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Recurrent neural network architectures can have useful computational properties, with complex
temporal dynamics and input-sensitive attractor states. However, evaluation of recurrent dynamic
architectures requires solution of systems of differential equations, and the number of evaluations
required to determine their response to a given input can vary with the input, or can be indeterminate
altogether in the case of oscillations or instability. In feed-forward networks, by contrast, only a single
pass through the network is needed to determine the response to a given input. Modern machine-
learning systems are designed to operate efficiently on feed-forward architectures. We hypothesised
that two-layer feedforward architectures with simple, deterministic dynamics could approximate the
responses of single-layer recurrent network architectures. By identifying the fixed-point responses
of a given recurrent network, we trained two-layer networks to directly approximate the fixed-point
response to a given input. These feed-forward networks then embodied useful computations, including
competitive interactions, information transformations and noise rejection. Our approach was able
to find useful approximations to recurrent networks, which can then be evaluated in linear and
deterministic time complexity.
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INTRODUCTION

With very few exceptions, biological networks of neurons
are highly recurrent. For an extreme example, neurons in
the primary visual cortical areas in mammalian brain make
a majority of their synaptic connections between other neur-
ons in the local vicinity (Binzegger et al. 2004). Recurrent
networks can give rise to complex temporal dynamics and
potentially beneficial emergent computational properties.
For example, desired relationships between the activity of
several neurons can be embedded in recurrent excitatory
weights (Douglas et al. 1994, Hahnloser 2003, Rutishauser
and Douglas 2009); the dynamics of the network can then
selectively amplify the desired representations while re-
jecting noise or undesired interpretations of an input (Ben-
Yishai et al. 1995, Douglas and Martin 2007, Somers et al.
1995). Chaotic temporal dynamics present in reservoirs of
randomly connected neurons can be exploited to selectively
detect or generate robust temporal sequences (Laje and
Buonomano 2013, Maass et al. 2002, Sussillo and Abbott
2009).

However, simulating dynamic recurrent networks to make
use of their properties in artificial systems is inconvenient
for several reasons. Such simulations are non-deterministic
in terms of the time required to find an “answer” for a given
input. This is because the dynamics of recurrent networks,
especially stochastically-generated networks, may not be
guaranteed to be stable for every input, and may indeed not
be known in advance of a simulation. Even if stable fixed-
point responses exist for every finite input, the time taken to
reach these fixed points may differ depending on the input.
This issue is exacerbated by the poor fit between simula-
tions of recurrent networks and commodity computational
architectures (i.e. CPU / GPU).
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In contrast, recent successes in using feed-forward or un-
rolled “recurrent” architectures (Graves et al. 2013, Radford
et al. 2015) have occurred hand in hand with development
of computational systems optimised for evaluation of feed-
forward networks (Collobert et al. 2011, Jia et al. 2014,
Theano Development Team 2016). Modern approaches for
distributed evaluation of large networks (Abadi et al. 2016)
make feed-forward architectures very attractive for a range
of applied computational tasks.

Here we examine whether the known beneficial computa-
tional properties of highly recurrent network architectures
can be realised in feed-forward architectures. We take the
approach of probing recurrent networks to quantify a map-
ping between inputs and fixed-point responses. We then
train feed-forward networks to approximate this mapping,
and compare the information-processing abilities of the
recurrent networks with their feed-forward approximations.

RESULTS

Recurrent networks and feed-forward approximations

Fig. 1a shows an example of a simple 2-neuron single-layer
recurrent network. The dynamics of each rectified-linear
(or linear-threshold; or ReLU) neuron (xj , composed into a
vector of activity x) is governed by a nonlinear differential
equation

τ · Ûx+ x =WR · [x]++ i (1)

(see Methods), and evolves in response to the input i
provided to the neuron, as well as the activity of the rest of
the network x transformed by the recurrent synaptic weight
matrix WR. Here [x]+denotes the linear-threshold trans-
fer function [x]+ = max (x,0). Neglecting the potentially
complex temporal dynamics of network activity, for this
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Figure 1. Recurrent and feed-forward network architectures.
(a) Two-neuron recurrent architecture. Rectified-linear (ReLU)
neurons (x; circles) receive input (i), and possibly reach a stable
fixed point in activity (f; the values of network activity x at
the fixed point, if it exists) through recurrent interactions via
weights WR . (b) A 2×2 neuron feed-forward architecture. Input i
is transformed through two layers of ReLU neurons (x|1,x|2) via
all-to-all weight matrices WFF |1 and WFF |2. The activity x|2 of
layer 2 is the output of the network. See Methods for more detail.

work we define the “result” of such a network as the recti-
fied fixed-point response of the population activity of the
network [f ]+, if a stable fixed point exists.

In the following, we approximate the mapping between
network inputs i and network fixed points [f]+ using a
family of feed-forward network architectures (Fig. 1b).
For a recurrent network with N = 2 neurons, the corres-
ponding feed-forward approximation consisted of two lay-
ers, each consisting of N = 2 ReLU neurons. All-to-all
weight matrices WFF |1 and WFF |2 defined the connectivity
between the network input (i), the neurons of layer 1 (x|1),
and the neurons of layer 2 (x|2). We use the notation v |n
to refer to a variable v within layer n. In some implement-
ations of unrolled recurrent network architectures, weight
matrices across several layers, representing multiple points
in time, are tied together and trained as a group. We did
not take that approach with our feed-forward networks, and
permitted the weights for each layer to vary independently.
The activity of x|2 were taken as the output of the network.
In contrast to the recurrent network, neuron activations in
the feed-forward approximation were given by determin-
istic feed-forward evaluation, with no temporal dynamics
(Eq. 5; see Methods).

