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Due to the difficulty of collecting labeled images for hundreds of thou-
sands of visual categories, zero-shot learning, where unseen categories do
not have any labeled images in training stage, has attracted more atten-
tion. In the past, many studies focused on transferring knowledge from
seen to unseen categories by projecting all category labels into a semantic
space. However, the label embeddings could not adequately express the
semantics of categories. Furthermore, the common semantics of seen and
unseen instances cannot be captured accurately because the distribution
of these instances may be quite different. For these issues, we propose
a novel deep semisupervised method by jointly considering the het-
erogeneity gap between different modalities and the correlation among
unimodal instances. This method replaces the original labels with the
corresponding textual descriptions to better capture the category seman-
tics. This method also overcomes the problem of distribution difference
by minimizing the maximum mean discrepancy between seen and un-
seen instance distributions. Extensive experimental results on two bench-
mark data sets, CU200-Birds and Oxford Flowers-102, indicate that our
method achieves significant improvements over previous methods.
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1 Introduction

Image data are booming along with the development of the Internet, and
the categories of images are also dramatically increasing. Collecting ade-
quate labeled images for each category is difficult because of two limita-
tions: only a few images are available for most of the visual categories,
and prior work on image data annotation, which is tedious and time-
consuming, might have a serious effect on algorithm performance because
of poor quality. Inspired by the human ability to recognize a new category
without ever seeing a visual instance, zero-shot learning (Palatucci, Pomer-
leau, Hinton, & Mitchell, 2009) has attracted increasing interest. Zero-shot
learning is a special case of classification in which unseen categories do
not have any labeled instances in the training stage. It aims to improve
the scalability of traditional classification by exploiting shared knowledge
between seen and unseen categories (Yu & Aloimonos, 2010). Zero-shot
learning has been applied to face verification (Kumar, Berg, Belhumeur, &
Nayar, 2011), image annotation (Kovashka, Vijayanarasimhan, & Grauman,
2011; Peng, Wu, & Ernst, 2017), and image retrieval (Kovashka, Parikh, &
Grauman, 2012; Scheirer, Kumar, Belhumeur, & Boult, 2012), among other
applications (Kansky et al., 2017).

Two main strategies are employed to accomplish zero-shot learning.
The first focuses on transferring knowledge from seen to unseen cate-
gories by attribute sharing (Lampert, Nickisch, & Harmeling, 2014). Com-
mon attributes such as the color, shape, and other properties of visual
objects are artificially constructed by several experts. These attribute-based
methods are limited because of the challenging prior work on constructing
attribute space. For this issue, the second group of strategies mines the cor-
relation between seen and unseen categories by projecting entire category
labels into a semantic space and then learns the visual classifier for unseen
categories. These methods are more practical than attribute-based meth-
ods because they do not require constructing the attribute space manually.
Therefore, these methods based on label embedding have been attracting
attention. Implementing zero-shot learning by label embedding, however,
is still a significant challenge because the category labels are insufficient
to represent the semantics of seen and unseen categories. However, the
textual descriptions of visual categories could adequately describe their
characteristics, and these descriptions are widely available and relatively
affordable. For example, Wikipedia currently contains more than 5 million
articles.1 Therefore, utilizing the rich information from textual descriptions
of seen and unseen categories is a preferable strategy for accomplishing
zero-shot learning (Elhoseiny, Saleh, & Elgammal, 2013; Lei Ba, Swersky,

1
https://en.wikipedia.org/wiki/Main_Page.

https://en.wikipedia.org/wiki/Main_Page
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Figure 1: The architecture of deep cross-modal network for semisupervised
zero-shot learning with MMD.

Fidler, & Salakhutdinov, 2015). In addition, the previous studies on zero-
shot learning have the limitation of grasping the common properties of seen
and unseen categories. In fact, the label embedding distributions of seen
and unseen categories may be quite different even in the same dimensional
semantic space (Long et al., 2013; Zhang, Yu, Chang, & Wang, 2015). In sum-
mary, it is necessary to mine the category’s semantics better using the cor-
responding textual descriptions and decrease the distribution difference of
seen and unseen instances in a theoretical manner.

Consequently, we propose an end-to-end deep zero-shot classification
method by jointly considering the heterogeneity gap between cross-
modalities and the correlation among unimodal instances in a semisuper-
vised framework. This method uses the textual descriptions acquired from
Wikipedia to replace the image labels for representing the category’s se-
mantics better. This method also alleviates the distribution difference of
seen and unseen instances by using the distribution-matching strategy max-
imum mean discrepancy (MMD) because of its efficiency in computing
and optimizing. For better understanding, we illustrate the proposed deep
cross-modal network (DCMN) in Figure 1. Through deep nonlinear map-
ping, the original images and texts lying in heterogeneous feature spaces
are projected into a shared embedding space. In the shared space, we bridge
the semantic gap between image and text modality by minimizing the max-
margin loss. Then we design two unimodal quantization losses for images
and texts, respectively. The image quantization loss aims to reduce differ-
ences in image representations in the same category; the text quantization
loss is constructed to capture the semantic correlation between seen and
unseen categories. Finally, we use two MMD constraints to guarantee the
distribution similarity of seen and unseen instances. The contributions of
this letter are summarized as follows:
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1. A novel deep cross-modal network is proposed for semisupervised
zero-shot learning, where the cross-modal max-margin loss and two
unimodal losses are combined to transfer knowledge from seen to
unseen instances.

2. We use the MMD constraints to decrease the distribution difference
of seen and unseen instances efficiently for capturing their common-
ality better.

3. An efficient alternative algorithm is proposed to optimize the deep
cross-modal network, which is consistent with traditional backprop-
agation (BP) in theory.

4. We conduct extensive experiments on two benchmark data sets
(CU200-Birds and Oxford Flowers-102) to illustrate the effectiveness
and superiority of our method. The experimental results indicate that
our method consistently outperforms other methods.

