
Distributed Newton Methods for Deep Neural
Networks

Chien-Chih Wang,1 Kent Loong Tan,1 Chun-Ting Chen,1

Yu-Hsiang Lin,2 S. Sathiya Keerthi,3 Dhruv Mahajan,4

S. Sundararajan,3 Chih-Jen Lin1

1Department of Computer Science, National Taiwan University, Taipei 10617, Taiwan

2Department of Physics, National Taiwan University, Taipei 10617, Taiwan

3Microsoft

4Facebook Research

Abstract

Deep learning involves a difficult non-convex optimization problem with a

large number of weights between any two adjacent layers of a deep structure. To

handle large data sets or complicated networks, distributed training is needed, but

the calculation of function, gradient, and Hessian is expensive. In particular, the

communication and the synchronization cost may become a bottleneck. In this

paper, we focus on situations where the model is distributedly stored, and propose

a novel distributed Newton method for training deep neural networks. By variable

and feature-wise data partitions, and some careful designs, we are able to explicitly

use the Jacobian matrix for matrix-vector products in the Newton method. Some

techniques are incorporated to reduce the running time as well as the memory con-

sumption. First, to reduce the communication cost, we propose a diagonalization

method such that an approximate Newton direction can be obtained without com-

munication between machines. Second, we consider subsampled Gauss-Newton

1

ar
X

iv
:1

80
2.

00
13

0v
1

 [
st

at
.M

L
]

 1
 F

eb
 2

01
8

matrices for reducing the running time as well as the communication cost. Third,

to reduce the synchronization cost, we terminate the process of finding an ap-

proximate Newton direction even though some nodes have not finished their tasks.

Details of some implementation issues in distributed environments are thoroughly

investigated. Experiments demonstrate that the proposed method is effective for

the distributed training of deep neural networks. In compared with stochastic gra-

dient methods, it is more robust and may give better test accuracy.

Keywords: Deep Neural Networks, Distributed Newton methods, Large-scale clas-

sification, Subsampled Hessian.

1 Introduction

Recently deep learning has emerged as a useful technique for data classification as well

as finding feature representations. We consider the scenario of multi-class classifica-

tion. A deep neural network maps each feature vector to one of the class labels by the

connection of nodes in a multi-layer structure. Between two adjacent layers a weight

matrix maps the inputs (values in the previous layer) to the outputs (values in the current

layer). Assume the training set includes (yi,xi), i = 1, . . . , l, where xi ∈ <n0 is the

feature vector and yi ∈ <K is the label vector. If xi is associated with label k, then

yi = [0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0]T ∈ <K ,

where K is the number of classes and {1, . . . , K} are possible labels. After collecting

all weights and biases as the model vector θ and having a loss function ξ(θ;x,y), a

2

neural-network problem can be written as the following optimization problem.

min
θ

f(θ), (1)

where

f(θ) =
1

2C
θTθ +

1

l

l∑
i=1

ξ(θ;xi,yi). (2)

The regularization term θTθ/2 avoids overfitting the training data, while the parameter

C balances the regularization term and the loss term. The function f(θ) is non-convex

because of the connection between weights in different layers. This non-convexity and

the large number of weights have caused tremendous difficulties in training large-scale

deep neural networks. To apply an optimization algorithm for solving (2), the calcula-

tion of function, gradient, and Hessian can be expensive. Currently, stochastic gradient

(SG) methods are the most commonly used way to train deep neural networks (e.g., Bot-

tou, 1991; LeCun et al., 1998b; Bottou, 2010; Zinkevich et al., 2010; Dean et al., 2012;

Moritz et al., 2015). In particular, some expensive operations can be efficiently con-

ducted in GPU environments (e.g., Ciresan et al., 2010; Krizhevsky et al., 2012; Hinton

et al., 2012). Besides stochastic gradient methods, some works such as Martens (2010);

Kiros (2013); He et al. (2016) have considered a Newton method of using Hessian infor-

mation. Other optimization methods such as ADMM have also been considered (Taylor

et al., 2016).

When the model or the data set is large, distributed training is needed. Following

the design of the objective function in (2), we note it is easy to achieve data paral-

lelism: if data instances are stored in different computing nodes, then each machine can

3

calculate the local sum of training losses independently.1 However, achieving model

parallelism is more difficult because of the complicated structure of deep neural net-

works. In this work, by considering that the model is distributedly stored we propose a

novel distributed Newton method for deep learning. By variable and feature-wise data

partitions, and some careful designs, we are able to explicitly use the Jacobian matrix

for matrix-vector products in the Newton method. Some techniques are incorporated

to reduce the running time as well as the memory consumption. First, to reduce the

communication cost, we propose a diagonalization method such that an approximate

Newton direction can be obtained without communication between machines. Second,

we consider subsampled Gauss-Newton matrices for reducing the running time as well

as the communication cost. Third, to reduce the synchronization cost, we terminate the

process of finding an approximate Newton direction even though some nodes have not

finished their tasks.

To be focused, among the various types of neural networks, we consider the stan-

dard feedforward networks in this work. We do not consider other types such as the

convolution networks that are popular in computer vision.

This work is organized as follows. Section 2 introduces existing Hessian-free New-

ton methods for deep learning. In Section 3, we propose a distributed Newton method

for training neural networks. We then develop novel techniques in Section 4 to reduce

running time and memory consumption. In Section 5 we analyze the cost of the pro-

1Training deep neural networks with data parallelism has been considered in SG, Newton and other

optimization methods. For example, He et al. (2015) implement a parallel Newton method by letting

each node store a subset of instances.

4

posed algorithm. Additional implementation techniques are given in Section 6. Then

Section 7 reviews some existing optimization methods, while experiments in Section 8

demonstrate the effectiveness of the proposed method. Programs used for experiments

in this paper are available at

http://www.csie.ntu.edu.tw/˜cjlin/papers/dnn.

Supplementary materials including a list of symbols and additional experiments can be

found at the same web address.

2 Hessian-free Newton Method for Deep Learning

In this section, we begin with introducing feedforward neural networks and then review

existing Hessian-free Newton methods to solve the optimization problem.

2.1 Feedforward Networks

A multi-layer neural network maps each feature vector to a class vector via the con-

nection of nodes. There is a weight vector between two adjacent layers to map the

input vector (the previous layer) to the output vector (the current layer). The network

in Figure 1 is an example. Let nm denote the number of nodes at the mth layer. We

use n0(input)-n1- . . . -nL(output) to represent the structure of the network.3 The weight

2This figure is modified from the example at http://www.texample.net/tikz/

examples/neural-network.

3Note that n0 is the number of features and nL = K is the number of classes.

5

http://www.csie.ntu.edu.tw/~cjlin/papers/dnn
http://www.texample.net/tikz/examples/neural-network
http://www.texample.net/tikz/examples/neural-network

A0

B0

C0

A1

B1

A2

B2

C2

Figure 1: An example of feedforward neural networks.2

matrix Wm and the bias vector bm at the mth layer are

Wm =



wm11 wm12 · · · wm1nm

wm21 wm22 · · · wm2nm

...
...

...
...

wmnm−11
wmnm−12

· · · wmnm−1nm


nm−1×nm

and bm =



bm1

bm2

...

bmnm


nm×1

.

Let

s0,i = z0,i = xi

be the feature vector for the ith instance, and sm,i and zm,i denote vectors of the ith

instance at the mth layer, respectively. We can use

sm,i = (Wm)Tzm−1,i + bm, m = 1, . . . , L, i = 1, . . . , l

zm,ij = σ(sm,ij), j = 1, . . . , nm, m = 1, . . . , L, i = 1, . . . , l (3)

to derive the value of the next layer, where σ(·) is the activation function.

6

If Wm’s columns are concatenated to the following vector

wm =

[
wm11 . . . wmnm−11

wm12 . . . wmnm−12
. . . wm1nm

. . . wmnm−1nm

]T
,

then we can define

θ =



w1

b1

...

wL

bL


as the weight vector of a whole deep neural network. The total number of parameters is

n =
L∑

m=1

(nm−1 × nm + nm) .

Because zL,i is the output vector of the ith data, by a loss function to compare it with the

label vector yi, a neural network solves the following regularized optimization problem

min
θ

f(θ),

where

f(θ) =
1

2C
θTθ +

1

l

l∑
i=1

ξ(zL,i;yi), (4)

C > 0 is a regularization parameter, and ξ(zL,i;yi) is a convex function of zL,i. Note

that we rewrite the loss function ξ(θ;xi,yi) in (2) as ξ(zL,i;yi) because zL,i is decided

by θ and xi. In this work, we consider the following loss function

ξ(zL,i;yi) = ||zL,i − yi||2. (5)

The gradient of f(θ) is

∇f(θ) =
1

C
θ +

1

l

l∑
i=1

(J i)T∇zL,iξ(zL,i;yi), (6)

7

where

J i =


∂zL,i

1

∂θ1
· · · ∂zL,i

1

∂θn

...
...

...

∂zL,i
nL

∂θ1
· · · ∂zL,i

nL

∂θn


nL×n

, i = 1, . . . , l, (7)

is the Jacobian of zL,i, which is a function of θ. The Hessian matrix of f(θ) is

∇2f(θ) =
1

C
I +

1

l

l∑
i=1

(J i)TBiJ i

+
1

l

l∑
i=1

nL∑
j=1

∂ξ(zL,i;yi)

∂zL,ij


∂2zL,i

j

∂θ1∂θ1
· · · ∂2zL,i

j

∂θ1∂θn

...

∂2zL,i
j

∂θn∂θ1
· · · ∂2zL,i

j

∂θn∂θn

 , (8)

where I is the identity matrix and

Bi
ts =

∂2ξ(zL,i;yi)

∂zL,it ∂zL,is

, t = 1, . . . , nL, s = 1, . . . , nL. (9)

From now on for simplicity we let

ξi ≡ ξi(z
L,i;yi).

2.2 Hessian-free Newton Method

For the standard Newton methods, at the kth iteration, we find a direction dk minimizing

the following second-order approximation of the function value:

min
d

1

2
dTHkd+∇f(θk)Td, (10)

8

where Hk = ∇2f(θk) is the Hessian matrix of f(θk). To solve (10), first we calculate

the gradient vector by a backward process based on (3) through the following equations:

∂ξi

∂sm,ij

=
∂ξi

∂zm,ij

σ′(sm,ij), i = 1, . . . , l, m = 1, . . . , L, j = 1, . . . , nm (11)

∂ξi

∂zm−1,it

=
nm∑
j=1

∂ξi

∂sm,ij

wmtj , i = 1, . . . , l, m = 1, . . . , L, t = 1, . . . , nm−1 (12)

∂f

∂wmtj
=

1

C
wmtj +

1

l

l∑
i=1

∂ξi

∂sm,ij

zm−1,it , m = 1, . . . , L, j = 1, . . . , nm, t = 1, . . . , nm−1

(13)

∂f

∂bmj
=

1

C
bmj +

1

l

l∑
i=1

∂ξi

∂sm,ij

, m = 1, . . . , L, j = 1, . . . , nm. (14)

Note that formally the summation in (13) should be

l∑
i=1

l∑
i′=1

∂ξi

∂sm,i
′

j

zm−1,i
′

t ,

but it is simplified because ξi is associated with only sm,ij .

If Hk is positive definite, then (10) is equivalent to solving the following linear

system:

Hkd = −∇f(θk). (15)

Unfortunately, for the optimization problem (10), it is well known that the objective

function may be non-convex and therefore Hk is not guaranteed to be positive definite.

Following Schraudolph (2002), we can use the Gauss-Newton matrix as an approxima-

tion of the Hessian. That is, we remove the last term in (8) and obtain the following

positive-definite matrix.