Small network architectures

We first investigated whether the dynamics of 2-neuron
recurrent networks can be approximated by training a two-
layer linear-threshold neuron (ReLU) network to directly
map network inputs to fixed-point responses of the recurrent
network. We obtained accurate feed-forward approxima-
tions for randomly chosen neuron recurrent networks that
exhibited stable non-trival fixed points. Here we show two
examples of networks with both non-oscillatory and oscil-
latory dynamics. Fig. 2 shows the result of approximating a
2-neuron recurrent network with positive real eigenvalues,
which lead to stable fixed points with an expansive mapping
of the input space.

We performed a random sampling of the input space by
drawing uniform random variates from the unit square
(−1,1)2. For each input, we analysed the eigenspectrum and
solved the dynamics of the recurrent network to determine
whether a stable fixed-point response existed for that input,
discarding inputs for which no stable fixed point existed.
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Figure 2. Feed-forward approximation to the fixed-point map-
ping of a 2 neuron recurrent network, with real positive eigen-

values. (a) Recurrent dynamics for the system WR =

[
.4 .2
.8 .5

]
.

Loci of recurrent network responses traced to fixed points (dots),
from a matrix of inputs I arranged uniformly over the unit square
(−1,1)2 (solid square). Each line traces the locus of x in response
to a single input im to the corresponding fixed point fm. The
origin is indicated by the black cross. (b) Rectified fixed-point
responses F 3 [fm]+ of the recurrent network (circles), overlaid
with the corresponding feed-forward network response (dots). Or-
ange lines connect poorly-mapped feed-forward responses to the
corresponding recurrent fixed point.
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Figure 3. Errors in the feed-forward approximation occur
mainly around the activation threshold. (a) Large differences
between the output of the feed-forward approximation (x|2) and
the rectified fixed-point of the recurrent network ([fm]+) occur
mostly when the activation of one recurrent unit is below threshold
(i.e. x1, x2 < 0; [fm]+ = 0). (b) Errors in generalization increase as
the input to the network moves further outside the trained region
(ι1, ι2 > 1), but remain small.

We therefore found a mapping between a set of inputs I and
the set of corresponding fixed-point responses F , which
was used as training data to find an optimal feed-forward
approximation to that mapping (see Methods). Fig. 2a
shows the activity dynamics of the recurrent network, from
a number of inputs to their corresponding fixed points.
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Figure 4. Feed-forward approximation to a 2 neuron
recurrent network with damped oscillatory dynamics
and complex eigenvalues. (a) Recurrent dynamics for the

system WR =

[
.70 .11
−.54 .98

]
. This network has complex ei-

genvalues, with damped oscillatory dynamics. (b) Recurrent
fixed-point responses (circles) compared with feed-forward
network responses (dots).
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Notations as in Fig. 2.

We used a stochastic gradient-descent optimisation al-
gorithm with momentum and adaptive learning rates
(Adam; Kingma and Ba 2015) to find a feed-
forward network that approximated the mapping I →
F by minimising the mean-square loss function c =
1/2MΣM

m=1
(
xm |2−[fm]+

)2 (see Methods). The Adam optim-
isation algorithm resulted in feed-forward approximations
with smaller errors than training using direct gradient des-
cent without momentum. Only fixed points in which all
elements fm > 0 were used for training. We found this ap-
proach to result in better approximations to recurrent fixed
points. Since many inputs map to zero fixed point responses
in the recurrent network (see Fig. 2a), the training process
tended to over-emphasise them, leading to a poor repres-
entation of non-zero fixed points. Training was performed
over randomly generated batches containing M = 50 input
to fixed-point mappings, and was halted when the batch
training error smoothed over 100 batches converged.

Fig. 2b shows the I → F mapping produced by the best
feed-forward network found after 16 500 training iterations.
Inputs that lead to a non-zero response from both neurons
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Figure 5. Competition in a two-partition network. (a) A recur-
rent dynamic network with two all-or-nothing excitatory partitions
(A and B), and a single global inhibitory neuron (Inh). The archi-
tecture of the feed-forward approximation network is as shown in
Fig. 1. (b) Stimulating the partitions with a linear mixture of input
currents (0,1) (grey shading) provokes strong competition in the
response of the partitions (note rapid switching between partition
A and B when inputs are roughly equal). The feed-forward approx-
imation (dashed lines) exhibits similar competitive switching to
the recurrent network (solid lines). Recurrent network parameters:
{N,wE,wI ,b} = {5,2.5,8,0}.

were mapped with high accuracy (overlapping dots and
circles).

Errors in the feed-forward approximation occurred mainly
around the activation threshold (Fig. 3a). The feed-forward
approximation also generalized well for inputs outside the
training regime (i.e. ι1, ι2 > 1; Fig. 3b). Generalization
errors increased slowly further from the trained input space,
but remained small. In this example, we were therefore
able to train an accurate feed-forward approximation to the
fixed-point dynamics of this simple recurrent network.