The remainder of this letter is organized as follows. Related work on
zero-shot learning is introduced in section 2. A novel deep cross-modal net-
work to solve the semisupervised zero-shot learning problem is proposed
in section 3. An efficient alternative algorithm is proposed in section 4 to
solve the optimization problem. Extensive experiments on two benchmark
data sets are conducted in section 5. The conclusions are given in section 6.

2 Related Work

The key point of zero-shot learning is sharing common knowledge between
seen and unseen categories (Xian, Schiele, & Akata, 2017), in which attribute
learning and label embedding are two main streams for this task. Recently,
several studies have tried to use textual descriptions of visual categories to
implement zero-shot learning.

2.1 Attribute Learning. Attribute learning is a main avenue for research
on zero-shot learning, which transfers knowledge from seen to unseen
categories by attribute sharing (Lampert, Nickisch, & Harmeling, 2009).
The seen and unseen visual category labels are all represented as attribute
vectors, in which the attributes consist of shape, color, or some other ge-
ographic information. In the training stage, the attribute-based methods
capture the semantic relationship between attributes and seen images and
then obtain the attribute classifier. In the testing stage, the classifier can
be used to derive new attribute vectors for unseen images. After that, the
scores between unseen categories and unseen images could be calculated
and we could obtain labels for unseen images. Specifically, Liu, Zhang, and
Chen (2014) proposed a unified framework to learn the attribute-attribute
relations and the attribute classifier jointly and then to boost the perfor-
mance of attribute predictor. Parikh and Grauman (2011) presented a novel
method for learning relative attributes and explained how to use relative
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attributes to enhance the accuracy of zero-shot learning. For these attribute-
based methods, the attributes are manually defined by humans, which re-
mains a challenging prior work for zero-shot learning.

2.2 Label Embedding. Another notable body of zero-shot learning be-
longs to label embedding. In contrast to attribute learning, these methods
project independent category labels into a semantic embedding space. After
that, the semantic relationships among all labels can be characterized, and
thus supervised knowledge can be transferred from seen to unseen cate-
gories. The results of these methods are as follows: in the embedding space,
the representation of the seen image is close to that of its corresponding la-
bel, and similar labels would also have similar representations in the space.
The representation of a cat image is close to the “cat” label in the seman-
tic space. The distance of “cat” and “dog” labels is closer compared to the
distance of “cat” and “fish” labels because the cat species is more similar
to dog than to fish. Norouzi et al. (2013) mapped images into the semantic
embedding space via convex combination of the label embeddings. Zhang
and Saligrama (2015) developed a novel semantic similarity embedding
(SSE) method based on a max-margin framework for zero-shot recognition.
Fu, Xiang, Kodirov, and Gong (2015) proposed to model the semantic man-
ifold using a semantic class label graph. Fu, Hospedales, Xiang, and Gong
(2015) proposed a transductive multiview embedding space for exploiting
the multiple semantic representations of visual data. Fu and Sigal (2016)
also proposed using an open set semantic vocabulary to train the clas-
sifiers for seen and unseen categories in supervised learning. In recent
years, many researchers have focused on utilizing deep learning methods to
mine the semantic embedding space effectively (Frome et al., 2013; Socher,
Ganjoo, Manning, & Ng, 2013; Dauphin, Tur, Hakkani-Tur, & Heck, 2013).
Compared with the previous attribute-based methods, label embedding
methods are more practical because they do not require constructing the
attribute space artificially. However, label embeddings are insufficient to
represent the semantics of the categories. Moreover, the distribution dif-
ference of seen and unseen labels brings the limitation of capturing their
commonality for zero-shot learning.

2.3 Visual Categories with Text Descriptions. Leveraging some textual
descriptions for visual categories has been proved to be powerful at zero-
shot learning tasks (Shojaee & Baghshah, 2016). Compared with the original
simple image tags or captions, abundant textual descriptions are capable of
detecting the comprehensive properties of seen and unseen categories. The
representative work in Elhoseiny et al. (2013) captured the information be-
tween visual and textual domains by combining a regression function and a
knowledge transfer function to implement zero-shot learning. Related work
in Lei Ba et al. (2015) conceived of a deep zero-shot classification convolu-
tional neural network in which the weights of the classifier are generated
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according to the abundant textual descriptions. Compared with previous
work, these methods could capture more abundant correlations between
seen and unseen categories.

3 Deep Cross-Modal Network

In the framework of semisupervised zero-shot learning, there is a set of
n training images X = {x1, x2, . . . , xn} over c classes. The first ns (ns < n)
instances x1, x2, . . . , xns are labeled images with class labels in the first cs

seen classes. The remaining nu images, xns+1, xns+2, . . . , xn, are unlabeled
instances whose labels belong to the remaining cu unseen. Note that seen
classes and the unseen classes are disjoint. We use Xs = {x1, x2, . . . , xns} and
Xu = {xns+1, xns+2, . . . , xn} to denote the seen and unseen image sets, respec-
tively. In this letter, we perform image classification over the unseen classes
using additional textual descriptions corresponding to all c categories. The
textual description set T = {t1, t2, . . . , tc} matches c visual classes one by
one. t j ∈ R

m ( j = 1, 2, . . . , c) refers to the m-dimensional feature vector of
the textual description for the jth visual category. The seen and unseen class
descriptions are denoted as Ts = {t1, t2, . . . , tcs} and Tu = {tcs+1, tcs+2, . . . , tc},
respectively.

3.1 Cross-Modal Network Architecture. As shown in Figure 1, we pro-
pose a novel end-to-end deep cross-modal network (DCMN) for semisu-
pervised zero-shot learning. The framework comprises two unimodal deep
networks, an image network and a text network, which map entire image
instances X and corresponding textual descriptions T to a K-dimensional
shared semantic embedding space.