G =
1

C
I +

1

l

l∑
i=1

(J i)TBiJ i. (16)

9

Note that from (9), each Bi, i = 1, . . . , l is positive semi-definite if we require that

ξ(zL,i;yi) is a convex function of zL,i. Therefore, instead of using (15), we solve the

following linear system to find a dk for deep neural networks.

(Gk + λkI)d = −∇f(θk), (17)

where Gk is the Gauss-Newton matrix at the kth iteration and we add a term λkI be-

cause of considering the Levenberg-Marquardt method (see details in Section 4.5).

For deep neural networks, because the total number of weights may be very large, it

is hard to store the Gauss-Newton matrix. Therefore, Hessian-free algorithms have been

applied to solve (17). Examples include Martens (2010); Ngiam et al. (2011). Specif-

ically, conjugate gradient (CG) methods are often used so that a sequence of Gauss-

Newton matrix vector products are conducted. Martens (2010); Wang et al. (2015) use

R-operator (Pearlmutter, 1994) to implement the product without storing the Gauss-

Newton matrix.

Because the use ofR operators for the Newton method is not the focus of this work,

we leave some detailed discussion in Sections II–III in supplementary materials.

3 Distributed Training by Variable Partition

The main computational bottleneck in a Hessian-free Newton method is the sequence

of matrix-vector products in the CG procedure. To reduce the running time, parallel

matrix-vector multiplications should be conducted. However, theR operator discussed

in Section 2 and Section II in supplementary materials is inherently sequential. In

a forward process results in the current layer must be finished before the next. In this

10

section, we propose an effective distributed algorithm for training deep neural networks.

3.1 Variable Partition

Instead of using the R operator to calculate the matrix-vector product, we consider the

whole Jacobian matrix and directly use the Gauss-Newton matrix in (16) for the matrix-

vector products in the CG procedure. This setting is possible because of the following

reasons.

1. A distributed environment is used.

2. With some techniques we do not need to explicitly store every element of the Jaco-

bian matrix.

Details will be described in the rest of this paper. To begin we split each J i to P

partitions

J i =

[
J i1 · · · J iP

]
.

Because the number of columns in J i is the same as the number of variables in the

optimization problem, essentially we partition the variables to P subsets. Specifically,

we split neurons in each layer to several groups. Then weights connecting one group of

the current layer to one group of the next layer form a subset of our variable partition.

For example, assume we have a 150-200-30 neural network in Figure 2. By splitting the

three layers to 3, 2, 3 groups, we have a total number of partitions P = 12. The partition

(A0, A1) in Figure 2 is responsible for a 50 × 100 sub-matrix of W 1. In addition, we

distribute the variable bm to partitions corresponding to the first neuron sub-group of the

11

A0

B0

C0

A0,A1

A0,B1

B0,A1

B0,B1

C0,A1

C0,B1

A1

B1

A1,A2

A1,B2

A1,C2

B1,A2

B1,B2

B1,C2

A2

B2

C2

Figure 2: An example of splitting variables in Figure 1 to 12 partitions by a split struc-

ture of 3-2-3. Each circle corresponds to a neuron sub-group in a layer, while each

square is a partition corresponding to weights connecting one neuron sub-group in a

layer to one neuron sub-group in the next layer.

mth layer. For example, the 200 variables of b1 is split to 100 in the partition (A0, A1)

and 100 in the partition (A0, B1).

By the variable partition, we achieve model parallelism. Further, because z0,i = xi

from (2.1), our data points are split in a feature-wise way to nodes corresponding to

partitions between layers 0 and 1. Therefore, we have data parallelism.

With the variable partition, the second term in the Gauss-Newton matrix (16) for the

12

ith instance can be represented as

(J i)TBiJ i =


(J i1)

TBiJ i1 · · · (J i1)
TBiJ iP

. . .

(J iP)TBiJ i1 · · · (J iP)TBiJ iP

 .

In the CG procedure to solve (17), the product between the Gauss-Newton matrix and

a vector v is

Gv =


1
l

∑l
i=1(J

i
1)
TBi(

∑P
p=1 J

i
pvp) + 1

C
v1

...

1
l

∑l
i=1(J

i
P)TBi(

∑P
p=1 J

i
pvp) + 1

C
vP

 ,where v =


v1

...

vP

 (18)

is partitioned according to our variable split. From (9) and the loss function defined in

(5),

Bi
ts =

∂2
(∑nL

j=1(z
L,i
j − yij)2

)
∂zL,it ∂zL,is

=
∂
(

2(zL,it − yit)
)

∂zL,is

=


2 if t = s,

0 otherwise.

However, after the variable partition, each J i may still be a huge matrix. The total

space for storing J ip, ∀i is roughly

nL ×
n

P
× l.

If l, the number of data instances, is so large such that

l × nL
P

> n,

than storing J ip, ∀i requires more space than the n×n Gauss-Newton matrix. To reduce

the memory consumption, we will propose effective techniques in Sections 3.3, 4.3, and

6.1.

13

With the variable partition, function, gradient, and Jacobian calculations become

complicated. We discuss details in Sections 3.2 and 3.3.

3.2 Distributed Function Evaluation

From (3) we know how to evaluate the function value in a single machine, but the im-

plementation in a distributed environment is not trivial. Here we check the details from

the perspective of an individual partition. Consider a partition that involves neurons in

sets Tm−1 and Tm from layers m− 1 and m, respectively. Thus

Tm−1 ⊂ {1, . . . , nm−1} and Tm ⊂ {1, . . . , nm}.

Because (3) is a forward process, we assume that

sm−1,it , i = 1, . . . , l, ∀t ∈ Tm−1

are available at the current partition. The goal is to generate

sm,ij , i = 1, . . . , l, ∀j ∈ Tm

and pass them to partitions between layers m and m+ 1. To begin, we calculate

zm−1,it = σ(sm−1,it), i = 1, . . . , l and t ∈ Tm−1. (19)

Then, from (3), the following local values can be calculated for i = 1, . . . , l, j ∈ Tm
∑

t∈Tm−1
wmtj z

m−1,i
t + bmj if Tm−1 is the first neuron sub-group of layer m− 1,

∑
t∈Tm−1

wmtj z
m−1,i
t otherwise.

(20)

14

After the local sum in (20) is obtained, we must sum up values in partitions between

layers m− 1 and m.

sm,ij =
∑

Tm−1∈Pm−1

(
local sum in (20)

)
, (21)

where i = 1, . . . , l, j ∈ Tm, and

Pm−1 = {Tm−1 | Tm−1 is any sub-group of neurons at layer m− 1}.

The resulting sm,ij values should be broadcasted to partitions between layers m and

m + 1 that correspond to the neuron subset Tm. We explain details of (21) and the

broadcast operation in Section 3.2.1.

3.2.1 Allreduce and Broadcast Operations

The goal of (21) is to generate and broadcast sm,ij values to some partitions between

layers m and m + 1, so a reduce operation seems to be sufficient. However, we will

explain in Section 3.3 that for the Jacobian evaluation and then the product between

Gauss-Newton matrix and a vector, the partitions between layers m − 1 and m corre-

sponding to Tm also need sm,ij for calculating

zm,ij = σ(sm,ij), i = 1, . . . , l, j ∈ Tm. (22)

To this end, we consider an allreduce operation so that not only are values reduced from

some partitions between layers m− 1 and m, but also the result is broadcasted to them.

After this is done, we make the same result sm,ij available in partitions between layers

m and m + 1 by choosing the partition corresponding to the first neuron sub-group of

layer m − 1 to conduct a broadcast operation. Note that for partitions between layers

L− 1 and L (i.e., the last layer), a broadcast operation is not needed.

15

Consider the example in Figure 2. For partitions (A1, A2), (A1, B2), and (A1, C2),

all of them must get s1,ij , j ∈ A1 calculated via (21):

s1,ij =
∑
t∈A0

w1
tjz

0,i
t + b1j︸ ︷︷ ︸

(A0,A1)

+
∑
t∈B0

w1
tjz

0,i
t︸ ︷︷ ︸

(B0,A1)

+
∑
t∈C0

w1
tjz

0,i
t︸ ︷︷ ︸

(C0,A1)

. (23)

The three local sums are available at partitions (A0, A1), (B0, A1) and (C0, A1) re-

spectively. We first conduct an allreduce operation so that s1,ij , j ∈ A1 are available

at partitions (A0, A1), (B0, A1), and (C0, A1). Then we choose (A0, A1) to broadcast

values to (A1, A2), (A1, B2), and (A1, C2).

Depending on the system configurations, suitable ways can be considered for im-

plementing the allreduce and the broadcast operations (Thakur et al., 2005). In Section

IV of supplementary materials we give details of our implementation.

To derive the loss value, we need one final reduce operation. For the example in

Figure 2, in the end we have z2,ij , j ∈ A2, B2, C2 respectively available in partitions

(A1, A2), (A1, B2), and (A1, C2).

We then need the following reduce operation

||z2,i − yi||2 =
∑
j∈A2

(z2,ij − yij)2 +
∑
j∈B2

(z2,ij − yij)2 +
∑
j∈C2

(z2,ij − yij)2 (24)

and let (A1, A2) have the loss term in the objective value.

We have discussed the calculation of the loss term in the objective value, but we

also need to obtain the regularization term θTθ/2. One possible setting is that before

the loss-term calculation we run a reduce operation to sum up all local regularization

terms. For example, in one partition corresponding to neuron subgroups Tm−1 at layer

16

m− 1 and Tm at layer m, the local value is

∑
t∈Tm−1

∑
j∈Tm

(wmtj)
2. (25)

On the other hand, we can embed the calculation into the forward process for obtaining

the loss term. The idea is that we append the local regularization term in (25) to the

vector in (20) for an allreduce operation in (21). The cost is negligible because we only

increase the length of each vector by one. After the allreduce operation, we broadcast

the resulting vector to partitions between layers m and m + 1 that corresponding to

the neuron subgroup Tm. We cannot let each partition collect the broadcasted value for

subsequent allreduce operations because regularization terms in previous layers would

be calculated several times. To this end, we allow only the partition corresponding to

Tm in layer m and the first neuron subgroup in layer m + 1 to collect the value and

include it with the local regularization term for the subsequent allreduce operation. By

continuing the forward process, in the end we get the whole regularization term.

We use Figure 2 to give an illustration. The allreduce operation in (23) now also

calculates

∑
t∈A0

∑
j∈A1

(w1
tj)

2 +
∑
j∈A1

(b1j)
2

︸ ︷︷ ︸
(A0,A1)

+
∑
t∈B0

∑
j∈A1

(w1
tj)

2

︸ ︷︷ ︸
(B0,A1)

+
∑
t∈C0

∑
j∈A1

(w1
tj)

2

︸ ︷︷ ︸
(C0,A1)

. (26)

The resulting value is broadcasted to

(A1, A2), (A1, B2), and (A1, C2).

Then only (A1, A2) collects the value and generate the following local sum:

(26) +
∑
t∈A1

∑
j∈A2

(w2
tj)

2 +
∑
j∈A2

(b2j)
2.

In the end we have

17

1. (A1, A2) contains regularization terms from

(A0, A1), (B0, A1), (C0, A1), (A1, A2), (A0, B1), (B0, B1), (C0, B1), (B1, A2).

2. (A1, B2) contains regularization terms from

(A1, B2), (B1, B2).

3. (A1, C2) contains regularization terms from

(A1, C2), (B1, C2).

We can then extend the reduce operation in (24) to generate the final value of the regu-

larization term.

3.3 Distributed Jacobian Calculation

From (7) and similar to the way of calculating the gradient in (11)-(14), the Jacobian

matrix satisfies the following properties.