How does this approach fare, when applied to a recurrent
network with more complex dynamics? Fig. 4 shows the
result of approximating a 2-neuron recurrent network with
a complex eigenvalue pair with positive real part, which
leads to stable spiral fixed points. This recurrent network
exhibited damped oscillatory dynamics when driven by
constant inputs (Fig. 4a). Nevertheless, our approach of
approximating the mapping I →F was successful. Fig. 4b
shows a comparison between the recurrent and feed-forward
network mappings. As before, errors in the feed-forward
approximation were restricted to the area around the neuron
activation threshold. Our approach is therefore able to find
feed-forward approximations to recurrent networks with
complex temporal dynamics.

Competitive networks with partitioned excitatory structure

There is growing evidence for network architectures in
cortex that group excitatory neurons into soft-partitioned
subnetworks (Ko et al. 2011, Yoshimura et al. 2005). Con-
nections within these subnetworks are stronger and more
prevalent (Cossell et al. 2015). Subnetwork membership
may be defined by response similarity; neurons with cor-
related responses over long periods will therefore tend to
be connected (Cossell et al. 2015, Ko et al. 2011, Lee et al.
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2016). These rules for connection probability and strength
can give rise to network architectures with complex dy-
namical and stability properties, including selective amp-
lification and competition between partitions (Muir and
Mrsic-Flogel 2015).

We investigated a simplified version of subnetwork parti-
tioning, with all-or-nothing recurrent excitatory connectiv-
ity (Fig. 5a; see example matrix in Methods). Networks
with this connectivity pattern exhibit strong recurrent re-
cruitment of excitatory neurons within a given partition,
coupled with strong competition between partitions medi-
ated by shared inhibitory feedback. As a consequence the
recurrent network can be viewed as solving a simple classi-
fication problem, whereby the network signals which is the
greater of the summed input to partition A (ι1+2 = ι1 + ι2)
or to partition B (ι3+4 = ι3 + ι4). In addition, the network
signals an analogue value linearly related to the difference
between the inputs. If ι1+2 > ι3+4 then the network should
respond by strong activation of x1,2 and complete inactiva-
tion of x3,4 (and vice versa for ι1+2 < ι3+4 ).

We first examined the strength of competition present
between excitatory partitions, by providing mixed input to
both partitions, comparing the recurrent network response
with the feed-forward approximation (Fig. 5b). Input was
provided equally to both excitatory neurons in a partition,
such that ι1 = ι2 and ι3 = ι4. For a given network evaluation,
a single mixture was chosen such that

∑
i was constant.

When input to partition A was weak, input to partition B
was strong, and vice versa. The recurrent network was per-
mitted to reach a stable fixed point for a given static input
mixture, and the feed-forward approximation was evaluated
with the same input pattern.

The recurrent network exhibited strong competition
between responses of the two excitatory partitions: only a
single partition was active for a given network input, even
when the input currents to the two partitions were almost
equal. The feed-forward approximation exhibited very sim-
ilar competition between responses of the two partitions
as the recurrent network, also exhibiting sharp switching
between the partition responses (Fig. 5b). In addition, the
feed-forward network learned a good approximation to the
analogue response of the recurrent network, as for the sim-
pler networks of Figs 2–4.

Although the feed-forward approximation was not trained
explicitly as a classifier, we examined the extent to which
the feed-forward approximation had learned the decision
boundary implemented by the recurrent network (Fig. 6).
Multi-layer feed-forward neural networks of course have a
long history of being used as classifiers (e.g. LeCun et al.
1989, Rumelhart et al. 1986). The purpose of the approach
presented here is to examine how well the feed-forward ap-
proximation has learned to mimic the boundaries between
basins of attraction embedded in the recurrent dynamic net-
work. This question is particularly interesting for larger and
more complex recurrent networks, for which the boundaries
between basins of attraction are not known a priori.

We examined the response of the feed-forward approx-
imation close to the ideal decision boundary (ι1+2 = ι3+4;
dashed line in Fig. 6). We found that the majority of inputs
were correctly classified by the feed-forward approximation,
but the decision boundary of the feed-forward approxim-

0

1
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1+2

3+4
Correct

Misclassifi ed

Decision boundary

Figure 6. Decision boundary is almost aligned between recur-
rent network and feed-forward approximation. Shown is the
projection of the input space i into two dimensions ι1+2 = ι1 + ι2
and ι3+4 = ι3 + ι4. The ideal decision boundary of ι1+2 = ι3+4
is indicated as a dashed horizontal line. The majority of inputs
sampled close to the decision boundary resulted in the activation
of the correct partition in both the recurrent network and feed-
forward approximation (grey dots). The decision boundary of the
feed-forward approximation was not perfectly aligned with that
of the recurrent network, resulting in misclassification of some
inputs close to the decision boundary (orange dots). Network
parameters as in Fig. 5.

ation was not perfectly aligned with the ideal, with the
result that a minority of inputs close to the boundary were
misclassified by the feed-forward approximation.

Line attractor networks

Neurons in primary visual cortex of primates and carni-
vores have individual preferences for the orientation of
a line segment in visual space (Hubel and Wiesel 1962,
1968); neurons that prefer similar orientations are grouped
together, and this preference changes smoothly across the
surface of cortex (Blasdel 1992, Bonhoeffer and Grinvald
1991). Experimental work suggests that the sharp tuning of
visual neurons for their preferred orientation arises through
recurrent processing within the cortical network (Tsumoto
et al. 1979), rather than being defined by structured inputs
to each neuron from outside the local network (Hubel and
Wiesel 1962). The recurrent processing hypothesis is also
consistent with the fact that the majority of input synapses
to each neuron arise from other nearby neurons, and not
from visual input pathways (Ahmed et al. 1994, Binzegger
et al. 2004, Peters and Payne 1993).