3.1.1 Image Network Architecture. The image network on the left of
Figure 1 is exploited to accept all images X and then maps them into a
cross-modal embedding space. We use a deep convolutional neural net-
work (CNN) as the image network because of its high performance on ob-
ject recognition tasks (Lawrence, Giles, Tsoi, & Back, 1997; Zhou, 2016). We
start with the 19-layer convolutional network (VGG19) (Simonyan & Zisser-
man, 2014), which is composed of sixteen 3 × 3 convolutional layers (conv1–
conv16) and three fully connected layers ( f c17– f c19). The rectifier linear
units (ReLU; Glorot, Bordes, & Bengio, 2011), a(x) = max(0, x), are taken
as the activation function for the hidden layers conv1– f c19. After that, we
replace the layer of the softmax classifier in the original VGG19 with a new
feature map, f cm. The f cm layer recodes the image features from the f c19
layer to the new K-dimensional semantic representations. We compress the
output of f cm in the range [−1, 1] by using the hyperbolic tangent (tanh)
activation: a(x) = tanh(x). In this case, the semantic representation pi for
image xi can be computed as
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pi = tanh
(

f (xi; θx);W�
x

)
, (3.1)

where W�
x represents the weight and bias parameter of the f cm layer. θx =

{W�−19
x , . . . ,W�−2

x ,W�−1
x } denotes the parameters of conv1– f c19 sequentially.

The f (xi; θx) is the output of the f c19 layer for image xi. We denote the se-
mantic representations of all images as P = [p1, p2, . . . , pn] ∈ R

K×n, where
the seen and unseen images are represented as Ps = [p1, p2, . . . , pns ] ∈ R

K×ns

and Pu = [pns+1, pns+2, . . . , pn] ∈ R
K×nu , respectively.

3.1.2 Text Network Architecture. Each textual description t j illustrated
on the right of Figure 1, passes the multilayer perceptrons (MLP) to be
represented as a fixed-length vector in the cross-modal embedding space.
The MLP network is designed with two fully connected layers, f c1 and
f cm. Note that the f cm layer maps text features from the f c1 layer into
K-dimensional semantic space. The tanh activation function is still used for
the f cm layer to control the output range in [−1, 1]. Then we obtain the
semantic representation q j for text t j as

q j = tanh
(
g(t j; θt );W�

t

)
, (3.2)

where θt and W�
t denote the parameters of the f c1 and f cm layers, respec-

tively. The g(t j; θt ) is the output of the f c1 layer for text t j. After that, the se-
mantic representations of all texts are represented as Q = [q1, q2, . . . , qc] ∈
R

K×c. The Qs = [q1, q2, . . . , qcs ] ∈ R
K×cs and Qu = [qcs+1, qcs+2, . . . , qc] ∈

R
K×cu denote the representations of seen and unseen texts respectively.

With the inputs of images X and texts T for DCMN, we accomplish rep-
resentation learning for seen and unseen instances by minimizing the fol-
lowing loss function,

min
θ,St

u

L f + λ(Lx + Lt ), (3.3)

where θ = {θx, θt,W�
x ,W�

t } denotes the parameter set of the cross-modal
network. St

u ∈ {−1, 1}nu×nu is the similarity matrix for unseen images. The
trade-off parameter λ controls the relative importance of unimodal loss
(Lx + Lt ) regarding cross-modal loss L f . The loss function, equation 3.3,
could be divided into two parts:

• L f (section 3.2): The cosine max-margin loss L f uses the information
from labeled seen image-text pairs to narrow the semantic gap be-
tween image and text modality.

• Lx and Lt (section 3.3): There are two unimodal losses: image modal
loss and text modal loss. For image modal loss Lx, we not only guar-
antee that the visual instances from the same category are close in the
embedding space, but also reduce the distribution difference of seen
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and unseen images. For text modal loss Lt , we maintain the semantic
correlation between distinct categories in the text network and de-
crease the distribution difference of seen and unseen texts.

In the following sections, we demonstrate the cross-modal max-margin loss
L f and two unimodal losses Lx and Lt in detail.

3.2 Cross-Modal Max-Margin Loss L f . Through deep nonlinear map-
ping of image and text networks, the similarity between seen image xi and
seen text t j can be obtained by computing the cosine distance in the shared
embedding space,

cos(pi, q j ) = p�
i q j

‖pi‖‖q j‖ , (3.4)

where ‖ · ‖ denotes the Euclidean norm of a vector. To guarantee the learned
representations of an image and its corresponding textual description to be
similar in the embedding space, we follow the intuitive strategy used in
Cao, Long, Wang, Yang, and Yu (2016) to minimize the following cosine
max-margin loss,

L f =
ns∑

i=1

cs∑
j=1

max

(
0,� − hi j

p�
i q j

‖pi‖‖q j‖

)
, (3.5)

where � > 0 is the margin parameter. For the seen image-text pair
(xi, t j, hi j ), hi j = 1 if the seen image xi belongs to the seen class t j; other-
wise, hi j = −1. Obviously, equation 3.5 can guarantee that the image pi and
text q j are similar if hi j = 1, whereas pi and q j are dissimilar. Hence, the
cosine max-margin loss can narrow the gap between the seen image and its
corresponding text in K-dimensional embedding space.

3.3 Single Modal Losses Lx and Lt . The proposed max-margin loss ef-
fectively bridges the gap between different modalities by maintaining the
similarity between the seen image and its corresponding text. However, it
could not be directly applied for zero-shot learning because the semantic
heterogeneity between unseen images and unseen texts still exists. The un-
seen instance representations, including Pu and Qu, tend to be uncertain
without any constraint factors. In other words, the representations Pu and
Qu may be distorted if we capture information only from seen image-text
pairs. This case motivates us to design two specific unimodal losses, Lx and
Lt , to control the quality of unimodal network directly. The unimodal loss
can be presented in the following unified form,

L = G + βMMD, (3.6)
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which consists of two parts: the pairwise quantization loss G (see section
3.3.1) and the MMD constraint (see section 3.3.2). The parameter β is the
shrinkage coefficient of the MMD constraint.