∂zL,iu

∂wmtj
=
∂zL,iu

∂sm,ij

∂sm,ij

∂wmtj
, (28)

∂zL,iu

∂bmj
=
∂zL,iu

∂sm,ij

∂sm,ij

∂bmj
, (29)

where i = 1, . . . , l, u = 1, . . . , nL, m = 1, . . . , L, j = 1, . . . , nm, and t = 1, . . . , nm−1.

However, these formulations do not reveal how they are calculated in a distributed set-

ting. Similar to Section 3.2, we check details from the perspective of any variable par-

tition. Assume the current partition involves neurons in sets Tm−1 and Tm from layers

m− 1 and m, respectively. Then we aim to obtain the following Jacobian components.

∂zL,iu

∂wmtj
and

∂zL,iu

∂bmj
, ∀t ∈ Tm−1, ∀j ∈ Tm, u = 1, . . . , nL, i = 1, . . . , l.

18

Before showing how to calculate them, we first get from (3) that

∂zL,iu

∂sm,ij

=
∂zL,iu

∂zm,ij

∂zm,ij

∂sm,ij

=
∂zL,iu

∂zm,ij

σ′(sm,ij), (30)

∂sm,ij

∂wmtj
= zm−1,it and

∂sm,ij

∂bmj
= 1, (31)

∂zL,iu

∂zL,ij

=


1 if j = u,

0 otherwise.

(32)

From (28)-(32), the elements for the local Jacobian matrix can be derived by

∂zL,iu

∂wmtj
=
∂zL,iu

∂zm,ij

∂zm,ij

∂sm,ij

∂sm,ij

∂wmtj
=



∂zL,i
u

∂zm,i
j

σ′(sm,ij)zm−1,it if m < L,

σ′(sL,iu)zL−1,it if m = L, j = u,

0 if m = L, j 6= u,

(33)

and

∂zL,iu

∂bmj
=
∂zL,iu

∂zm,ij

∂zm,ij

∂sm,ij

∂sm,ij

∂bmj
=



∂zL,i
u

∂zm,i
j

σ′(sm,ij) if m < L,

σ′(sL,iu) if m = L, j = u,

0 if m = L, j 6= u,

(34)

where u = 1, . . . , nL, i = 1, . . . , l, t ∈ Tm−1, and j ∈ Tm.

We discuss how to have values in the right-hand side of (33) and (34) available at

the current computing node. From (19), we have

zm−1,it , ∀i = 1, . . . , l, ∀t ∈ Tm−1

available in the forward process of calculating the function value. Further, in (21)-(22)

to obtain zm,ij for layersm andm+1, we use an allreduce operation rather than a reduce

operation so that

sm,ij , ∀i = 1, . . . , l, ∀j ∈ Tm

19

are available at the current partition between layers m − 1 and m. Therefore, σ′(sm,ij)

in (33)-(34) can be obtained. The remaining issue is to generate ∂zL,iu /∂zm,ij . We will

show that they can be obtained by a backward process. Because the discussion assumes

that currently we are at a partition between layers m − 1 and m, we show details of

generating ∂zL,iu /∂zm−1,it and dispatching them to partitions between m− 2 and m− 1.

From (3) and (30), ∂zL,iu /zm−1,it can be calculated by

∂zL,iu

∂zm−1,it

=
nm∑
j=1

∂zL,iu

∂sm,ij

∂sm,ij

∂zm−1,it

=
nm∑
j=1

∂zL,iu

∂zm,ij

σ′(sm,ij)wmtj . (35)

Therefore, we consider a backward process of using ∂zL,iu /∂zm,ij to generate ∂zL,iu /∂zm−1,it .

In a distributed system, from (32) and (35),

∂zL,iu

∂zm−1,it

=


∑

Tm∈Pm

∑
j∈Tm

∂zL,i
u

∂zm,i
j

σ′(sm,ij)wmtj if m < L,

∑
Tm∈Pm

σ′(sL,iu)wLtu if m = L,

(36)

where i = 1, . . . , l, u = 1, . . . , nL, t ∈ Tm−1, and

Pm = {Tm | Tm is any sub-group of neurons at layer m}. (37)

Clearly, each partition calculates the local sum over j ∈ Tm. Then a reduce operation

is needed to sum up values in all corresponding partitions between layers m − 1 and

m. Subsequently, we discuss details of how to transfer data to partitions between layers

m− 2 and m− 1.

Consider the example in Figure 2. The partition (A0, A1) must get

∂zL,iu

∂z1,it
, t ∈ A1, u = 1, . . . , nL, i = 1, . . . , l.

From (36),

∂zL,iu

∂z1,it
=
∑
j∈A2

∂zL,iu

∂z2,ij
σ′(s2,ij)w2

tj︸ ︷︷ ︸
(A1,A2)

+
∑
j∈B2

∂zL,iu

∂z2,ij
σ′(s2,ij)w2

tj︸ ︷︷ ︸
(A1,B2)

+
∑
j∈C2

∂zL,iu

∂z2,ij
σ′(s2,ij)w2

tj︸ ︷︷ ︸
(A1,C2)

. (38)

20

Note that these three sums are available at partitions (A1, A2), (A1, B2), and (A1, C2),

respectively. Therefore, (38) is a reduce operation. Further, values obtained in (38) are

needed in partitions not only (A0, A1) but also (B0, A1) and (C0, A1). Therefore, we

need a broadcast operation so values can be available in the corresponding partitions.

For details of implementing reduce and broadcast operations, see Section IV of

supplementary materials. Algorithm 2 summarizes the backward process to calculate

∂zL,iu /∂zm,ij .

3.3.1 Memory Requirement

We have mentioned in Section 3.1 that storing all elements in the Jacobian matrix may

not be viable. In the distributing setting, if we store all Jacobian elements corresponding

to the current partition, then

|Tm−1| × |Tm| × nL × l (39)

space is needed. We propose a technique to save space by noting that (28) can be written

as the product of two terms. From (30)-(31), the first term is related to only Tm, while

the second is related to only Tm−1:

∂zL,iu

∂wmtj
= [

∂zL,iu

∂sm,ij

][
∂sm,ij

∂wmtj
] = [

∂zL,iu

∂zm,ij

σ′(sm,ij)][zm−1,it]. (40)

They are available in our earlier calculation. Specifically, we allocate space to receive

∂zL,iu /∂zm,ij from previous layers. After obtaining the values, we replace them with

∂zL,iu

∂zm,ij

σ′(sm,ij) (41)

for the future use. Therefore, the Jacobian matrix is not explicitly stored. Instead, we

use the two terms in (40) for the product between the Gauss-Newton matrix and a vector

21

in the CG procedure. See details in Section 4.2. Note that we also need to calculate and

store the local sum before the reduce operation in (36) for getting ∂zL,iu /∂zm−1,it , ∀t ∈

Tm−1, ∀u, ∀i. Therefore, the memory consumption is proportional to

l × nL × (|Tm−1|+ |Tm|).

This setting significantly reduces the memory consumption of directly storing the Jaco-

bian matrix in (39).

3.3.2 Sigmoid Activation Function

In the discussion so far, we consider a general differentiable activation function σ(sm,ij).

In the implementation in this paper, we consider the sigmoid function except the output

layer:

zm,ij = σ(sm,ij) =


1

1+e
−s

m,i
j

if m < L,

sm,ij if m = L.

(42)

Then,

σ′(sm,ij) =


e
−s

m,i
j(

1+e
−s

m,i
j

)2 = zm,ij (1− zm,ij) if m < L,

1 if m = L.

and (33)-(34) become

∂zL,iu

∂wmtj
=



∂zL,i
u

∂zm,i
j

zm,ij (1− zm,ij)zm−1,it ,

zL−1,it ,

0,

,
∂zL,iu

∂bmj
=



∂zL,i
u

∂zm,i
j

zm,ij (1− zm,ij) if m < L,

1 if m = L, j = u,

0 if m = L, j 6= u,

where u = 1, . . . , nL, i = 1, . . . , l, t ∈ Tm−1, and j ∈ Tm.

22

3.4 Distributed Gradient Calculation

For the gradient calculation, from (4),

∂f

∂wmtj
=

1

C
wmtj +

1

l

l∑
i=1

∂ξi
∂wmtj

=
1

C
wmtj +

1

l

l∑
i=1

nL∑
u=1

∂ξi

∂zL,iu

∂zL,iu

∂wmtj
, (43)

where ∂zL,iu /∂wmtj , ∀t, ∀j are components of the Jacobian matrix; see also the matrix

form in (6). From (33), we have known how to calculate ∂zL,iu /∂wmtj . Therefore, if

∂ξi/∂z
L,i
u is passed to the current partition, we can easily obtain the gradient vector via

(43). This can be finished in the same backward process of calculating the Jacobian

matrix.

On the other hand, in the technique that will be introduced in Section 4.3, we only

consider a subset of instances to construct the Jacobian matrix as well as the Gauss-

Newton matrix. That is, by selecting a subset S ⊂ {1, . . . , l}, then only J i,∀i ∈ S are

considered. Thus we do not have all the needed ∂zL,iu /∂wmtj for (43). In this situation,

we can separately consider a backward process to calculate the gradient vector. From a

derivation similar to (33),

∂ξi
∂wmtj

=
∂ξi

∂zm,ij

σ′(sm,ij)zm−1,it , m = 1, . . . , L. (44)

By considering ∂ξi/∂z
m,i
j to be like ∂zL,iu /∂zm,ij in (36), we can apply the same back-

ward process so that each partition between layers m − 2 and m − 1 must wait for

∂ξi/∂z
m−1,i
j from partitions between layers m− 1 and m:

∂ξi

∂zm−1,it

=
∑

Tm∈Pm

∑
j∈Tm

∂ξi

∂zm,ij

σ′(sm,ij)wmtj , (45)

where i = 1, . . . , l, t ∈ Tm−1, and Pm is defined in (37). For the initial ∂ξi/∂z
L,i
j in the

23

backward process, from the loss function defined in (5),

∂ξi

∂zL,ij

= 2×
(
zL,ij − yij

)
.

From (43), a difference from the Jacobian calculation is that here we obtain a sum

over all instances i. Earlier we separately maintain terms related to Tm−1 and Tm to

avoid storing all Jacobian elements. With the summation over i, we can afford to store

∂f/∂wmtj and ∂f/∂bmj , ∀t ∈ Tm−1, ∀j ∈ Tm.

4 Techniques to Reduce Computational, Communica-

tion, and Synchronization Cost

In this section we propose some novel techniques to make the distributed Newton

method a practical approach for deep neural networks.

4.1 Diagonal Gauss-Newton Matrix Approximation

In (18) for the Gauss-Newton matrix-vector products in the CG procedure, we notice

that the communication occurs for reducing P vectors

J i1v1, . . . , J
i
PvP ,

each with size O(nL), and then broadcasting the sum to all nodes. To avoid the high

communication cost in some distributed systems, we may consider the diagonal blocks

24

of the Gauss-Newton matrix as its approximation:

Ĝ =
1

C
I +


1
l

∑l
i=1(J

i
1)
TBiJ i1

. . .

1
l

∑l
i=1(J

i
P)TBiJ iP

 . (49)

Then (17) becomes P independent linear systems

(
1

l

l∑
i=1

(J i1)
TBiJ i1 +

1

C
I + λkI)dk1 = −gk1,

... (50)

(
1

l

l∑
i=1

(J iP)TBiJ iP +
1

C
I + λkI)dkP = −gkP ,

where gk1, . . . , g
k
P are local components of the gradient:

∇f(θk) =


gk1

...

gkP

 .