Several recurrent network models of mammalian cortex
make use of the fact that the function of neurons changes
smoothly across the surface of many cortical areas (Ben-
Yishai et al. 1995, Douglas et al. 1994, Somers et al. 1995).
The tight relationship between physical and functional
space (i.e. the preferred orientation θ of a neuron) suggests
that local neuronal connections should be made predom-
inately between neurons with similar θ, falling off with
distance. In these recurrent models excitatory neurons are
consequently arranged in a ring (therefore “ring models”;
Fig. 7a), with smoothly-varying θ and with excitatory con-
nection strength falling off with decreasing similarity in θ.
Inhibitory neurons are broadly tuned or untuned for pre-
ferred orientation in these models, and therefore make and
receive connections with all excitatory neurons.

These ring models perform powerful and useful information
processing tasks, which are supported by mechanisms of se-
lective amplification through recurrent excitation, coupled
with competitive interactions mediated by global inhibit-
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Figure 7. Feed-forward approximation recovers the weight
structure of a recurrent ring model for orientation preference.
(a) A schematic of a ring model for orientation preference. Ex-
citatory neurons (outer ring) are arranged in order of preferred
orientation (θ). Recurrent excitatory connections upper arrows
are modulated by similarity in θ (see Methods). Inhibitory con-
nections (from central neuron; Inh) are made with all excitatory
neurons. The architecture of the corresponding feed-forward
approximation network is as shown in Fig. 1. Recurrent excit-
atory connections are shown for a single neuron, but are made
identically from all excitatory neurons. (b) Recurrent weights
WR implementing the ring model in a dynamic recurrent network.
Inhibitory weights were weakened by a factor of 10 for visual-
isation. (c) Weights learned in a feed-forward approximation to
the dynamics of a recurrent ring model. Note the neighbourhood
pattern learned by the feed-forward network, similar to that of
the recurrent network. Recurent weights WR and second-layer
weights WFF |2 were scaled for visualisation purposes. Recurrent
network parameters: {N,we,wi,b} = {40,2,5,0}.

ory feedback (also known as winner-take all interactions;
Douglas and Martin 2007). Single neurons exhibit con-
sistent, sharp tuning for their preferred orientation θ, in
spite of poorly-tuned input. Ring networks are also able to
reject significant noise in the input, to provide a clean inter-
pretation of a noisy signal. Recurrent dynamics within the
network establish a line attractor, whereby a set of stable
response patterns that are translated versions of a common
activity pattern are permitted by the network.

We investigated whether a feed-forward approximation to
a simple ring model for orientation preference could cap-
ture useful information-processing features of the recurrent
network. We trained a two-layer 40+ 40 neuron network
to approximate the fixed-point recurrent dynamics of a 40-
neuron recurrent ring model network (see Methods). We
generated the training mapping I → F by generating uni-
form random inputs im ∼U (.5,1) and solving the dynamics
of the recurrent network to identify the corresponding fixed
points fm (see Methods). We discarded inputs for which no
corresponding fixed point could be found.

Fig. 7b shows the weight matrices for the two-layer network
best approximating the recurrent dynamics, after 64 000
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Figure 8. Sharpening of broadly-tuned input. Shown are polar
plots of preferred orientation θ versus network response amp-
litude, for a given input (black dashed), for both the recurrent
model (blue) and the feed-forward approximation (orange). Rows
correspond to four examples each of input under increasing tuning
sharpness κ (indicated at left), and randomly-chosen Θ (black
line in each example). Noise std. dev. ζ = 0 for these examples;
common-mode input γ = 0.5. All plots have identical scaling.
Note the similarity between recurrent fixed point responses and
the feed-forward approximation, and the consistency in response
tuning over a range of broadly-tuned inputs patterns. Network
parameters as in Fig. 7.

training iterations. Note that the neighbourhood relation-
ships between similarly-tuned neurons is reflected in the
learned feed-forward weight structure, which has been ac-
quired solely by mimicking the fixed-point dynamics of the
recurrent network (c.f. Fig. 7c). The locality of mapping
between adjacent neuron indices was encouraged by ini-
tialising the feed-forward weights WFF |1 and WFF |2 to the
identity matrix I at the beginning of training (see Methods).

The ring model was designed to demonstrate how recurrent
processing can lead to sharpening of broadly-tuned inputs.
To investigate whether our feed-forward approximation ex-
hibits similar functionality, we stimulated recurrent and
feed-forward networks with broadly-tuned inputs (Fig. 8).
Indeed, the responses of the feed-forward approximation
were sharpened versions of the input, and had similar tun-
ing sharpness as the recurrent network. Interestingly, the
sharpness of response tuning of the feed-forward network
did not change appreciably across a wide range of input
tuning sharpnesses. The feed-forward approximation was
therefore able to capture the main information-processing
feature of the recurrent ring model.