3.3.1 Pairwise Quantization Loss G. For the image network, the image rep-
resentations from identical categories should be closer compared to oth-
ers from disparate category intuitively. Thus, we put forward the following
equation to minimize the following image pairwise quantization loss:

Gx =
n∑

i=1

n∑
i′=1

(
sx

ii′ − p�
i pi′

‖pi‖‖pi′ ‖
)2

. (3.7)

The pi and pi′ denote the image network outputs of images xi and xi′ , respec-
tively. sx

ii′ ∈ {−1, 1} is the indicator that represents whether images xi and xi′

belong to the same category. When xi and x′
i are from identical categories,

the indicator sx
ii′ = 1; otherwise, sx

ii′ = −1. There are three conditions about
the value of sx

ii′ :

• If xi ∈ Xs, xi′ ∈ Xs, the value of sx
ii′ is directly determined by whether

the categories xi and x′
i are the same.

• If xi ∈ Xs, xi′ ∈ Xu, sx
ii′ = −1 because the seen classes and unseen

classes are disjoint for zero-shot learning.
• If xi ∈ Xu, xi′ ∈ Xu, the value of sx

ii′ is a variable because the class labels
of xi and x′

i are uncertain. The similarity indicator matrix for unseen
images is denoted as Su

x ∈ {−1, 1}nu×nu , which requires optimization
in the training procedure.

In function 3.7, the cosine distance of pi and pi′ ranges from −1 to 1, which
corresponds to the similarity indicator sx

ii′ . To be more specific, the repre-
sentations of pi and pi′ tend to be similar when sx

ii′ = 1; otherwise, pi and pi′

would tend to be dissimilar. Hence, function 3.7 efficiently maintains the
similarity of images from the same category theoretically.

Enlightened by the human cognitive process, the relevance among cat-
egories is conducive to identifying unseen instances better. For example,
if one person has seen some images about the animal “lion,” then knowl-
edge of the relationship between “lion” and “tiger” will help him learn
the new animal “tiger” in the future. The affluent textual descriptions
T = {t1, t2, . . . , tc} for visual categories can be used to measure the relevance
among all categories effectively. Considering that, we use the cosine dis-
tance of texts t j and t j′ , that is, cos(t j, t′j ), to represent the relevance between
the jth category and the j′th category. For the text network, we naturally
maintain the cosine similarity relevance among all categories by minimiz-
ing the following pairwise quantization loss,
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Gt =
c∑

j=1

c∑
j′=1

(
st

j j′ −
q�

j q j′

‖q j‖‖q j′ ‖

)2

, (3.8)

where st
j j′ = cos(t j, t′j ) ∈ [−1, 1]. The q j and q j′ denote the text network out-

puts of textual descriptions t j and t j′ , respectively. Apparently, function 3.8
could guarantee that the similarity relevance among learned representation
Q = [q1, q2, . . . , qc] ∈ R

K×c is consistent with the original relevance among
all textual descriptions T = {t1, t2, . . . , tc}.

Overall, in the embedding space, we not only reduce the difference of
image representations from the same categories by minimizing the image
pairwise quantization loss Gx, but also extract the correlation between seen
and unseen categories by text pairwise quantization loss Gt .

3.3.2 MMD Constraint. Although seen and unseen instances are pro-
jected into the shared embedding space, the distribution difference between
them might still be significant (Long et al., 2013; Zhang et al., 2015). This dis-
tribution difference brings the limitation of capturing the commonality of
seen and unseen instances. Thus, a distribution matching strategy should
be applied to reduce the difference of the seen images Ps and unseen images
Pu distributions, as well as the seen texts Qs and unseen texts Qu distribu-
tions. The MMD (Gretton, Borgwardt, Rasch, Schölkopf, & Smola, 2012),
which computes the Euclidean distance between different distributions, is
often applied for measuring distribution differences because of its efficiency
in computation and optimization. In this letter, two MMD constraints over
the image and text domain, MMDx and MMDt , are calculated using equa-
tions 3.9 and 3.10, respectively:

∥∥∥∥∥∥
1
ns

ns∑
i=1

pi − 1
nu

n∑
i′=ns+1

pi′

∥∥∥∥∥∥
2

= Tr(PMxP�). (3.9)

∥∥∥∥∥∥
1
cs

cs∑
j=1

q j − 1
cu

c∑
j′=cs+1

q j′

∥∥∥∥∥∥
2

= Tr(QMtQ�). (3.10)

Mx and Mt are two MMD matrices, which can be computed as

Mx
ii′ =

⎧⎪⎨
⎪⎩

1/n2
s xi, xi′ ∈ Xs

1/n2
u xi, xi′ ∈ Xu

−1/(ns × nu) otherwise.

Mt
j j′ =

⎧⎪⎨
⎪⎩

1/c2
s t j, t j′ ∈ Ts

1/c2
u t j, t j′ ∈ Tu

−1/(cs × cu) otherwise.

(3.11)
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ZS

Obviously, the MMD constraint will asymptotically approach zero if two
distributions tend to be the same. Therefore, the MMDx term can ensure that
the seen image distribution is consistent with the unseen image distribution
in the cross-modal embedding space. Similarly, the MMDt term could also
reduce the distribution difference between seen and unseen texts in theory.

4 Optimization Procedure

In this section, we train the proposed DCMN with the mini-batch stochas-
tic gradient descent (SGD) method. We exploit the alternative optimization
algorithm presented in algorithm 1 to solve the objective function 3.3 by
updating the network parameters {θx,W�

x , θt,W�
t } and the similarity matrix

Sx
u for unseen images alternately.