The matrix-vector product becomes

Gv ≈ Ĝv =


1
l

∑l
i=1(J

i
1)
TBiJ i1v1 + 1

C
v1

...

1
l

∑l
i=1(J

i
P)TBiJ iPvP + 1

C
vP

 , (51)

in which each (Gv)p can be calculated using only local information because we have

independent linear systems. For the CG procedure at any partition, it is terminated if

the following relative stopping condition holds

||1
l

l∑
i=1

(J ip)
TBiJ ipvp + (

1

C
+ λk)vp + gkp|| ≤ σ||gkp|| (52)

or the number of CG iterations reaches a pre-specified limit. Here σ is a pre-specified

tolerance. Unfortunately, partitions may finish their CG procedures at different time, a

25

situation that results in significant waiting time. To address this synchronization cost,

we propose some novel techniques in Section 4.4.

Some past works have considered using diagonal blocks as the approximation of the

Hessian. For logistic regression, Bian et al. (2013) consider diagonal elements of the

Hessian to solve several one-variable sub-problems in parallel. Mahajan et al. (2017)

study a more general setting in which using diagonal blocks is a special case.

4.2 Product Between Gauss-Newton Matrix and a Vector

In the CG procedure the main computational task is the matrix-vector product. We

present techniques for the efficient calculation. From (51), for the pth partition, the

product between the local diagonal block of the Gauss-Newton matrix and a vector vp

takes the following form.

(J ip)
TBiJ ipvp.

Assume the pth partition involves neuron sub-groups Tm−1 and Tm respectively in layers

m− 1 and m, and this partition is not responsible to handle the bias term bmj , ∀j ∈ Tm.

Then

J ip ∈ RnL×(|Tm−1|×|Tm|) and vp ∈ R(|Tm−1|×|Tm|)×1.

Let mat(vp) ∈ R|Tm−1|×|Tm| be the matrix representation of vp. From (40), the uth

component of (J ipvp)u is

∑
t∈Tm−1

∑
j∈Tm

∂zL,iu

∂wmtj
(mat(vp))tj =

∑
t∈Tm−1

∑
j∈Tm

∂zL,iu

∂sm,ij

zm−1,it (mat(vp))tj. (53)

26

A direct calculation of the above value requires O(|Tm−1| × |Tm|) operations. Thus to

get all u = 1, . . . , nL components, the total computational cost is proportional to

nL × |Tm−1| × |Tm|.

We discuss a technique to reduce the cost by rewriting (53) as

∑
j∈Tm

∂zL,iu

∂sm,ij

 ∑
t∈Tm−1

zm−1,it (mat(vp))tj

 .

While calculating ∑
t∈Tm−1

zm−1,it (vp)tj, ∀j ∈ Tm

still needs O(|Tm−1| × |Tm|) cost, we notice that these values are independent of u.

That is, they can be stored and reused in calculating (J ipvp)u, ∀u. Therefore, the total

computational cost is significantly reduced to

|Tm−1| × |Tm|+ nL × |Tm|. (54)

The procedure of deriving (J ip)
T (BiJ ipvp) is similar. Assume

v̄ = BiJ ipvp ∈ RnL×1.

From (40),

mat
(
(J ip)

T v̄
)
tj

=

nL∑
u=1

∂zL,iu

∂wmtj
v̄u

=

nL∑
u=1

∂zL,iu

∂sm,ij

zm−1,it v̄u

= zm−1,it

(
nL∑
u=1

∂zL,iu

∂sm,ij

v̄u

)
. (55)

Because
nL∑
u=1

∂zL,iu

∂sm,ij

v̄u, ∀j ∈ Tm (56)

27

are independent of t, we can calculate and store them for the computation in (55).

Therefore, the total computational cost is proportional to

|Tm−1| × |Tm|+ nL × |Tm|, (57)

which is the same as that for (J ipvp).

In the above discussion, we assume that diagonal blocks of the Gauss-Newton ma-

trix are used. If instead the whole Gauss-Newton matrix is considered, then we calculate

(J ip1)
T (Bi(J ip2vp2)),

for any two partitions p1 and p2. The same techniques introduced in this section can be

applied because (53) and (55) are two independent operations.

4.3 Subsampled Hessian Newton Method

From (16) we see that the computational cost between the Gauss-Newton matrix and a

vector is proportional to the number of data. To reduce the cost, subsampled Hessian

Newton method (Byrd et al., 2011; Martens, 2010; Wang et al., 2015) have been pro-

posed for selecting a subset of data at each iteration to form an approximate Hessian.

Instead of∇2f(θ) in (15) we use a subset S to have

I
C

+
1

|S|
∑
i∈S

∇2
θθξ(z

L,i;yi).

Note that zL,i is a function of θ. The idea behind this subsampled Hessian is that when

a large set of points are under the same distribution,

1

|S|
∑
i∈S

ξ(zL,i;yi).

28

is a good approximation of the average training losses. For neural networks we consider

the Gauss-Newton matrix, so (16) becomes the following subsampled Gauss-Newton

matrix.

GS =
I
C

+
1

|S|
∑
i∈S

(J i)TBiJ i. (58)

Now denote the subset at the kth iteration as Sk. The linear system (17) is changed to

(GSk + λkI)dk = −∇f(θk). (59)

After variable partitions, the independent linear systems are(
λkI +

1

C
I +

1

|Sk|
∑
i∈Sk

(J i1)
TBiJ i1

)
dk1 = −gk1,

... (60)(
λkI +

1

C
I +

1

|Sk|
∑
i∈Sk

(J iP)TBiJ iP

)
dkP = −gkP .

While using diagonal blocks of the Gauss-Newton matrix avoids the communication

between partitions, the resulting direction may not be as good as that of using the whole

Gauss-Newton matrix. Here we extend an approach by Wang et al. (2015) to pay some

extra cost for improving the direction. Their idea is that after the CG procedure of using

a sub-sampled Hessian, they consider the full Hessian to adjust the direction. Now in

the CG procedure we use a block diagonal approximation of the sub-sampled matrix

GSk , so after that we consider the whole GSk for adjusting the direction. Specifically, if

dk is obtained from the CG procedure, we solve the following two-variable optimization

problem that involves GSk .

min
β1,β2

1

2
(β1d

k + β2d̄
k
)TGSk(β1d

k + β2d̄
k
) +∇f(θk)T (β1d

k + β2d̄
k
), (61)

29

where d̄k is a chosen vector. Then the new direction is

dk ← β1d
k + β2d̄

k
.

Here we follow Wang et al. (2015) to choose

d̄
k

= dk−1.

Notice that we choose d̄0 to be the zero vector. A possible advantage of considering

dk−1 is that it is from the previous iteration of using a different data subset Sk−1 for the

subsampled Gauss-Newton matrix. Thus it provides information from instances not in

the current Sk.

To solve (61), because GSk is positive definite, it is equivalent to solving the follow-

ing two-variable linear system. (dk)TGSkdk (d̄
k
)TGSkdk

(d̄
k
)TGSkdk (d̄

k
)TGSk d̄

k


 β1

β2

 =

 −∇f(θk)Tdk

−∇f(θk)T d̄
k

 . (62)

Note that the construction of (62) involves the communication between partitions; see

detailed discussion in Section V of supplementary materials. The effectiveness of using

(61) is investigated in Section VII.

In some situations, the linear system (62) may be ill-conditioned. We set β1 = 1

and β2 = 0 if ∣∣∣∣∣∣∣∣
(dk)TGSkdk (d̄

k
)TGSkdk

(d̄
k
)TGSkdk (d̄

k
)TGSk d̄

k

∣∣∣∣∣∣∣∣ ≤ ε, (63)

where ε is a small number.

30

4.4 Synchronization Between Partitions

While the setting in (51) has made each node conduct its own CG procedure without

communication, we must wait until all nodes complete their tasks before getting into

the next Newton iteration. This synchronization cost can be significant. We note that

the running time at each partition may vary because of the following reasons.

1. Because we select a subset of weights between two layers as a partition, the number

of variables in each partition may be different. For example, assume the network

structure is

50-100-2.

The last layer has only two neurons because of the small number of classes. For

the weight matrix Wm, a partition between the last two layers can have at most

200 variables. In contrast, a partition between the first two layers may have more

variables. Therefore, in the split of variables we should make partitions as balanced

as possible. A example will be given later when we introduce the experiment settings

in Section 8.1.

2. Each node can start its first CG iteration after the needed information is available.

From (30)-(34), the calculation of the information needed for matrix-vector products

involves a backward process, so partitions corresponding to neurons in the last layers

start the CG procedure earlier than those of the first layers.

To reduce the synchronization cost, a possible solution is to terminate the CG pro-

cedure for all partitions if one of them reaches its CG stopping condition:

||(λk +
1

C
)vp +

1

|Sk|
∑
i∈Sk

(J ip)
TBiJ ipvp + gp|| ≤ σ||gp||. (64)

31

However, under this setting the CG procedure may terminate too early because some

partitions have not conducted enough CG steps yet. To strike for a balance, in our

implementation we terminate the CG procedure for all partitions when the following

conditions are satisfied:

1. Every partition has reached a pre-specified minimum number of CG iterations, CGmin.

2. A certain percentage of partitions have reached their stopping conditions, (64).

In Section 8.1, we conduct experiments with different percentage values to check the

effectiveness of this setting.

4.5 Summary of the Procedure

We summarize in Algorithm 3 the proposed distributed subsampled Hessian Newton

algorithm. Besides materials described earlier in this section, here we explain other

steps in the algorithm.

First, in most optimization algorithms, after a direction dk is obtained, a suitable

step size αk must be decided to ensure the sufficient decrease of f(θk + αkd
k). Here

we consider a backtracking line search by selecting the largest αk ∈ {1, 12 ,
1
4
, . . .} such

that the following sufficient decrease condition on the function value holds.

f(θk + αkd
k) ≤ f(θk) + ηαk∇f(θk)Tdk, (65)

where η ∈ (0, 1) is a pre-defined constant.

Secondly, we follow Martens (2010); Martens and Sutskever (2012); Wang et al.

(2015) to apply the Levenberg-Marquardt method by introducing a term λkI in the

32

linear system (17). Define

ρk =
f(θk + αkd

k)− f(θk)

αk∇f(θk)Tdk + 1
2
(αk)2(d

k)TGSkdk

as the ratio between the actual function reduction and the predicted reduction. Based

on ρk, the following rule derives the next λk+1.

λk+1 =



λk × drop ρk > 0.75,

λk 0.25 ≤ ρk ≤ 0.75,

λk × boost otherwise,

(66)

where (drop,boost) are given constants. Therefore, if the predicted reduction is close

to the true function reduction, we reduce λk such that a direction closer to the Newton

direction is considered. In contrast, if ρk is small, we enlarge λk so that a conservative

direction close to the negative gradient is considered.

Note that line search already serves as a way to adjust the direction according to

the function-value reduction, so in optimization literature line search and Levenberg-

Marquardt method are seldom applied concurrently. Interestingly, in recent studies of

Newton methods for neural networks, both techniques are considered. Our preliminary

investigation in Section VI of supplementary materials shows that using Levenberg-

Marquardt method together with line search is very helpful, but more detailed studies

can be a future research issue.

In Algorithm 3 we show a master-master implementation, so the same program is

used at each partition. Some careful designs are needed to ensure that all partitions

get consistent information. For example, we can use the same random seed to ensure

that at each iteration all partitions select the same set Sk in constructing the subsampled

33

Gauss-Newton matrix.

5 Analysis of the Proposed Algorithm

In this section, we analyze Algorithm 3 on the memory requirement, the computational

cost, and the communication cost. We assume that the full training set is used. If the

subsampled Hessian method in Section 4.3 is applied, then in the Jacobian calculation

and the Gauss-Newton matrix vector product the “l” term in our analysis should be

replaced by the subset size |S|.

