50% chance of earning a fixed reward, and 50% chance of nothing. Dopamine neurons show
increased responding to the reward compared to nothing, but this increase does not change across
cues delivering different amounts of reward. This finding is inconsistent with the standard TD
prediction error account, but is consistent with the hypothesis that prediction errors are divided
by the posterior predictive variance.

the scaling term (λt) increases with the diffusion variance qd, which itself scales with the reward
magnitude in the experiment of Tobler et al. (2005). In the absence of volatility updating, diffusion
variance would stay fixed, and hence λt would no longer be a function of reward history.2

5 Representational transformation in the orbitofrontal cortex

Dayan and Kakade (2001) described a neural circuit that approximates the Kalman filter, but did
not explore its empirical implications. This section reconsiders the circuit implementation applied
to the Kalman TD model, and then discusses experimental data relevant to its neural substrate.

The network architecture is shown in Figure 4. The input units represent the discounted feature
derivatives, ht, which are then passed through an identity mapping to the intermediate units yt.
The intermediate units are recurrently connected with a synaptic weight matrix B and undergo
linear dynamics given by:

τ ẏt = −yt + ht + Byt, (12)

where τ is a time constant. These dynamics will converge to y∞t = (I − B)−1ht, assuming the
inverse exists. The synaptic weight matrix is updated according to an anti-Hebbian learning rule

proposal for how the scaling term would be computed.
2Eshel et al. (2016) have reported that dopamine neurons in the ventral tegmental area exhibit homogeneous

prediction error responses that differ only in scaling. One possibility is that these neurons have different noise levels
(σ2

r) or volatility estimates (qd), which would influence the normalization term λt.
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Figure 4: Neural architecture for Kalman TD. Modified from Dayan and Kakade (2001).
Nodes corresponds to neurons, arrows correspond to synaptic connections.

(Atick and Redlich, 1993; Goodall, 1960):

∆B ∝ −hty
>
t + I−B. (13)

If B is initialized to all zeros, this learning rule asymptotically satisfies (I − B)−1 = E[Σt]. It
follows that y∞t = E[αt] asymptotically. Thus, the intermediate units, in the limit of infinite past
experience and infinite computation time, approximate the learning rates required by the Kalman
filter. As noted by Dayan and Kakade (2001), the resulting outputs can be viewed as decorrelated
(whitened) versions of the inputs. Instead of modulating learning rates over time (e.g., using
neuromodulation; Doya, 2002; Nassar et al., 2012; Yu and Dayan, 2005), the circuit transforms the
inputs so that they implicitly encode the learning rate dynamics.

The final step is to update the synaptic connections (w) between the intermediate units and a
reward prediction unit (r̂t):

∆w = y∞t δ̄t. (14)

The prediction error is computed with respect to the initial output of the intermediate units (i.e.,
xt), whereas the learning rates are computed with respect to their outputs after convergence. This
is consistent with the assumption that the phasic dopamine response is fast, but the recurrent
dynamics and synaptic updates are relatively slow.

Figure 4 presents a neuroanatomical gloss on the original proposal by Dayan and Kakade (2001). We
suggest that the intermediate units correspond to the orbitofrontal cortex (OFC), with feedforward
synapses to reward prediction neurons in the ventral striatum (Eblen and Graybiel, 1995). This
interpretation offers a new, albeit not comprehensive, view of the OFC’s role in reinforcement
learning. Wilson et al. (2014) have argued that the OFC represents a “cognitive map” of task space,
providing the state representation over which TD learning operates. The circuit described above
can be viewed as implementing one form of state representation based on a whitening transform.

If this interpretation is correct, then OFC damage should be devastating for some kinds of asso-
ciative learning (namely, those that entail non-zero covariance between cues) while leaving other
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kinds of learning intact (namely, those that entail uncorrelated cues). A particularly useful ex-
ample of this dissociation comes from work by Jones et al. (2012), which demonstrated that OFC
lesions eliminate sensory preconditioning while leaving first-order conditioning intact. This pattern
is reproduced by the Kalman TD model if the intermediate units are “lesioned” such that no input
transformation occurs (i.e., inputs are mapped directly to rewards; Figure 1). In other words, the
lesioned model is reduced to the original TD model with fixed learning rates.