4.1 Optimize Su
x . When the network parameters {θx,W�

x , θt,W�
t } are

fixed, the category index yi of unseen image xi ∈ Xu can be predicted by
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yi = arg max
j

p�
i q j

‖pi‖‖q j‖ , (4.1)

where (ns + 1) ≤ i ≤ n. To be more specific, (cs + 1) ≤ j ≤ c because unseen
image xi necessarily belongs to the unseen categories. We use yi′ to denote
the predicted category index for another unseen image, xi′ ∈ Xu. After that,
the similarity indicator sx

ii′ = 1 if yi = yi′ and otherwise, sx
ii′ = −1. Thus, the

unseen image similarity matrix Su
x can be solved according to the above

function.

4.2 Optimize Parameters of DCMN. With the fixed text network pa-
rameters {θt,W�

t } and similarity matrix Sx
u for unseen images, we could ob-

tain the image network parameters {θx,W�
x } by optimizing the following

function,

min
{θx,W�

x }
L f + λLx, (4.2)

where Lx denotes the unimodal loss of image network: Lx = Gx + βxMMDx.
The relative importance of the MMD constraint is controlled by the trade-
off βx. We denote the value of loss function 4.2 as Fx and derive the gradient
of loss Fx with regard to W�

x as follows,

∂Fx

∂W�
x

= ∂L f

∂W�
x

+ λ
∂Lx

∂W�
x

=
(

∂L f

∂Ẑ�
x

+ λ
∂Lx

∂Ẑ�
x

)
∂Ẑ�

x

∂W�
x

= δ�
x(Z�−1

x )�, (4.3)

where Ẑ�
x = W�

x Z�−1
x is the output of the �th layer before activation a�

x(·), and
Z�

x denotes the output of the �th layer after activation a�
x(·). δ�

x is the residual
term that measures the responsibility of the units in the �th layer for the loss
function 4.2. In particular, Z�−1

x = f (X; θx) and Z�
x = P. Then we can directly

define the residual δ�
x of the last f cm layer as

δ�
x =

(
∂L f

∂Z�
x

+ λ
∂Lx

∂Z�
x

)
� ∂Z�

x

∂Ẑ�
x

=
(

∂L f

∂P
+ λ

∂Lx

∂P

)
� tanh′( f (X; θx)), (4.4)

where ∂L f

∂P = [ ∂L f

∂p1
,

∂L f

∂p2
, . . . ,

∂L f

∂pns
, 0, . . . , 0︸ ︷︷ ︸

nu

]. The element ∂L f

∂pi
(i ≤ ns) can be

computed using function 4.5 where I(x) is a condition indicator function,
that is, I(x) = 1 if x is true and otherwise I(x) = 0:

∂L f

∂pi
=

c∑
j=1

I
(� − hi j cos(pi, q j ) > 0

) (
−hi j

∂ cos(pi, q j )
∂pi

)
. (4.5)
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Similarly, ∂Lx
∂P = [ ∂Lx

∂p1
, ∂Lx

∂p2
, . . . , ∂Lx

∂pn
] and ∂Lx

∂pi
= ∂Gx

∂pi
+ βx

∂MMDx
∂pi

, which can be
achieved by equations 4.6 and 4.7:

∂Gx

∂pi
= 2 ×

n∑
i′=1

(
cos(pi, pi′ ) − sx

ii′
) ∂ cos(pi, pi′ )

∂pi
, (4.6)

∂MMDx

∂P
= ∂Tr(PMxP�)

∂P
= 2 × PMx. (4.7)

According to the functions 4.4 to 4.7, the parameter W�
x of the f cm layer in

the image network is obtained by function 4.3. After that, the parameters
W�−1

x of (� − 1)-layer in image network can be computed using

∂Fx

∂W�−1
x

= δ�−1
x (Z�−2

x )�, (4.8)

where the residual term δ�−1
x is as follows:

δ�−1
x = ((W�

x )�δ�
x ) � ȧ�−1

x (Z�−1
x ). (4.9)

The ȧ�−1
x (·) denotes the derivative of the (� − 1)th layer activation function,

that is, the derivative of ReLU in our image network. Obviously, the com-
puting process of residuals in all layers is consistent with the standard BP
procedure. As a result, the parameters θx can be computed by the traditional
BP algorithm.

We omit the optimization process of text network parameters {θt,W�
t }

under the fixed parameters {θx,W�
x } because it is analogous to the presented

optimization procedure.

5 Experiment

In this section, we conduct extensive experiments on two benchmark data
sets to validate the effectiveness of our method.

5.1 Experimental Setup

5.1.1 Data Sets. We perform the experiments on two benchmark data
sets, CU200-Birds and Oxford Flowers-102. The CU200-Birds data set
(Welinder et al., 2010) consists of 6033 images from 200 bird categories in
which each visual class has approximately 30 images. The Oxford Flowers-
102 data set (Nilsback & Zisserman, 2008) contains 102 flower species with
a total of 8189 images; each class consists of 40 to 258 images. Similar to
the work in Elhoseiny et al. (2013), each visual category in these two data
sets has a corresponding textual article acquired from Wikipedia or other
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Figure 2: Some examples of images and textual descriptions in two data sets.

authoritative database. Some examples of the images and corresponding
textual descriptions for these two data sets are illustrated in Figure 2.