5.1 Memory Requirement at Each Partition

Assume the partition corresponds to the neuron sub-groups Tm−1 at layer m−1 and Tm

at layer m. We then separately consider the following situations.

1. Local weight matrix: Each partition must store the local weight matrix.

wmtj , ∀t ∈ Tm−1, and ∀j ∈ Tm.

If Tm−1 is the first neuron sub-group of layer m− 1, it also needs to store

bmj , ∀j ∈ Tm.

Therefore, the memory usage at each partition for the local weight matrix is propor-

tional to

|Tm−1| × |Tm|+ |Tm|.

34

2. Function evaluation: From Section 3.2, we must store part of zm−1,i and zm,i vec-

tors.4 The memory usage at each partition is

l × (|Tm−1|+ |Tm|). (67)

3. Gradient evaluation: First, we must store

∂f

∂wmtj
and

∂f

∂bmj
, t ∈ Tm−1, j ∈ Tm

after the gradient evaluation. Second, for the backward process, from (45), we must

store

∂ξi

∂zm−1,it

, ∀t ∈ Tm−1, ∀i and
∂ξi

∂zm,ij

, ∀j ∈ Tm, ∀i.

Therefore, the memory usage in each partition is proportional to

(|Tm−1| × |Tm|+ |Tm|) + l × (|Tm−1|+ |Tm|). (68)

4. Jacobian evaluation: From the discussion in Section 3.3.1, the memory consumption

is proportional to

l × nL × (|Tm−1|+ |Tm|). (69)

In summary, the memory bottleneck is on terms that are related to the number of in-

stances. To reduce the memory use, we have considered a technique in Section 4.3 to

replace the term l in (69) with a smaller subset size |Sk|. We will further discuss a

technique to reduce the memory consumption in Section 6.1.

4Note that the same vector is used to store the s vector before it is transformed to z by the activation

function.

35

5.2 Computational Cost

We analyze the computational cost at each partition. For the sake of simplicity, we

make the following assumptions.

• At the mth layer neurons are evenly split to several sub-groups, each of which

has |Tm| elements.

• Calculating the activation function σ(s) needs 1 operation.

The following analysis is for a partition between layers m− 1 and m.

1. Function evaluation: From Algorithm 1, after sm−1,it , i = 1, . . . , l, t ∈ Tm−1 are

available, we must calculate (19) and (20). The dominant one is (20), so the compu-

tational cost of function evaluation is

O(l × |Tm| × |Tm−1|). (70)

2. Gradient evaluation: Assume that the current partition has received ∂ξi/∂z
m,i
j , i =

1, . . . , l, j ∈ Tm. From (44), we calculate

∂f

∂wmtj
=

1

C
wmtj +

1

l

l∑
i=1

∂ξi
∂wmtj

=
1

C
wmtj +

1

l

l∑
i=1

∂ξi

∂zm,ij

σ′(sm,ij)zm−1,it , ∀t ∈ Tm−1, ∀j ∈ Tm,

which costs

O(l × |Tm| × |Tm−1|).

Then for the reduce operation in (45), calculating the local sum

∑
j∈Tm

∂ξi

∂zm,ij

σ′(sm,ij)wmtj , i = 1, . . . , l, t ∈ Tm−1.

36

has a similar cost. Thus the computational cost of gradient evaluation is

O(l × |Tm| × |Tm−1|). (71)

3. Jacobian evaluation: From (46) and (47) in Algorithm 2, the computational cost is

O(nL × l × |Tm| × |Tm−1|). (72)

4. Gauss-Newton matrix-vector products: Following (57) in Section 4.2, , the compu-

tational cost for Gauss-Newton matrix vector products is

CG iterations× (l × (|Tm−1| × |Tm|+ nL × |Tm|)) . (73)

From (70)-(73), we can derive the following conclusions.

1. The computational cost is proportional to the number of training data, the number of

classes, and the number of variables in a partition.

2. In general, (72) and (73) dominate the computational cost. Especially, when the

number of CG iterations is large, (73) becomes the bottleneck.

3. If the subsampling techniques in Section 4.3 is used, then l in (72)-(73) is replaced

with the size of the subset. Therefore, the computational cost at each partition in a

Newton iteration can be effectively reduced. However, the number of iterations may

be increased.

4. The computational cost can be reduced by splitting neurons at each layer to as many

sub-groups as possible. However, because each partition corresponds to a computing

node, more partitions imply a higher synchronization cost. Further, the total number

of neurons at each layer is different, so the size of each partition may significant

vary, a situation that further worsens the synchronization issue.

37

5.3 Communication Cost

We have shown in Section 3.1 that by using diagonal blocks of the Gauss-Newton

matrix, each partition conducts a CG procedure without communicating with others.

However, communication cost still occurs for function, gradient, and Jacobian evalua-

tion. We discuss details for the Jacobian evaluation because the situation for others is

similar.

To simplify the discussion we make the following assumptions.

1. At the mth layer neurons are evenly split to several sub-groups, each of which has

|Tm| elements. Thus the number of neuron sub-groups at layer m is nm/|Tm|.

2. Each partition sends or receives one message at a time.

3. Following Barnett et al. (1994), the time to send or receive a vector v is

α + β × |v|,

where |v| is the length of v, α is the start-up cost of a transfer and β is the transfer

rate of the network.

4. The time to add a vector v and another vector of the same size is

γ × |v|.

5. Operations (including communications) of independent groups of nodes can be con-

ducted in parallel. For example, the two trees in Figure IV.3 of supplementary ma-

terials involve two independent sets of partitions. We assume that the two reduce

operations can be conducted in parallel.

38

From (36), for partitions between layers m − 1 and m that correspond to the same

neuron sub-group Tm−1 at layer m − 1, the reduce operation on ∂zL,iu /∂zm−1,it , u =

1, . . . , nL, t ∈ Tm−1, i = 1, . . . , l sums up

nm
|Tm|

vectors of l × nL × |Tm−1| size.

For example, the layer 2 in Figure 2 is split to three groups A2, B2 and C2, so for the

sub-groupA1 in layer 1, three vectors from (A1,A2), (A1,B2) and (A1, C2) are reduced.

Following the analysis in Pješivac-Grbović et al. (2007), the communication cost for the

reduce operation is

O(d(log2(
nm
|Tm|

)e × (α + (β + γ)× (l × nL × |Tm−1|)) . (74)

Note that between layers m− 1 and m

nm−1
|Tm−1|

reduce operations

are conducted and each takes the communication cost shown in (74). However, by our

assumption they can be fully parallelized.

The reduced vector of size l × nL × |Tm−1| is then broadcasted to nm−2/|Tm−2|

partitions. Similar to (74), the communication cost is

O(d(log2(
nm−2
|Tm−2|

)e × (α + β × (l × nL × |Tm−1|))). (75)

The γ factor in (74) does not appear here because we do not need to sum up vectors.

Therefore, the total communication cost of the Jacobian evaluation is the sum of

(74) and (75). We can make the following conclusions.

1. The communication cost is proportional to the number of training instances as

well as the number of classes.

39

2. From (74) and (75), a smaller |Tm−1| reduces the communication cost. However,

we can not split neurons at each layer to too many groups because of the following

reasons. First, we assumed earlier that for independent sets of partitions, their

operations including communication within each set can be fully parallelized.

In practice, the more independent sets the higher synchronization cost. Second,

when there are too many partitions the block diagonal matrix in (49) may not be

a good approximation of the Gauss-Newton matrix.

6 Other Implementation Techniques

In this section, we discuss additional techniques implemented in the proposed algo-

rithm.

6.1 Pipeline Techniques for Function and Gradient Evaluation

The discussion in Section 5 indicates that in our proposed method the memory require-

ment, the computational cost and the communication cost all linearly increase with the

number of data. For the product between the Gauss-Newton matrix and a vector, we

have considered using subsampled Gauss-Newton matrices in Section 4.3 to effectively

reduce the cost. To avoid that function and gradient evaluations become the bottleneck,

here we discuss a pipeline technique.

The idea follows from the fact that in (4)

ξi,∀i

40

are independent from each other. The situation is the same for

(J i)T∇zL,iξ(zL,i;yi), ∀i

in (6). Therefore, in the forward (or the backward) process, once results related to an

instance xi are ready, they can be passed immediately to partitions in the next (or pre-

vious) layers. Here we consider a mini-batch implementation. Take the function evalu-

ation as an example. Assume {1, . . . , l} is split to R equal-sized subsets S1, . . . , SR. At

a variable partition between layers m− 1 and m, we showed earlier that local values in

(20) are obtained for all instances i = 1, . . . , l. Now instead we calculate

∑
t∈Tm−1

wmtj z
m−1,i
t + bmj , j ∈ Tm, i ∈ Sr.

The values are used to calculate

sm,ij , ∀i ∈ Sr.

By this setting we achieve better parallelism. Further, because we split {1, . . . , l} to

subsets with the same size, the memory space allocated for a subset can be reused by

another. Therefore, the memory usage is reduced by R folds.

6.2 Sparse Initialization

A well-known problem in training neural networks is the easy overfitting because of an

enormous number of weights. Following the approach in Section 5 of Martens (2010),

we implement the sparse initialization for the weights to train deep neural networks. For

each neuron in the mth layer, among the nm−1 weights connected to it, we randomly

assign several weights to have values from the N (0, 1) distribution. Other weights are

kept zero.

41

We will examine the effectiveness of this initialization in Sections 8.2 and 8.3.

7 Existing Optimization Methods for Training Neural

Networks

Besides Newton methods considered in this work, many other optimization methods

have been applied to train neural networks. We briefly discuss the most commonly used

one in this section.

7.1 Stochastic Gradient Methods

For deep neural networks, it is time-consuming to calculate the gradient vector because

from (6), we must go through the whole training data set. Instead of using all data

instances, stochastic gradient (SG) methods randomly choose an example (yik ,xik) to

derive the following sub-gradient vector to update the weight matrix.

∇f ik(θk) =
θk

C
+ (J ik)T∇zL,ik ξ(z

L,ik ;yik).

Algorithm 4 gives the standard setting of SG methods.

Assume that one epoch means the SG procedure goes through the whole training

data set once. Based on the frequent updates of the weight matrix, SG methods can

get a reasonable solution in a few epochs. Another advantage of SG methods is that

Algorithm 4 is easy to implement. However, if the variance of the gradient vector

for each instance is large, SG methods may have slow convergence. To address this

issue, mini-batch SG method have been proposed to accelerate the convergence speed

42

(e.g., Bottou, 1991; Dean et al., 2012; Ngiam et al., 2011; Baldi et al., 2014). Assume

Sk ⊂ {1, . . . , l} is a subset of the training data. The sub-gradient vector can be as

follows:

∇fSk(θk) =
θk

C
+

1

|Sk|
∑
i∈Sk

(J i)T∇zL,iξ(zL,i;yi).

However, when SG methods meet ravines which cause the particular dimension appar-

ent to other dimensions, they are easier to drop to local optima. Polyak (1964) proposes

using the previous direction with momentum as part of the current direction. This set-

ting may decrease the impact of a particular dimension. Algorithm 5 gives details of a

mini-batch SG method with momentum implemented in Theano/Pylearn2 (Goodfellow

et al., 2013).

Many other variants of SG methods have been proposed, but it has been shown (e.g.,

Sutskever et al., 2013) that the mini-batch SG with momentum is a strong baseline. Thus

in this work we do not include other types of SG algorithms for comparison.

Unfortunately, both SG and mini-batch SG methods have a well known issue in

choosing a suitable learning rate and a momentum coefficient for different problems.