Noise rejection in the recurrent ring model is mediated
by recurrent shaped excitatory amplification of responses,
coupled with global inhibitory feedback. We investigated
whether the feed-forward approximation was able to per-
form equivalent noise rejection, in the absence of recur-
rent excitatory amplification. We stimulated the network
with tuned inputs, with increasing amounts of Normally-
distributed noise with std. dev. ζ (Figs 9 and 10; see Meth-
ods).
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Figure 9. Feed-forward approximations can mimic the noise
rejection properties of the recurrent ring model. Rows corres-
pond to four examples each of input under increasing noise std.
dev. ζ (indicated at left), and randomly-chosen Θ. Tuning sharp-
ness κ = 4; common-mode input γ = 0.5. Network parameters
and notations as in Figs 7 and 8.
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Figure 10. Noise rejection by the feed-forward approxima-
tion is robust over a range of noise amplitudes. (a) The error
between the recurrent model angle of peak response θR and the
feed-forward approximation angle of peak response θFF (black)
was consistently small over all noise amplitudes ζ . For increasing
noise amplitudes, the ability of the recurrent model to correctly
identify the orientation of the input θι degraded (blue). (b) The
accuracy of the feed-forward approximation with respect to the
recurrent model degraded gradually with increasing noise amp-
litude ζ . Tuning sharpness κ = 4; common-mode input γ = 0.5.
Network parameters as in Fig 7.

We quantified the error in network responses in several
ways. Firstly, the purpose of noise rejection in the recurrent
model is to identify the orientation Θ of the underlying
stimulus. We defined the angle of peak response θR as the
preferred orientation θ of the neuron with peak response,
i.e. θ j : j = argmax xj , and defined θFF analogously for
the feed-forward approximation. We then quantified the

error in stimulus interpretation between the recurrent and
feed-forward networks θR − θFF (Fig. 10a, black). This
error was consistently clustered around zero, highlighting
the closeness of the feed-forward approximation to the
behaviour of the recurrent model (see also examples in
Fig. 9). As expected, the ability of both models to cor-
rectly identify the underlying stimulus orientation Θ de-
graded with increasing noise amplitude ζ (increasing er-
rors Θ− θR, Fig. 10a, blue). The mean error between the
response of the recurrent network and the feed-forward ap-
proximation mean

(
abs

{
x|2−[fm]+

})
also increased with

increasing noise amplitude ζ (Figs 9 and 10b).

The recurrent ring models perform common-mode input
rejection, whereby the response of the recurrent dynamic
network is unchanged by adding a common-mode offset to
an input. This occurs through dynamic thresholding of the
network response, provided by global inhibitory feedback.
Our feed-forward approximations were trained with a fixed
common-mode input γ (see Methods). We examined the
ability of the feed-forward approximations to generalise
their responses given arbitrarily-scaled common mode input
(Fig. 12). For feed-forward approximations trained with γ =
0.5, we found that absolute approximation errors remained
low for γ ≤ 2.0 (i.e. error amplitudes < 1.0). For larger γ,
errors scaled linearly with the response of the feed-forward
network, indicating that the approximation breaks down.
This result suggests that matching of the input space to
the training space is required for accurate approximation,
either through appropriate selection of training inputs I or
through input normalisation.

DISCUSSION

We investigated whether feed-forward neural networks
could approximate the fixed-point responses of dynamic
recurrent networks. We trained two-layer feed-forward ar-
chitectures to replicate the input-to-fixed-point mapping of
a dynamic recurrent networks. We found that for small arbit-
rary networks, larger networks with partitioned excitatory
and inhibitory neurons, and multiple partitioned excitat-
ory populations, as well as even larger networks embedding
line attractors, two-layer feed-forward approximations were
able to successfully reproduce the fixed-point responses of
dynamic recurrent networks.

Feed-forward approximations reproduced the fixed-point
responses for two-neuron dynamic recurrent networks, for
recurrent networks with both simple and complex temporal
dynamics (Figs 2 and 4). In the case of a dynamic recurrent
network exhibiting competitive interactions between excit-
atory partitions, the feed-forward approximation accurately
replicated competition between partitions (Fig. 5). Our
approach was able to find a good approximation to a line
attractor network with highly nonlinear dynamics — a soft
winner-take-all “ring” model for preferred orientation. This
was impressive considering that the training inputs provided
to the network were uniformly randomly distributed, and
did not take into account the line attractor computation
performed by the recurrent network. The feed-forward ap-
proximation reproduced nonlinear input transformations
and noise rejection, both of which are considered to be
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particularly useful features of recurrent computation in the
model (Figs 8–12).

We found that the accuracy of the approximations degraded
close to the activation thresholds of the feed-forward net-
work (Fig. 3a). This may be due to the hard loss of gradient
information below the activation threshold, in which case
using units with a soft nonlinearity might alleviate this
issue. However, the feed-forward approximations to the
two-neuron recurrent networks generalized well for inputs
outside the trained input space (Fig. 3b), with errors increas-

ing slowly but remaining low for inputs well outside the
training regime.

The feed-forward approximation to the recurrent ring model
generalized well for inputs up to a factor of 4 outside the
training regime (Fig. 12). However, the approximation
broke down for inputs with larger amplitudes, in spite of
the linear transfer functions present in each neuron. Never-
theless, this restriction simply entails the use of normalised
input spaces to ensure accuracy of the approximation.

Our feed-forward approximations implicitly assume that
only the fixed-point response to an input is important, and
the temporal evolution of activity to reach that fixed point is
ignored. Some modes of operation of dynamical recurrent
networks explicitly make use of chaotic dynamics to detect
and generate temporal activity sequences (Laje and Buono-
mano 2013, Maass et al. 2002, Sussillo and Abbott 2009).
Computations that require access to activity trajectories will
of course not be possible under the framework we proposed
here. An approach might be possible where a network was
trained with step-wise approximations to the dynamics of a
recurrent network, but the purpose of our approximations
was to obviate the use of iterative solutions. Since our
feed-forward networks have no temporal dynamics, they
also cannot capture complex dynamical behaviours such
as damped oscillatory or limit cycle dynamics (Landsman
et al. 2012).