5.1.2 Competitors. We compare the proposed method with the following
state-of-the-art baselines to evaluate its effectiveness and superiority:

• Twin gaussian processes (TGP) (Bo & Sminchisescu, 2010), a struc-
tured prediction regression method that uses gaussian processes (GP)
priors for both covariates and responses

• Domain adaptation using asymmetric kernel transforms (DA) (Kulis,
Saenko, & Darrell, 2011), a novel approach to learn a nonlinear trans-
formation for domain adaptation

• Zero-shot learning using purely textual descriptions (DA+GP) (Elho-
seiny et al., 2013); which combines a regression function and a knowl-
edge transfer function with additional constraints to predict the clas-
sifier parameters for new categories

• Deep zero-shot convolutional neural networks (Deep f c + conv)
(Lei Ba et al., 2015), which uses text features to predict the weights
of the convolutional and the fully connected layers in a deep con-
volutional neural network. We simply use the fully connected layer
model (Deep f c) as the competitor in our experiment. The Deep f c
can achieve neck-and-neck performance compared with the Deep
f c + conv method on benchmark data sets CU200-Birds and Oxford
Flowers-102.

5.1.3 Implementation. We implement the DCMN network based on the
open-source Torch framework (Collobert, Kavukcuoglu, & Farabet, 2011).
For image network, we resize all images to 224 × 224 pixels. Note that
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Figure 3: Examples of predicted classification results on two data sets.

the initial parameters θx = {W�−19
x , . . . ,W�−2

x ,W�−1
x } of convolutional layers

conv1 to conv16 and fully connected layers f c17 to f c19 are copied from
the pretrained VGG19 network on the ImageNet data set. Additionally, we
extract the term frequency-inverse document frequency (TF-IDF) features
from raw textual descriptions and then use the clustered latent semantic
indexing (CLSI) (Zeimpekis & Gallopoulos, 2005) algorithm to reduce the
feature dimension. The TF-IDF features of the CU200-Birds and Oxford
Flowers-102 data sets are in R

7086 and R
8875, respectively. After processing

with the CLSI algorithm, the final textual features became the space of in
R

200 and R
102, respectively.

5.2 Performance Comparison. In our experiment, we use fivefold
cross-validation to evaluate the performance of our method and those of
others. For each data set, 80% categories are considered the seen classes and
the remaining 20% categories are considered the unseen classes. Among the
seen classes, we randomly separate 80% of the images used for training and
20% of the images used for testing. We use the receiver operating character-
istic (ROC) curve and the area under ROC curve (AUC) as the evaluation
metrics for all methods, where the images from one certain unseen class are
regarded as positive samples and the others are considered negatives. In
this case, we show several examples of test images and their top five pre-
dicted labels in Figure 3, where the correct predictions are in red. The AUC
results on the two data sets are shown in Table 1, in which our method has
three versions. +MMD and −MMD represent with and without two MMD
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Table 1: Performance Comparison in Terms of AUC over the Benchmark Data
sets, CU200-Birds and Oxford Flowers-102.

Oxford Flowers-102 CU200-Birds

Methods Seen Unseen Seen Unseen

TGP NA 0.58 ± 0.02 NA 0.61 ± 0.02
DA NA 0.62 ± 0.03 NA 0.59 ± 0.01
DA+GP NA 0.68 ± 0.01 NA 0.62 ± 0.02
Deep f c 0.96 ± NA 0.63 ± NA 0.93 ± NA 0.69 ± NA
Ours (−MMD TF-IDF) 0.94 ± 0.03 0.73 ± 0.02 0.94 ± 0.02 0.71 ± 0.02
Ours (+MMD TF-IDF) 0.99 ± 0.01 0.78 ± 0.02 0.97 ± 0.01 0.76 ± 0.01
Ours (+MMD FV) 0.99 ± 0.02 0.82 ± 0.01 0.98 ± 0.01 0.82 ± 0.02

Note: The numbers in bold are the best classification results.

terms, respectively, by setting βx and βt equal or not to zero. We also ex-
tract the Fisher vectors (FV) for textual descriptions (Klein, Lev, Sadeh, &
Wolf, 2014) to further illustrate the availability of our method. We have the
following observations according to Table 1:

• DA+GP performs better than DA and GP on two data sets, because it
effectively combines a regression function and a knowledge transfer
function with additional constraints.

• With the same text features (TF-IDF), our method has better classifi-
cation performance than the baselines, which indicates that the pro-
posed DCMN successfully captures the common knowledge of seen
and unseen instances. In addition, because of the better representa-
tion capability of FV features (Yan & Mikolajczyk, 2015; Wang, Li, &
Lazebnik, 2016), the classification results are significantly improved
when we replace the TF-IDF features with FV text features.

• Comparing the classification results of “Ours (−MMD TF-IDF)” with
“Ours (+MMD TF-IDF),” we can conclude that the MMD terms could
effectively improve the performance by decreasing the distribution
difference of seen and unseen instances. Note that we analyze the
influence of MMD terms with the increase of iterations in section 5.3.

• The classification results on Oxford Flowers-102 are generally bet-
ter than those on CU200-Birds. It is reasonable because more cate-
gories in CU200-Birds may increase the uncertainty and difficulty of
classification.

We also show the ROC curves and the corresponding AUC values of the
best 10 unseen classes for CU200-Birds and Oxford Flowers-102 in Figure 4.

5.3 Impact of MMD Term. In this section, we conduct an experiment to
evaluate whether the MMD terms contribute much to the subsequent per-
formance. By setting βx = βt = 0, we obtain a modified framework without
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Figure 4: ROC curves of the best five predicted classes for two data sets.

Figure 5: Performance comparison between DCMN with and without MMD
terms.

MMD terms. The results shown in Table 1 clearly indicate that the proposed
method with MMD constraints outperforms the framework without MMD
on the two data sets. In Figure 5, we plot the AUC curves for unseen cat-
egories with increased iteration times, where the texts are represented as
TF-IDF features. A common phenomenon is that AUC performance im-
proves as the iteration increases at first. After the performance reaches its
maximum, it will drop if more iterations are conducted because of over-
fitting. We also observe that the performance with MMD terms always
achieves better classification performance and becomes increasingly better
with the increase of iterations than the framework without MMD terms.
When the iteration is in the range [450, 750] and [400, 800] for CU200-Birds
and Oxford Flowers-102, respectively, the framework with MMD terms
shows the more prominent performance compared with the framework
without MMD terms. These results indicate that the MMD constraints are
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Figure 6: The influence of embedding dimension K on classification perfor-
mance.

effective for semisupervised zero-shot learning by decreasing the distribu-
tion discrepancy between seen and unseen instances.