We will conduct some experiments in Section 8.

8 Experiments

We consider the following data sets for experiments. All except Sensorless come with

training and test sets. We split Sensorless as described below.

• HIGGS: This binary classification data set is from high energy physics applica-

tions. It is selected for our experiments because feedforward networks have been

43

successfully applied (Baldi et al., 2014). Note that a scalar output y is enough to

represent two classes in a binary classification problem. Based on this idea, we

set nL = 1, and have each yi ∈ {−1, 1}. The predicted outcome is the first class

if y ≥ 0 and is the second class if y < 0. This data set is mainly used in Section

8.3 for a comparison with results in Baldi et al. (2014).

• Letter: This set is from the Statlog collection (Michie et al., 1994) and we scale

values of each feature to be in [−1, 1].

• MNIST: This data set for hand-written digit recognition (LeCun et al., 1998a) is

widely used to benchmark classification algorithms. We consider a scaled ver-

sion, where every feature value is divided by 255.

• Pendigits: This data set is originally from Alimoglu and Alpaydin (1996).

• Poker: This data set is from UCI machine learning repository (Lichman, 2013).

It has been studied by, for example, Li (2010).

• Satimage: This set is from the Statlog collection (Michie et al., 1994) and we

scale values of each feature to be in [−1, 1].

• SensIT Vehicle: This data set, from Duarte and Hu (2004), includes signals from

acoustic and seismic sensors in order to classify the different vehicles. We use

the original version without scaling.

• Sensorless: This data set is from Paschke et al. (2013). We scale values of

each feature to be in [0, 1], and then conduct stratified random sampling to select

10, 000 instances to be the test set and the rest of the data to be the training set.

44

• SVHN: This data, originally from Google Street View images, consists of colored

images of house numbers (Netzer et al., 2011). We scale the data set to [0, 1] by

considering the largest and the smallest feature values of the entire data set.

M ≡ max
i

max
p

(xi)p and m ≡ min
i

min
p

(xi)p.

Then the pth element of xi is changed to

(xi)p ←
(xi)p −m
M −m

.

• USPS: This data set, from Hull (1994), is used on recognizing handwritten ZIP

codes and we scale values of each feature to be in [−1, 1].

All data sets, with statistics in Table 1, are publicly available.5 Detailed settings for

each data such as the network structure are given in Table 2. How to decide a suitable

network structure is beyond the scope of this work, but if possible, we follow the setting

in earlier works. For example, we consider the structure in Wan et al. (2013) for MNIST

and Neyshabur et al. (2015) for SVHN. From Table 2, the model used for SVHN is the

largest. If the number of neurons in each layer is further increased, then the model must

be stored in different machines.

We give parameters used in our algorithm. For the sparse initialization discussed

in Section 6.2, among nm−1 weights connected to a neuron in layer m, d√nm−1e are

selected to have non-zero values. For the CG stopping condition (52), we set σ = 0.001

and CGmax = 250. Further, the minimal number of CG steps run at each partition,

CGmin, is set to be 3. For the implementation of the Levenberg-Marquardt method, we

5All data sets used can be found at https://www.csie.ntu.edu.tw/˜cjlin/

libsvmtools/datasets/.

45

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Table 1: Summary of the data sets: n0 is the number of features, l is the number of

training instances, lt is the number of testing instances, and K is the number of classes.

Data set n0 l lt K

Letter 16 15,000 5,000 26

MNIST 784 60,000 10,000 10

Pendigits 16 7,494 3,498 10

Poker 10 25,010 1,000,000 10

Satimage 36 4,435 2,000 6

SensIT Vehicle 100 78,823 19,705 3

Sensorless 48 48,509 10,000 11

SVHN 3,072 73,257 26,032 10

USPS 256 7,291 2,007 10

HIGGS 28 10,500,000 500,000 2

set the initial λ1 = 1. The (drop, boost) constants in (66) are (2/3, 3/2). For solving

(61) to get the update direction after the CG procedure, we set ε = 10−5 in (63).

8.1 Analysis of Distributed Newton Methods

We have proposed several techniques to improve upon the basic implementation of the

Newton method in a distributed environment. Here we investigate their effectiveness by

considering the following methods. Note that because of the high memory consumption

of some larger sets, we always implement the subsampled Hessian Newton method

46

Table 2: Details of the distributed network for each data. Sampling rate is the percentage

of training data used to calculate the subsampled Gauss-Newton matrix.

Data set Sampling rate Network structure Split structure # partitions

Letter 20% 16-300-300-300-300-26 1-2-1-1-1-1 7

MNIST 20% 784-800-800-10 1-1-3-1 7

Pendigits 20% 16-300-300-10 1-2-2-1 8

Poker 20% 10-200-200-200-10 1-1-1-1-1 4

SensIT Vehicle 20% 100-300-300-3 1-2-2-1 8

Sensorless 20% 48-300-300-300-11 1-2-1-2-1 8

Satimage 20% 36-1000-500-6 1-2-2-1 8

SVHN 10% 3072-4000-4000-10 3-2-2-1 12

USPS 20% 256-300-300-10 1-2-2-1 8

discussed in Section 4.3.

1. subsampled-GN: we use the whole subsampled Gauss-Newton matrix defined in (58)

to conduct the matrix-vector product in the CG procedure and then solve (61) to get

the update direction after the CG procedure (Wang et al., 2015).

2. diag: it is the same as subsampled-GN except that only diagonal blocks of the sub-

sampled Gauss-Newton matrix are used; see (60).

3. diag + sync 50%: it is the same as diag except that we consider the technique in

Section 4.4 to reduce the synchronization time. We terminate the CG procedure

when 50% of partitions have reached their local stopping conditions (64).

47

4. diag + sync 25%: it is the same as diag + sync 50% except that we terminate the

CG procedure when 25% of partitions have reached their local stopping conditions

(64).

For each of the above methods, we consider the following implementation details.

1. We set C = l as the regularization parameter.

2. We run experiments on G1 type instances on Microsoft Azure and let each instance

use only one core. If instances are not virtual machines on the same computer, our

setting ensures that each variable partition corresponds to one machine.

3. To make the computational cost in each partition as balanced as possible, in our ex-

periments we choose our partitions such that the maximum ratio between the num-

bers of variables (|Tm|× |Tm−1|) among any two partitions is as low as possible. For

example, in Pendigits, the largest partition has 150 × 150 = 22, 500 weight vari-

ables, and the smallest partition has 150 × 10 = 1, 500 weight variables, with their

ratio being 22500/1500 = 15. For most data sets, the ratio is between 10 and 100

but not lower because the numbers of classes is relatively small, making the number

of variables in the partitions involving the output layer smaller than those in other

partitions.

In Figure 4, we show the comparison results and have the following observations.

1. For test accuracy versus number of iterations, subsampled-GN in general has the

fastest convergence rate. The reason should be that the direction in subsampled-GN

48

by solving the linear system (59) is closer to the full Newton direction than other

methods, which consider further approximations of the Gauss-Newton matrix or the

early termination of the CG procedure. However, the cost per iteration is high, so for

training time we see that subsampled-GN may become worse than other approaches.

2. The early termination of the CG procedure can effectively reduce the cost per iter-

ation. However, if we stop the CG procedure too early, the total training time may

even increase. For example,

diag + sync 25%

is generally the fastest in the beginning because of the least cost per iteration. It is

still the fastest in the end for MNIST, Letter, USPS, Satimage, and Pendigits.

However, it has the slowest final convergence for SensIT Vechicle, Poker, and

Sensorless. Take the data set Poker as an example. As listed in Table 2, the

variables are split into four partitions, and the CG procedure stops if one partition

(i.e., 25% of the partitions) reaches its local stopping condition. This partition may

have the lightest computational load or is the earliest one to start solving the local

linear system.6 Thus the other partitions may not have run enough CG iterations.

The approach

diag + sync 50%

does not terminate the CG procedure that early. Overall we find that it is efficient

6Note that because of the backward process in Section 3.3, the partitions corresponding to the last

two layers begin their CG procedures earlier than the others.

49

and stable. Therefore, in subsequent comparisons with stochastic gradient methods,

we use it as the setting of our Newton method.

Because of the space consideration, we have evaluated only some techniques pro-

posed in Section 4. For the following two techniques we leave details in Sections VI

and VII of the supplementary materials.

1. In Section 4.3, we propose combining dk and dk−1 as the update direction. We show

that this technique is very effective.

2. We mentioned in Section 4.5 that line search and the Levenberg-Marquardt (LM)

method may not be both needed. Our preliminary results show that the training

speed is improved when both techniques are applied.

8.2 Comparison with Stochastic Gradient Methods and Support

Vector Machines (SVM)

In this section, we compare our methods with SG methods and SVMs, which are pop-

ularly used for multi-class classification. Settings of these methods are described as

follows.

1. Newton: for our method we use the setting diag + sync 50% considered in Section

8.1 and let C = l.

2. SVM (Boser et al., 1992): We consider the RBF kernel.

K(xi,xj) = e−γ||x
i−xj ||2 ,

50

where xi and xj are two data instances, and γ is the kernel parameter chosen by

users. Note that SVM solves an optimization problem similar to (4), so the regu-

larization parameter, C, must be decided as well. We conduct five-fold cross vali-

dation on the training set to select the best C ∈ {2−5l, 2−3l, . . . , 215l} and the best

γ ∈ {2−15, 2−13, . . . , 23}.7 We use the library LIBSVM (Chang and Lin, 2011) for

training and prediction.

3. SG: We use the code from Baldi et al. (2014), which implements Algorithm 5. The

objective function is the same as (4).8 The network structure for each data set is

identical to the corresponding one used in Newton, and we also set the regularization

parameter C = l. The major modification we make is that we replace their activation

functions with ours. In Baldi et al. (2014), the authors use tanh as their activation

functions in layers 1, . . . , L − 1 and the sigmoid function in layer L, while in our

experiments of Newton methods in Section 8.1, we use the sigmoid function in layers

1, . . . , L − 1 and the linear function in layer L. The initial learning rate is selected

from {0.05, 0.025, 0.01, 0.005, 0.002, 0.001} by the five-fold cross validation. After

the initial learning rate has been selected, we conduct the training process to generate

a model for the prediction on the test set.

As regards the stopping condition for the training process, we terminate the Newton

7Here we consider an SVM formulation represented as (2). In the form considered in LIBSVM, the

two terms C and 1/l are combined together, so C/l is the actual parameter to be selected. For SVHN

because of the lengthy time for parameter selection, we selected only 10, 000 instances by stratified

sampling to conduct the five-fold cross validation.

8Following Baldi et al. (2014), we regularized only the weights but not the biases. Through several

experiments, we found that the performance is similar with/without the regularization of the biases.

51

method at the 100th iteration. For SG, it terminates after a minimal number of epochs

have been conducted and the objective function value on the validation set does not

improve much within the last N epochs (see Algorithm 5). To implement the stopping

condition, for SG we split the input training set into 90% for training and 10% for

validation.9 For SVM, we use the default stopping condition of LIBSVM.10

Here we also investigate the effect of the initialization by considering the following

two settings.

1. The sparse initialization discussed in Section 6.2.

2. The dense initialization discussed in Baldi et al. (2014). The initial weights are

drawn from the normal distribution N (0, 0.12) for the first layer, N (0, 0.0012) for

the output layer, and N (0, 0.052) for other hidden layers. The biases are initialized

as zeros.

To make a fair comparison, for each setting, Newton and SG are trained with the same

initial weights and biases.

We present a comparison on test accuracy in Table 3, and make the following ob-

servations.