The response of the feed-forward approximations to a given
input does not depend on previous network activity, in the
formulation presented here. Responses to temporal input
sequences will therefore only be accurate if the time con-
stant of input changes is much slower than the time constant
of the dynamics of the original recurrent network, and if
complex basins of attraction are not present. Related to
this point, unrolled recurrent architectures such as LSTM
networks have been employed to process discrete temporal
input sequences (Hochreiter and Schmidhuber 1997, Li-
wicki et al. 2007). Our feed-forward approximations could
be operated in a similar mode by augmenting the current
input i (t) with the previous fixed-point activity x|2 (t −1).

Feed-forward approximations to dynamic recurrent systems
are a powerful tool for capturing the information processing
benefits of highly recurrent networks in conceptually and
computationally simpler architectures. Information pro-
cessing tasks such as selective amplification and noise re-
jection performed by recurrent dynamical networks can
therefore be incorporated into feed-forward network archi-
tectures. Evaluation of the feed-forward approximations is
deterministic in time, in contrast to seeking a fixed-point
response in the dynamic recurrent network, where the time
taken to reach a fixed-point response — and indeed the ex-
istence of a stable fixed point — can depend on the input
to the network. Feed-forward approximations provide a
guaranteed solution for each network input, although in the
case of oscillatory or unstable dynamics in the recurrent
network the approximation will be inaccurate. Finally, the
architecture of the feed-forward approximations is com-
patible with modern systems for optimised and distributed
evaluation of deep networks.
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METHODS

Dynamic recurrent networks

We examined dynamic networks of fully recurrently con-
nected linear-threshold (rectified-linear; ReLU) neurons.
ReLU neurons approximate the firing-rate dynamics of
cortical neurons (Ermentrout 1998); can be mapped bidirec-
tionally to spiking neuron models (Neftci et al. 2013, 2011,
Shriki et al. 2003); and have been applied successfully in
large-scale machine learning problems (Glorot et al. 2011).

The activity of neurons in the network evolved under the
dynamics

τ · Ûx+x =WR · [x−b]++ i, (2)

where x =
{

x1, x2, . . ., xj, . . . xN
}T is the vector of activa-

tions of each neuron j; N is the number of neurons in the
network; W ∈ RN×N is a weight matrix defining recurrent
connections within the network; b ∈ RN×1 is the vector of
neuron biases; i ∈ RN×1 is the vector of constant inputs
to each neuron in the network; τ is the time constant of
the neurons; and [x]+is the linear-threshold transfer func-
tion [x]+ = max (x,0). Without loss of generality, in this
work we took b = 0 and τ = 1 for the dynamic recurrent
networks.

Recurrent network fixed points Fixed points in response
to a given input i were defined as those non-trivial values
for x such that τ · Ûx = 0. We solved the system of differen-
tial equations Eq.2 using a Runge-Kutta (4,5) solver. With
constant input provided from t = 0, and with xt=0 = i, if no
fixed-point solution was found between t = (0,161) then the
corresponding input was abandoned. We also abandoned
the search if the current active partition (i.e. the set of neur-
ons with activity > 0 and their associated weights) had an
eigenvalue λ+ with largest real part > 1, and the correspond-
ing eigenvector v+ had all positive elements (Hahnloser
1998), indicating unstable network activity for which no
stable fixed-point would be reached. For a given input im,
we denote the corresponding fixed point of recurrent dy-
namics as fm. Feed-forward approximations were trained
to match the rectified activity of each neuron [fm]+.

Recurrent network architectures

Random networks We generated a number of random
network architectures by choosing WR where weights wji

are uniformly distributed with wji ∼ U (−2,2), and b = 0.
We discarded any systems for which no stable fixed points
could be found. Two examples for N = 2 are shown in
Figs 2–4.

Networks with modular partition structure We examined
networks such that columns of W were either excitatory or
inhibitory, following architectures designed to be similar
to mammalian cortical neuronal networks (Dwivedi and
Jalan 2013, Rajan and Abbott 2006, Wei 2012). We defined
these networks to have modular, or planted partition sub-
network structure in the excitatory population (Muir and
Mrsic-Flogel 2015), inspired by connectivity patterns in

mammalian cortical networks (Cossell et al. 2015, Ko et al.
2011, Yoshimura et al. 2005). An example weight matrix is
given by

WR =


wE wE −wI

wE wE −wI

wE wE −wI

wE wE −wI

wE wE wE wE −wI


, (3)

where {wE,wI } = {2,4}, and unlabelled entries of WR are
zero. Networks with this structure can exhibit cooperation
between neurons within a single partition, and competition
between neurons in differing partitions.