5.4 Impact of Embedding Dimension K. In this section, we study the
influence of the embedding dimension K on classification performance. We
assign the embedding dimension K to be tuned from 50 to 400 with a step
size 50. As shown in Figure 6, for the two data sets, the AUC value for the
unseen categories improves at first as K increases. After reaching its maxi-
mum, performance gradually decreases. Note that the classification result
fluctuates widely when the value of K is too small or too large. The results
indicate that the appropriate K could achieve satisfactory and relatively sta-
ble classification results. The best K is distinguishing on different data sets.
When K equals 200 and 100, our method obtains the best classification per-
formance on CU200-Birds and Oxford Flowers-102, respectively.

5.5 Impact of Hyperparameters. We analyze the influences of the trade-
off hyperparameters, λ, βx, and βt , on classification performance. Note that
parameter λ controls the relative importance of unimodal loss (Lx + Lt ) re-
garding cross-modal max-margin loss L f . The parameters βx and βt are the
shrinkage coefficients of the MMD constraints on image modal loss and text
modal loss, respectively. In the condition of parameter βx = βt = 0.4, we
plot the performance curves for unseen categories as the increase of λ in Fig-
ure 7, where parameter λ is assigned in {10−3, 10−2, 10−1, 100, 101, 102, 103}.
Besides, with λ = 0.1, we assign βx and βt varying from 0.2 to 1.2 and then
show the classification results for unseen categories in Figure 8. These re-
sults demonstrate that appropriate values of λ, βx, and βt could achieve
good classification results. The optimal parameters over different data sets
are distinguishing. The classification accuracy could be satisfactory and rel-
atively stable when parameter λ is in interval [0.1, 1] and βx and βt are in
[0.4, 0.6].
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Figure 7: The influence of hyperparameter λ on classification performance.

Figure 8: The influences of hyperparameters βx and βt on classification perfor-
mance.

6 Conclusion

In this letter, we propose a novel deep cross-modal network for semisuper-
vised zero-shot learning. We combine the CNN network for image modal-
ity with the MLP network for text modality to map all visual objects and
textual articles into a common semantic space. In particular, the MMD con-
straints are proposed in our letter to decrease the distribution discrepancy
between seen and unseen instances. The extensive experimental results on
the benchmark data sets CU200-Birds and Oxford Flowers-102 show that
the proposed method outperforms other state-of-the-art methods on the
ROC-AUC metric. In future work, we plan to replace the text TF-IDF feature
extraction process and the MLP network part with LSTM recurrent neural
network to learn text representations automatically.



Deep Semisupervised Zero-Shot Learning 1445

Acknowledgments

This work is sponsored by The Fundamental Theory and Applications of
Big Data with Knowledge Engineering under the National Key Research
and Development Program of China, grant 2016YFB1000903; National Sci-
ence Foundation of China under grants 61502377, 61532004, 61532015,
61672418, and 61672419; Project of China Knowledge Centre for Engineer-
ing Science and Technology; Ministry of Education Innovation Research
Team IRT 17R86; and the Innovative Research Group of the National Natu-
ral Science Foundation of China (61721002).

References

Bo, L., & Sminchisescu, C. (2010). Twin gaussian processes for structured prediction.
International Journal of Computer Vision, 87(1), 28–52.

Cao, Y., Long, M., Wang, J., Yang, Q., & Yu, P. S. (2016). Deep visual-semantic hashing
for cross-modal retrieval. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining (pp. 1445–1454). New York: ACM.

Collobert, R., Kavukcuoglu, K., & Farabet, C. (2011). Torch7: A Matlab-like environ-
ment for machine learning. In BigLearn, NIPS Workshop, EPFL-CONF-192376.

Dauphin, Y. N., Tur, G., Hakkani-Tur, D., & Heck, L. (2013). Zero-shot learning for
semantic utterance classification. arXiv:1401.0509.

Elhoseiny, M., Saleh, B., & Elgammal, A. (2013). Write a classifier: Zero-shot learning
using purely textual descriptions. In Proceedings of the International Conference on
Computer Vision (pp. 2584–2591). Piscataway, NJ: IEEE.

Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J., & Mikolov, T. (2013). De-
vise: A deep visual-semantic embedding model. In C. J. C. Burges, L. Bottou, M.
Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information
processing systems, 26 (pp. 2121–2129). Red Hook, NY: Curran.

Fu, Y., Hospedales, T. M., Xiang, T., & Gong, S. (2015). Transductive multi-
view zero-shot learning. Pattern Analysis and Machine Intelligence, 37(11), 2332–
2345.

Fu, Y., & Sigal, L. (2016). Semi-supervised vocabulary-informed learning. In Proceed-
ings of the Conference on Computer Vision and Pattern Recognition (pp. 5337–5346).
Piscataway, NJ: IEEE.

Fu, Z., Xiang, T., Kodirov, E., & Gong, S. (2015). Zero-shot object recognition by se-
mantic manifold distance. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (pp. 2635–2644). Piscataway, NJ: IEEE.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In
Proceedings of the International Conference on Artificial Intelligence and Statistics (pp.
315–323).

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A
kernel two-sample test. Journal of Machine Learning Research, 13(1), 723–773.

Kansky, K., Silver, T., Mély, D. A., Eldawy, M., Lázaro-Gredilla, . . . George, D. (2017).
Schema networks: Zero-shot transfer with a generative causal model of intuitive physics.
arXiv:1706.04317.