1. For neural networks, the sparse initialization usually results in better accuracy than

the dense initialization does. The difference can be huge in some cases, such as

9Note that in the CV procedure we also need a stopping condition in training each sub-problem. We

do an 80-20 split of every four folds of data so that the 20% of data are used to implement the stopping

condition.

10LIBSVM terminates when the violation of the optimality condition calculated based on the gradient

is smaller than a tolerance.

52

training using SG on the data set Letter. The low accuracy of the densely initialized

SG on Letter may be because of the poor differentiation between neurons in dense

initialization (Martens, 2010). Other possible causes include the vanishing gradient

problem (Bengio et al., 1994), or that the activations are trapped in the saturation

regime of the sigmoid function (Glorot and Bengio, 2010). Note that the impact of

the initialization scheme on the Newton method is much weaker.11

2. Between SG and Newton, if sparse initialization is used, we can see that Newton

generally gives higher accuracy.

3. If sparse initialization is used, our Newton method for training neural networks gives

similar or higher accuracy than SVM. In particular, the results are much better for

Poker and SVHN.

We compare our results on MNIST with those reported in earlier works. Wan et al.

(2013) use a fully connected neural network with two 800-neuron hidden layers to de-

rive an error rate 1.36%, under the setting of dense initialization,12 sigmoid activations,

and the dropout technique. By the same network structure and the same activation func-

tion, our error rate is 1.34% at the 100th iteration.

For SVHN, we compare our results with Neyshabur et al. (2015), in which the

same network structure as ours is adopted, except that they use ReLU activations in the

hidden layers. They choose the cross-entropy as their objective function, and utilize the

11We observe similar phenomena in the experiments with HIGGS later in Section 8.3. See Table 5.

12In Wan et al. (2013), the initial weights are drawn fromN (0, 0.01), slightly different from the dense

initialization we use.

53

dropout regularization. Under dense initialization,13 they train their network with the

Path-SGD method, which uses a proximal gradient method to solve the optimization

problem. They report an accuracy slightly below 87% (see their Figure 3), while the

accuracy obtained by our Newton method with sparse initialization is 83.12%.

For Poker, we note that Li (2010) uses abc-logitboost to obtain a slightly higher

accuracy, but his setting is different from ours. He expands the training set by including

half of the test set, with the remaining half of the test set used for evaluation.

An issue found out in our experiments is that SG is sensitive to the initial learning

rate. In Table 4, we present the test accuracy of SG under different initial rates for the

Poker problem. Clearly an inappropriate initial learning rate can lead to much worse

accuracy.

8.3 Detailed Investigation on the HIGGS Data

We compare AUC values obtained by our Newton and SG implementations with those

reported in Baldi et al. (2014) on HIGGS. In our method, the sampling rate for cal-

culating the subsampled Gauss-Newton matrix is set to be 1%. Following the setting

in Section 8.2, we consider two initializations (dense and sparse). Then for each type

of initialization, both SG and Newton start with the same initial weights and biases.

Note that our SG results are different from those in Baldi et al. (2014) because we use

different activation functions and initial values for weights and biases.14 Because of

13In Neyshabur et al. (2015), the initial weights wm
tj are drawn fromN (0, 1/nm−1), slightly different

from the dense initialization we use.

14Their initialization setting is the same as our dense initialization, but the values used by them are

not available.

54

Table 3: Test accuracy of SVM, Newton and SG. For SVM, we also show parameters

(C, γ) used. For SG, we show (the initial learning rate, number of epochs to reach the

stopping criterion). The bold-faced entries indicate the best accuracy obtained using the

neural networks.

SVM Neural Networks

Dense Initialization Sparse Initialization

Newton SG Newton SG

Letter 97.90% (27l, 2) 90.26% 8.02% (0.025, 245) 96.68% 96.28% (0.002, 906)

MNIST 98.57% (23l, 2−5) 98.52% 98.26% (0.002, 801) 98.66% 98.33% (0.002, 909)

Pendigits 98.06% (27l, 2−15) 97.51% 97.71% (0.001, 513) 97.83% 97.71% (0.002, 1179)

Poker 58.78% (2−1l, 2−3) 99.25% 99.24% (0.005, 316) 99.25% 99.29% (0.002, 895)

Satimage 91.85% (2l, 2) 89.35% 82.00% (0.01, 246) 89.85% 89.35% (0.001, 1402)

SensIT Vehicle 83.90% (2l, 2−1) 85.16% 83.34% (0.01, 311) 84.60% 84.00% (0.01, 296)

Sensorless 99.83% (25l, 23) 97.19% 97.64% (0.01, 412) 99.05% 98.24% (0.005, 382)

SVHN 74.54% (25l, 2−7) 80.96% 82.99% (0.001, 986) 83.12% 82.67% (0.001, 720)

USPS 95.32% (25l, 2−5) 95.17% 94.97% (0.025, 395) 95.27% 95.07% (0.001, 1617)

resource constraints, we did not conduct a validation procedure to select SG’s initial

learning rate. Instead, we used the learning rate 0.05 by following Baldi et al. (2014).

The results are shown in Table 5 and we can see that the Newton method often gives the

best AUC values.

In Section 8.2 we have mentioned that SG’s performance may be sensitive to the

initial learning rate. The poor results of SG in Table 5 might be because we did not

conduct a selection procedure. Thus we decide to investigate the effect of the initial

learning rate on the AUC value with the network structure 28-300-300-1 used in the

55

Table 4: Test accuracy on Poker using SG with different initial learning rates η. Dense

initialization is used. Note that although η = 0.005 does not yield the highest test

accuracy, it was selected for experiments in Table 3 because of giving the highest CV

accuracy.

Initial learning rate η 0.05 0.025 0.01 0.005 0.002 0.001

Test accuracy 68.83% 98.81% 99.24% 99.24% 99.24% 99.25%

earlier experiment in Table 5. To compare the running time, both SG and Newton run

on the same G3 type machine with 8 cores in Microsoft Azure. The results of the

AUC values versus the number of iterations and the training time are shown in Figure

5. We clearly see again that the performance of SG depends significantly on the initial

learning rate. Our experiments indicate that while SG can yield good performances

under suitable parameters, the parameter selection procedure is essential. In contrast,

Newton methods are more robust because we do not need to fine tune their parameters.

9 Discussion and Conclusions

For the future works, we list the following directions.

1. It is important to extend the proposed method for other types of neural networks. For

example, convolutional neural networks (CNNs) are popular for computer vision ap-

plications (e.g., Krizhevsky et al., 2012; Simonyan and Zisserman, 2014). Because

56

Table 5: A comparison between the AUC obtained by SG and that by the distributed

Newton on the HIGGS data set. We list the results in Baldi et al. (2014) as a reference,

where “NA” means that the result is not reported. See explanation in Section 8.3 about

the different results between our SG and Baldi et al.’s.

Network Split
Dense Initialization Sparse Initialization

Baldi et al. (2014)
Newton SG Newton SG

28-300-1 2-2-1 0.843 0.469 0.843 0.684 0.816

28-600-1 2-3-1 0.849 0.501 0.849 0.759 NA

28-1000-1 2-4-1 0.851 0.500 0.853 0.734 0.841

28-2000-1 2-8-1 0.853 0.500 0.855 0.504 0.842

28-300-300-1 2-2-1-1 0.851 0.530 0.860 0.825 NA

28-300-300-300-1 2-2-2-1-1 0.867 0.482 0.879 0.849 0.850

28-300-300-300-300-1 2-2-2-2-1-1 0.867 0.504 0.875 0.848 0.872

CNNs generally have fewer weights per layer, our method has the potential to train

deep networks for large-scale image classification.

2. Instead of the Gauss-Newton matrix, we may consider other ways to use or approx-

imate the Hessian such as the recent works by He et al. (2016).

3. For results in Tables 3 and 5, we consider the model after running 100 Newton

iterations. An advantage of Newton over stochastic gradient is that we can apply a

gradient-based stopping condition. We plan to investigate its practical use.

4. It is known that using suitable preconditioners can effectively reduce the number of

57

CG steps in solving a linear system. Studies of applying preconditioned CG methods

in training neural networks include, for example, Chapelle and Erhan (2011). We

plan to investigate how to apply preconditioning in our distributed framework.

In summary, in this paper we proposed novel techniques to implement distributed

Newton methods for training large-scale neural networks, and achieved both data and

model parallelisms.

Acknowledgements

This work was supported in part by MOST of Taiwan via the grant 105-2218-E-002-033

and Microsoft via Azure for Research programs.

References

Alimoglu, F. and Alpaydin, E. (1996). Methods of combining multiple classifiers based

on different representations for pen-based handwritten digit recognition. In Pro-

ceedings of the Fifth Turkish Artificial Intelligence and Artificial Neural Networks

Symposium.

Baldi, P., Sadowski, P., and Whiteson, D. (2014). Searching for exotic particles in

high-energy physics with deep learning. Nature Communications, 5.

Barnett, M., Gupta, S., Payne, D. G., Shuler, L., van De Geijn, R., and Watts, J. (1994).

Interprocessor collective communication library (InterCom). In Proceedings of the

Scalable High-Performance Computing Conference, pages 357–364.

58

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166.

Bian, Y., Li, X., Cao, M., and Liu, Y. (2013). Bundle CDN: a highly parallelized ap-

proach for large-scale l1-regularized logistic regression. In Proceedings of European

Conference on Machine Learning and Principles and Practice of Knowledge Discov-

ery in Databases (ECML/ PKDD).

Boser, B. E., Guyon, I., and Vapnik, V. (1992). A training algorithm for optimal margin

classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning

Theory, pages 144–152. ACM Press.

Bottou, L. (1991). Stochastic gradient learning in neural networks. Proceedings of

Neuro-Nımes, 91(8).

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT 2010, pages 177–186.

Byrd, R. H., Chin, G. M., Neveitt, W., and Nocedal, J. (2011). On the use of stochastic

Hessian information in optimization methods for machine learning. SIAM Journal

on Optimization, 21(3):977–995.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27. Software

available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Chapelle, O. and Erhan, D. (2011). Improved preconditioner for Hessian free optimiza-

tion. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning.

59

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep, big,

simple neural nets for handwritten digit recognition. Neural Computation, 22:3207–

3220.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao, M. Z., Ranzato,

M., Senior, A. W., Tucker, P. A., et al. (2012). Large scale distributed deep networks.

In Advances in Neural Information Processing Systems (NIPS) 25.

Duarte, M. and Hu, Y. H. (2004). Vehicle classification in distributed sensor networks.

Journal of Parallel and Distributed Computing, 64(7):826–838.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the 13th International Conference on

Artificial Intelligence and Statistics (AISTATS), pages 249–256.

Goodfellow, I. J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza, M., Pascanu,

R., Bergstra, J., Bastien, F., and Bengio, Y. (2013). Pylearn2: a machine learning

research library.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpass-

ing human-level performance on ImageNet classification. In Proceedings of IEEE

International Conference on Computer Vision (ICCV).

He, X., Mudigere, D., Smelyanskiy, M., and Takáč, M. (2016). Large scale distributed

Hessian-free optimization for deep neural network. arXiv preprint arXiv:1606.00511.

Hinton, G. E., Deng, L., Yu, D., Dahl, G., rahman Mohamed, A., Jaitly, N., Senior,

A., Vanhoucke, V., Nguyen, P., Sainath, T., and Kingsbury, B. (2012). Deep neural

60

networks for acoustic modeling in speech recognition: The shared views of four

research groups. IEEE Signal Processing Magazine, 29(6):82–97.

Hull, J. J. (1994). A database for handwritten text recognition research. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 16(5):550–554.