6 Discussion

The twin roles of Bayesian inference and reinforcement learning have a long history in animal
learning theory, but until recently these ideas were not unified into a single theory known as Kalman
TD (Gershman, 2015). In this paper, we applied the theory to several puzzling phenomena in the
dopamine system: the sensitivity of dopamine neurons to posterior variance (latent inhibition),
covariance (sensory preconditioning) and posterior predictive variance (adaptive coding). These
phenomena could be explained by making two principled modifications to the prediction error
hypothesis of dopamine. First, the learning rate, which drives updating of values, is vector-valued
in Kalman TD, with the result that associative weights for cues can be updated even when that
cue is not present, provided it has non-zero covariance with another cue. Furthermore, the learning
rates can change over time, modulated by the agent’s uncertainty. Second, Kalman TD posits that
dopamine neurons report a normalized prediction error, δ̄t, such that greater uncertainty suppresses
dopamine activity (see also Preuschoff and Bossaerts, 2007).

How are the probabilistic computations of Kalman TD implemented in the brain? We modified the
proposal of Dayan and Kakade (2001), according to which recurrent dynamics produce a transfor-
mation of the stimulus inputs that effectively whitens (decorrelates) them. Standard error-driven
learning rules operating on the decorrelated input are then mathematically equivalent to the Kalman
TD updates. One potential neural substrate for this stimulus transformation is the OFC, a critical
hub for state representation in RL (Wilson et al., 2014). We showed that lesioning the OFC forces
the network to fall back on a standard TD update (i.e., ignoring the covariance structure). This
prevents the network from exhibiting sensory preconditioning, as has been observed experimentally
(Jones et al., 2012). The idea that recurrent dynamics in OFC play an important role in stimulus
representation for reinforcement learning and reward expectation has also figured in earlier models
(Deco and Rolls, 2005; Frank and Claus, 2006).

Kalman TD is closely related to the hypothesis that dopaminergic prediction errors operate over
belief state representations. These representations arise when an agent has uncertainty about the
hidden state of the world. Bayes’ rule prescribes that this uncertainty be represented as a posterior
distribution over states (the belief state), which can then feed into standard TD learning mecha-
nisms. Several authors have proposed that belief states could explain some anomalous patterns of
dopamine responses (Daw et al., 2006; Rao, 2010), and experimental evidence has recently accumu-
lated for this proposal (Lak et al., 2017; Starkweather et al., 2017; Takahashi et al., 2016). One way
to understand Kalman TD is to think of the weight vector as part of the hidden state. A similar
conceptual move has been studied in computer science, in which the parameters of a Markov de-
cision process are treated as unknown, thereby transforming it into a partially observable Markov
decision process (Duff, 2002; Poupart et al., 2006). Kalman TD is a model-free counterpart to
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this idea, treating the parameters of the function approximator as unknown. This view allows one
to contemplate more complex versions of the model proposed here, for example with nonlinear
function approximators or structure learning (Gershman et al., 2015), although inference quickly
becomes intractable in these cases.

A number of other authors have suggested that dopamine responses are related to Bayesian infer-
ence in various ways. Friston and colleagues have developed a theory grounded in a variational
approximation of Bayesian inference, whereby dopamine reports an estimate of inverse variance
(FitzGerald et al., 2015; Friston et al., 2012; Schwartenbeck et al., 2014). This theory fits well
with the modulatory effects of dopamine on downstream circuits, but it is currently unclear to
what extent this theoretical framework can account for the body of empirical data on which the
prediction error hypothesis of dopamine is based. Other authors have suggested that dopamine
is involved in specifying a prior probability distribution (Costa et al., 2015) or influencing uncer-
tainty representation in the striatum (Mikhael and Bogacz, 2016). These different possibilities are
not necessarily mutually exclusive, but more research is necessary to bridge these varied roles of
dopamine in probabilistic computation.

The Kalman TD model makes a number of new experimental predictions. First, it predicts that
a host of post-training manipulations, identified as problematic for traditional associative learning
(Gershman, 2015; Miller et al., 1995), should have systematic effects on dopamine responses. For
example, extinguishing the blocking cue in a blocking paradigm causes recovery of responding to
the blocked cue in a subsequent test (Blaisdell et al., 1999); the Kalman TD model predicts that this
extinction procedure should cause a positive dopaminergic response to the blocked cue. A second
prediction is that the OFC should exhibit dynamic cue competition and facilitation (depending on
the paradigm). For example, in the sensory preconditioning paradigm (where facilitation prevails),
neurons selective for one cue should be correlated with the neurons selective for another cue,
such that presenting one cue will activate neurons selective for the other cue. By contrast, in
a backward blocking paradigm (where competition prevails), neurons selective for different cues
should be anti-correlated. Finally, OFC lesions in these same paradigms should eliminate the
sensitivity of dopamine neurons to post-training manipulations.

The theory presented here does not pretend to be a complete account of dopamine; there remain
numerous anomalies that will keep RL theorists busy for a long time (Dayan and Niv, 2008). The
contribution of this work is to chart a new avenue for thinking about the function of dopamine
in probabilistic terms, with the aim of building a bridge between RL and Bayesian approaches to
learning in the brain.
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