1446 L. Zhang et al.

Klein, B., Lev, G., Sadeh, G., & Wolf, L. (2014). Fisher vectors derived from hybrid
gaussian-Laplacian mixture models for image annotation. arXiv:1411.7399.

Kovashka, A., Parikh, D., & Grauman, K. (2012). Whittlesearch: Image search with
relative attribute feedback. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (pp. 2973–2980). Piscataway, NJ: IEEE.

Kovashka, A., Vijayanarasimhan, S., & Grauman, K. (2011). Actively selecting anno-
tations among objects and attributes. In Proceedings of the International Conference
on Computer Vision (pp. 1403–1410). Piscataway, NJ: IEEE.

Kulis, B., Saenko, K., & Darrell, T. (2011). What you saw is not what you get: Do-
main adaptation using asymmetric kernel transforms. In Proceedings of the Con-
ference on Computer Vision and Pattern Recognition (pp. 1785–1792). Piscataway, NJ:
IEEE.

Kumar, N., Berg, A., Belhumeur, P. N., & Nayar, S. (2011). Describable visual at-
tributes for face verification and image search. Pattern Analysis and Machine In-
telligence, 33(10), 1962–1977.

Lampert, C. H., Nickisch, H., & Harmeling, S. (2009). Learning to detect unseen ob-
ject classes by between-class attribute transfer. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (pp. 951–958). Piscataway, NJ: IEEE.

Lampert, C. H., Nickisch, H., & Harmeling, S. (2014). Attribute-based classification
for zero-shot visual object categorization. Pattern Analysis and Machine Intelligence,
36(3), 453–465.

Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A con-
volutional neural-network approach. IEEE Transactions on Neural Networks, 8(1),
98–113.

Lei Ba, J., Swersky, K., Fidler, S., & Salakhutdinov, R. (2015). Predicting deep zero-
shot convolutional neural networks using textual descriptions. In Proceedings of
the International Conference on Computer Vision (pp. 4247–4255). Piscataway, NJ:
IEEE.

Liu, M., Zhang, D., & Chen, S. (2014). Attribute relation learning for zero-shot clas-
sification. Neurocomputing, 139, 34–46.

Long, M., Ding, G., Wang, J., Sun, J., Guo, Y., & Yu, P. S. (2013). Transfer sparse coding
for robust image representation. In Proceedings of the Conference on Computer Vision
and Pattern Recognition (pp. 407–414). Piscataway, NJ: IEEE.

Nilsback, M. E., & Zisserman, A. (2008). Automated flower classification over a large
number of classes. In Proceedings of the Conference on Computer Vision, Graphics and
Image Processing (pp. 722–729).

Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens, J., Frome, A., Corrado, G. S.,
& Dean, J. (2013). Zero-shot learning by convex combination of semantic embeddings.
arXiv:1312.5650.

Palatucci, M., Pomerleau, D., Hinton, G. E., & Mitchell, T. M. (2009). Zero-shot learn-
ing with semantic output codes. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K.
I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems,
27 (pp. 1410–1418).

Parikh, D., & Grauman, K. (2011). Relative attributes. In Proceedings of the International
Conference on Computer Vision (pp. 503–510).

Peng, K.-C., Wu, Z., & Ernst, J. (2017). Zero-shot deep domain adaptation.
arXiv:1707.01922.



Deep Semisupervised Zero-Shot Learning 1447

Scheirer, W. J., Kumar, N., Belhumeur, P. N., & Boult, T. E. (2012). Multi-attribute
spaces: Calibration for attribute fusion and similarity search. In Proceedings Com-
puter Vision and Pattern Recognition (pp. 2933–2940).

Shojaee, S. M., & Baghshah, M. S. (2016). Semi-supervised zero-shot learning by a
clustering-based approach. arXiv:1605.09016.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556.

Socher, R., Ganjoo, M., Manning, C. D., & Ng, A. (2013). Zero-shot learning through
cross-modal transfer. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, &
K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp.
935–943). Red Hook, NY: Curran.

Wang, L., Li, Y., & Lazebnik, S. (2016). Learning deep structure-preserving image-
text embeddings. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (pp. 5005–5013). Piscataway, NJ: IEEE.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., & Perona, P. (2010).
Caltech-UCSD birds 200. (CNS-TR-2010-001). Pasadena: CalTech.

Xian, Y., Schiele, B., & Akata, Z. (2017). Zero-shot learning—the good, the bad and the
ugly. arXiv:1703.04394.

Yan, F., & Mikolajczyk, K. (2015). Deep correlation for matching images and text. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (pp. 3441–
3450). Piscataway, NJ: IEEE.

Yu, X., & Aloimonos, Y. (2010). Attribute-based transfer learning for object catego-
rization with zero/one training example. In Proceedings of the European Conference
on Computer Vision (pp. 127–140). Berlin: Springer.

Zeimpekis, D., & Gallopoulos, E. (2005). CLSI: Aflexible approximation scheme from
clustered term-document matrices. In Proceedings of the SIAM International Con-
ference on Data Mining (pp. 631–635). Philadelphia: SIAM.

Zhang, X., Yu, F. X., Chang, S. F., & Wang, S. (2015). Deep transfer network: Unsupervised
domain adaptation. arXiv:1503.00591.

Zhang, Z., & Saligrama, V. (2015). Zero-shot learning via semantic similarity embed-
ding. In Proceedings of the International Conference on Computer Vision (pp. 4166–
4174). Piscataway, NJ: IEEE.

Zhou, T. (2016). An image recognition model based on improved convolutional neu-
ral network. Journal of Computational and Theoretical Nanoscience, 13(7), 4223–4229.

Received August 15, 2017; accepted January 4, 2018.



Copyright of Neural Computation is the property of MIT Press and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.