Networks with embedded line attractors In this paper we
implemented a version of the classical model for orientation
tuning (Ben-Yishai et al. 1995, Douglas et al. 1994, Somers
et al. 1995), where recurrent amplification and competition
operates on weakly-tuned inputs to produce sharply-tuned
network responses. A schematic network with the architec-
ture described below is shown in Fig. 7a. Excitatory neur-
ons were arranged around a ring, numbered j = (1,N −1).
Each neuron was assigned a preferred orientation θ in
order around the ring, with θ j = (−π, π). Recurrent ex-
citatory connection strength was modulated by similar-
ity of preferred orientation. The symmetric connections
between neurons i and j, for i, j = (1,N −1), were given
by wji =max (0,cos [θ1− θ2]) . Excitatory recurrent weights
were normalised such that ΣN−1

i=1 wji = wE . Excitatory to in-
hibitory weights are given by wN j = 1, j = (1,N −1). Inhib-
itory weights were given by wjN = −wI/N , with j = (1,N).
Input was provided to neurons around the ring using a
von Mises-like function, given by

ιj =max
{
0,exp

[
κ cos

(
θ j −Θ

) ]
+γ+ zj

}
, (4)

where j = (0,N −1); Θ is the nominal orientation represen-
ted by a given input pattern; κ is a distribution parameter
that determines the sharpness of the input, where κ = 0
corresponds to a uniform input and large κ corresponds to
a sharply-tuned input; γ is a common-mode input term
(γ = 0.5 for training); and zj are Normally-distributed
frozen noise variates with std. dev. ζ , such that zj ∼N (0, ζ).
Input to the inhibitory neuron j = N was zero, i.e. ιN = 0.

Feed-forward network architecture

We trained two-layer feed-forward linear-threshold (ReLU)
networks. The response of the network was given by

x|1 =
[
WFF |1 · i−bFF |1

]+
(5)

x|2 =
[
WFF |2 ·x|1−bFF |2

]+
. (6)

The notation v |n indicates a variable v within layer n of a
feedforward network. Feed-forward networks were trained
to approximate the fixed-point responses of a given recur-
rent architecture. A set of random inputs I 3 im was gen-
erated, and a mapping found to the set of corresponding
fixed-point responses F 3 [fm]+, with fixed points found as
described above. Inputs for which a corresponding fixed-
point could not be found were discarded.
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The network feed-forward weights
{
WFF |1,WFF |2

}
and

neuron biases
{
bFF |1,bFF |2

}
were trained using the

Adam optimiser — a stochastic gradient descent al-
gorithm incorporating adaptive learning rates and mo-
mentum on individual model parameters (Kingma and
Ba 2015), with meta-parameters set as {α, β1, β2, ε} ={
10−3,0.9,0.999,1.5×10−8}. The network was optim-

ised to minimise the mean-square loss function c =
1/2M∑M

m=1
(
xm |2−[fm]+

)2. Analytical parameter gradients
were calculated using backpropagation of errors; zero gradi-
ents were replaced with small Normally-distributed random
values N

(
0,10−5) . Initial values for training were set to

the identity matrix plus small-magnitude uniform random
variates, such that

{
WFF |1,WFF |2

}
= Id (N)+U

(
0,10−2);

biases were initialised to
{
bFF |1,bFF |2

}
= 0.01.

The Matlab implementation of the Adam op-
timiser used in this work is available from
https://github.com/DylanMuir/fmin_adam.

ACKNOWLEDGEMENTS

The author thanks S Sadeh, M Cook and F Roth for helpful
discussions.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M.,
Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B.,
Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and
Zheng, X. (2016). Tensorflow: A system for large-scale ma-
chine learning. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’16,
pages 265–283, Berkeley, CA, USA. USENIX Association. 1

Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A. C.,
and Nelson, J. C. (1994). Polyneuronal innervation of spiny
stellate neurons in cat visual cortex. Journal of Comparative
Neurology, 341(1):39–49. 4

Ben-Yishai, R., Bar-Or, R. L., and Sompolinsky, H. (1995). The-
ory of orientation tuning in visual cortex. Proc Natl Acad Sci
U S A, 92:3844–3848. 1, 4, 8

Binzegger, T., Douglas, R. J., and Martin, K. A. C. (2004). A
quantitative map of the circuit of cat primary cortex. Journal
of Neuroscience, 24(39):8441–8453. 1, 4

Blasdel, G. G. (1992). Differential imaging of ocular dominance
and orientation selectivity in monkey striate cortex. Journal of
Neuroscience, 12(8):3115–3138. 4

Bonhoeffer, T. and Grinvald, A. (1991). Iso-orientation domains in
cat visual cortex are arranged in pinwheel-like patterns. Nature,
353:429–431. 4

Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7:
A matlab-like environment for machine learning. In BigLearn,
NIPS Workshop. 1

Cossell, L., Iacaruso, M. F., Muir, D. R., Houlton, R., Sader, E. N.,
Ko, H., Hofer, S. B., and Mrsic-Flogel, T. D. (2015). Functional
organization of excitatory synaptic strength in primary visual
cortex. Nature, 518(7539):399–403. 3, 8

Douglas, R. J., Mahowald, M. A., and Martin, K. A. C. (1994).
Hybrid analog-digital architectures for neuromorphic systems.
IEEE International Conference on Neural Networks, 3:1848–
1853. 1, 4, 8

Douglas, R. J. and Martin, K. A. C. (2007). Recurrent neuronal
circuits of the neocortex. Current Biology, 17(13):R496–R500.
1, 5

Dwivedi, S. K. and Jalan, S. (2013). Extreme-value statistics of
networks with inhibitory and excitatory couplings. Physical

Review E, 87(042714):042714. 8

Ermentrout, B. (1998). Linearization of f-i curves by adaptation.
Neural Computation, 10:1721–1729. 8

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse recti-
fier neural networks. In Gordon, G. J. and Dunson, D. B., edit-
ors, Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (AISTATS-11), volume 15,
pages 315–323. Journal of Machine Learning Research - Work-
shop and Conference Proceedings. 8

Graves, A., r. Mohamed, A., and Hinton, G. (2013). Speech re-
cognition with deep recurrent neural networks. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing, pages 6645–6649. 1

Hahnloser, R. H. R. (1998). On the piecewise analysis of networks
of linear threshold neurons. Neural Networks, 11:691–697. 8

Hahnloser, R. H. R. (2003). Permitted and forbidden sets in
symmetric threshold-linear networks. Neural Computation,
15:621–638. 1

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780. 7

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex.
Journal of Physiology (London), 160:106–154. 4

Hubel, D. H. and Wiesel, T. N. (1968). Receptive fields and
functional architecture of monkey striate cortex. Journal of
Physiology (London), 195:215–243. 4

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,
R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093. 1

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic
optimization. In International Conference on Learning Repres-
entations (ICLR). 3, 9

Ko, H., Hofer, S. B., Pichler, B., Buchanan, K. A., Sjöström,
P. J., and Mrsic-Flogel, T. D. (2011). Functional specificity
of local synaptic connections in neocortical networks. Nature,
473:87–91. 3, 8

https://github.com/DylanMuir/fmin_adam


10

Laje, R. and Buonomano, D. V. (2013). Robust timing and motor
patterns by taming chaos in recurrent neural networks. Nature
Neuroscience, 16(7):925–933. 1, 7

Landsman, A., Neftci, E., and Muir, D. R. (2012). Noise robust-
ness and spatially-patterned synchronisation of cortical network
oscillators. New Journal of Physics, 14(12):123031. 7

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E.,
Hubbard, W., and Jackel, L. D. (1989). Backpropagation ap-
plied to handwritten zip code recognition. Neural Computation,
1(4):541–551. 4

Lee, W.-C. A., Bonin, V., Reed, M., Graham, B. J., Hood, G.,
Glattfelder, K., and Reid, R. C. (2016). Anatomy and function
of an excitatory network in the visual cortex. Nature. 3

Liwicki, M., Graves, A., Bunke, H., and Schmidhuber, J. (2007).
A novel approach to on-line handwriting recognition based on
bidirectional long short-term memory networks. In Proc. 9th
Int. Conf. on Document Analysis and Recognition, volume 1,
pages 367–371. 7

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time
computing without stable states: A new framework for neural
computation based on perturbations. Neural Computation,
14:2531–2560. 1, 7

Muir, D. R. and Mrsic-Flogel, T. (2015). Eigenspectrum bounds
for semirandom matrices with modular and spatial structure for
neural networks. Physical Review E, 91(4):042808. 4, 8

Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and
Douglas, R. J. (2013). Synthesizing cognition in neuromorphic
electronic systems. Proceedings of the National Academy of
Sciences, 110(37):E3468–E3476. 8

Neftci, E., Chicca, E., Indiveri, G., and Douglas, R. (2011). A
systematic method for configuring vlsi networks of spiking
neurons. Neural computation, 23(10):2457–2497. 8

Peters, A. and Payne, B. R. (1993). Numerical relationships
between geniculocortical afferents and pyramidal cell modules

in cat primary visual cortex. Cerebral Cortex, 3:69–78. 4

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised
representation learning with deep convolutional generative ad-
versarial networks. CoRR, abs/1511.06434. 1

Rajan, K. and Abbott, L. F. (2006). Eigenvalue spectra of ran-
dom matrices for neural networks. Physical Review Letters,
97(188104):188104. 8

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors. Nature,
323(6088):533–536. 4

Rutishauser, U. and Douglas, R. J. (2009). State-dependent compu-
tation using coupled recurrent networks. Neural Compututation,
21(2):478–509. 1

Shriki, O., Hansel, D., and Sompolinsky, H. (2003). Rate models
for conductance-based cortical neuronal networks. Neural
Computation, 15(8):1809–1841. 8

Somers, D. C., Nelson, S. B., and Sur, M. (1995). An emergent
model of orientation selectivity in cat visual cortical simple
cells. Journal of Neuroscience, 15(8):5448–5465. 1, 4, 8

Sussillo, D. and Abbott, L. F. (2009). Generating coherent patterns
of activity from chaotic neural networks. Neuron, 63(4):544–
557. 1, 7

Theano Development Team (2016). Theano: A Python framework
for fast computation of mathematical expressions. arXiv e-
prints, abs/1605.02688. 1

Tsumoto, T., Eckart, W., and Creutzfeldt, O. D. (1979). Modi-
fication of orientation sensitivity of cat visual cortex neurons
by removal of gaba-mediated inhibition. Experimental Brain
Research, 34(2):351–363. 4

Wei, Y. (2012). Eigenvalue spectra of asymmetric random
matrices for multicomponent neural networks. Physical Review
E, 85(066116):066116. 8

Yoshimura, Y., Dantzker, J. L. M., and Callaway, E. M. (2005).
Excitatory cortical neurons form fine-scale functional networks.
Nature, 433:868–873. 3, 8


	Feed-forward approximations to dynamic recurrent network architectures
	Abstract
	Introduction
	Results
	Recurrent networks and feed-forward approximations
	Small network architectures
	Competitive networks with partitioned excitatory structure
	Line attractor networks

	Discussion
	Methods
	Dynamic recurrent networks
	Recurrent network architectures
	Feed-forward network architecture

	Acknowledgements
	References