Kiros, R. (2013). Training neural networks with stochastic Hessian-free optimization.

arXiv preprint arXiv:1301.3641.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with

deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and

Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25,

pages 1097–1105.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based learning ap-

plied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. MNIST

database available at http://yann.lecun.com/exdb/mnist/.

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1998b). Efficient back-

prop. In Neural Networks, Tricks of the Trade, Lecture Notes in Computer Science

LNCS 1524. Springer Verlag.

Li, P. (2010). An empirical evaluation of four algorithms for multi-class classi-

fication: Mart, abc-mart, robust logitboost, and abc-logitboost. arXiv preprint

arXiv:1001.1020.

Lichman, M. (2013). UCI machine learning repository.

61

http://yann.lecun.com/exdb/mnist/

Mahajan, D., Keerthi, S. S., and Sundararajan, S. (2017). A distributed block coordinate

descent method for training l1 regularized linear classifiers. Journal of Machine

Learning Research, 18(91):1–35.

Martens, J. (2010). Deep learning via Hessian-free optimization. In Proceedings of the

27th International Conference on Machine Learning (ICML).

Martens, J. and Sutskever, I. (2012). Training deep and recurrent networks with

Hessian-free optimization. In Neural Networks: Tricks of the Trade, pages 479–535.

Springer.

Michie, D., Spiegelhalter, D. J., Taylor, C. C., and Campbell, J., editors (1994). Ma-

chine learning, neural and statistical classification. Ellis Horwood, Upper Sad-

dle River, NJ, USA. Data available at http://archive.ics.uci.edu/ml/

machine-learning-databases/statlog/.

Moritz, P., Nishihara, R., Stoica, I., and Jordan, M. I. (2015). SparkNet: Training deep

networks in Spark. arXiv preprint arXiv:1511.06051.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading

digits in natural images with unsupervised feature learning. In NIPS Workshop on

Deep Learning and Unsupervised Feature Learning.

Neyshabur, B., Salakhutdinov, R. R., and Srebro, N. (2015). Path-SGD: Path-

normalized optimization in deep neural networks. In Cortes, C., Lawrence, N. D.,

Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information

Processing Systems 28, pages 2422–2430.

62

http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/
http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/

Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q. V., and Ng, A. Y. (2011). On

optimization methods for deep learning. In Proceedings of the 28th International

Conference on Machine Learning, pages 265–272.

Paschke, F., Bayer, C., Bator, M., Mönks, U., Dicks, A., Enge-Rosenblatt, O., and

Lohweg, V. (2013). Sensorlose zustandsüberwachung an synchronmotoren. In Pro-

ceedings of Computational Intelligence Workshop.

Pearlmutter, B. A. (1994). Fast exact multiplication by the Hessian. Neural Computa-

tion, 6(1):147–160.

Pješivac-Grbović, J., Angskun, T., Bosilca, G., Fagg, G. E., Gabriel, E., and Dongarra,

J. J. (2007). Performance analysis of MPI collective operations. Cluster Computing,

10:127–143.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration meth-

ods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17.

Schraudolph, N. N. (2002). Fast curvature matrix-vector products for second-order

gradient descent. Neural Computation, 14(7):1723–1738.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of ini-

tialization and momentum in deep learning. In Proceedings of the 30th International

Conference on Machine Learning (ICML), pages 1139–1147.

63

Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., and Goldstein, T. (2016). Train-

ing neural networks without gradients: A scalable ADMM approach. In Proceedings

of The Thirty Third International Conference on Machine Learning, pages 2722–

2731.

Thakur, R., Rabenseifner, R., and Gropp, W. (2005). Optimization of collective com-

munication operations in MPICH. International Journal of High Performance Com-

puting Applications, 19(1):49–66.

Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R. (2013). Regularization

of neural networks using DropConnect. In Proceedings of the 30th International

Conference on Machine Learning (ICML), pages 1058–1066.

Wang, C.-C., Huang, C.-H., and Lin, C.-J. (2015). Subsampled Hessian Newton meth-

ods for supervised learning. Neural Computation, 27:1766–1795.

Zinkevich, M., Weimer, M., Smola, A., and Li, L. (2010). Parallelized stochastic gra-

dient descent. In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R., and

Culotta, A., editors, Advances in Neural Information Processing Systems 23, pages

2595–2603.

64

Algorithm 1 Function evaluation in a distributed system

1: Let Tm−1 and Tm be the subsets of neurons at the (m− 1)th and mth layers corre-

sponding to the current partition.

2: if m = 1 then
3: Read sm−1,it from input, where i = 1, . . . , l, and t ∈ Tm−1.
4: else
5: Wait for sm−1,it , i = 1, . . . , l, t ∈ Tm−1.

6: Calculate zm−1,it by (19).

7: end if
8: After calculating (20), run an allreduce operation to have

sm,ij , i = 1, . . . , l and j ∈ Tm, (27)

available in all partitions between layers m− 1 and m corresponding to Tm.

9: if Tm−1 is the first neuron sub-group of layer m− 1 then
10: if m < L then
11: We broadcast values in (27) to partitions between layers m and m+ 1

corresponding to the neuron subgroup Tm; see the description after (23)

12: else
13: Calculate

l∑
i=1

∑
j∈TL

ξ(zL,ij ; yij) + accumulated regularization terms

14: If TL is the first neuron sub-group of layer L, run a reduce operation

to get the final f ; see (24).

15: end if
16: end if

65

Algorithm 2 Calculation of ∂zL,iu /∂sm,ij , u = 1, . . . , nL, j = 1, . . . , |Tm| in a dis-

tributed system.

1: Let Tm−1 and Tm be the subsets of neurons at the (m− 1)th and mth layers corre-

sponding to the current partition.

2: if m = L then
3: Calculate

∂zL,iu

∂zm,ij

=

2(zL,iu − yiu) if j = u,

0 if j 6= u,
, u = 1, . . . , nL, i = 1, . . . , l, and j ∈ Tm.

4: else
5: Wait for ∂zL,iu /∂zm,ij , u = 1, . . . , nL, i = 1, . . . , l, and j ∈ Tm.

6: end if
7: Calculate

∂zL,iu

∂sm,ij

=
∂zL,iu

∂zm,ij

σ′(sm,ij), u = 1, . . . , nL, i = 1, . . . , l, and j ∈ Tm. (46)

8: if m > 1 then
9: Calculate the local sum ∑

j∈Tm

∂zL,iu

∂sm,ij

wmtj , t ∈ Tm−1 (47)

and do the reduce operation to obtain

∂zL,iu

∂zm−1,it

, u = 1, . . . , nL, i = 1, . . . , l, and t ∈ Tm−1. (48)

10: if Tm is the first neuron sub-group of layer m then
11: Broadcast values in (48) to partitions between layers m− 2 and m− 1

corresponding to the neuron sub-group Tm−1 at layer m− 1;

see the description after (38).

12: end if
13: end if

66

Algorithm 3 A distributed subsampled Hessian Newton method with variable partition.

1: Given ε ∈ (0, 1), λ1, σ ∈ (0, 1), η ∈ (0, 1), CGmax, CGmin, and r ∈ (0, 100].

2: Let p be the index of the current partition and generate the initial local model vector

θ1p.

3: Compute f(θ1).

4: for k = 1, . . . , do
5: Choose a set Sk ⊂ {1, . . . , l}.
6: Compute gkp and J ip,∀i ∈ Sk.
7: Approximately solve the linear system in (60) by CG to obtain a direction dkp

after

||(λkI +
1

C
I +

1

|Sk|

|Sk|∑
i=1

(J ip)
TBiJ ip)d

k
p + gkp|| ≤ σ||gkp||

is satisfied or #CGk
p ≥ CGmax or

{# partitions finished ≥ r%× P and #CGk
p ≥ CGmin},

where #CGk
p is the number of CG iterations that have been run so far.

8: Derive dkp = β1d
k
p + β2d

k−1
p by solving (61).

9: αk = 1.

10: while true do
11: Update θk+1

p = θkp + αkdkp and then compute f(θk+1).

12: if Tm and Tm−1 are the first neuron subgroups at layers L and L−1, respec-

tively, then
13: if (65) is satisfied then
14: Notify all partitions to stop.

15: end if
16: else
17: Wait for the notification to stop.

18: end if
19: if the stop notification has been received then
20: break;

21: end if
22: αk = αk/2.

23: end while
24: Update λk+1 based on (66).

25: end for

67

Algorithm 4 Standard stochastic gradient methods
1: Given a learning rate η.

2: for k = 0, . . . do
3: Choose ik ∈ {1, . . . , l}.
4: θk+1 = θk − η∇f ik(θk).

5: end for

Algorithm 5 Mini-batch stochastic gradient methods in Theano/Pylearn2 (Goodfellow

et al., 2013).
1: Given epoch = 0, min epochs = 200, a learning rate η, a minimum learning rate

ηmin = 10−6, α = 0, r = 0, X = 10−5, N = 10, a batch size b = |Sk| = 100,

an initial momentum m0 = 0.9, a final momentum mf = 0.99, an exponentially

decay factor γ = 1.0000002, and an updating vector v ← 0.

2: counter← N .

3: lowest value←∞.

4: while epoch < min epochs or counter > 0 do
5: Split the whole training data into K disjoint subsets, Sk, k = 1, . . . , K.

6: α← min(epoch/min epochs, 1.0).

7: m← (1− α)m0 + αmf .

8: for k = 1, . . . , K do
9: v ← mv −max(η/γr, ηmin)∇fSk(θ).

10: θ ← θ + v.

11: r ← r + 1.

12: end for
13: epoch← epoch + 1.

14: Calculate the function value h of the validation set.

15: if (h < (1−X)× lowest value) then
16: counter← N .

17: else
18: counter← counter − 1.

19: end if
20: lowest value← min(lowest value, h).

21: end while

68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 0 5 10 15 20 25 30 35 40

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Iterations

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

 70

 72

 74

 76

 78

 80

 82

 84

 86

 0 500 1000 1500 2000

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Training time in seconds

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

(a) SensIT Vehicle

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Iterations

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Training time in seconds

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

(b) poker

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35 40

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Iterations

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

 80

 85

 90

 95

 100

 0 5000 10000 15000 20000

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Training time in seconds

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

(c) MNIST

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Iterations

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Training time in seconds

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

(d) Letter

69

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Iterations

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Training time in seconds

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

(e) USPS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Iterations

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Training time in seconds

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

(f) Pendigits

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Iterations

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Training time in seconds

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

(g) Sensorless

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Iterations

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

T
e
s
ti
n
g
 A

c
c
u
ra

c
y
 (

%
)

Training time in seconds

subsampled-GN
diag
diag + sync 50%
diag + sync 25%

(h) Satimage

Figure 4: A comparison of different techniques to implement distributed Newton meth-

ods. Left: testing accuracy versus number of iterations. Right: testing accuracy versus

training time. 70

 0.75

 0.78

 0.81

 0.84

 0.87

 0 100 200 300 400 500

A
U

C

Iterations

diag + sync 50%
SG-0.02
SG-0.01
SG-0.005
SG-0.001

 0.75

 0.78

 0.81

 0.84

 0.87

 100 1000 10000 100000

A
U

C

Training time in seconds (log-scaled)

diag + sync 50%
SG-0.02
SG-0.01
SG-0.005
SG-0.001

(a) Dense initialization.

 0.75

 0.78

 0.81

 0.84

 0.87

 0 100 200 300 400 500

A
U

C

Iterations

diag + sync 50%
SG-0.03
SG-0.02
SG-0.01
SG-0.005
SG-0.001

 0.75

 0.78

 0.81

 0.84

 0.87

 100 1000 10000 100000

A
U

C

Training time in seconds (log-scaled)

diag + sync 50%
SG-0.03
SG-0.02
SG-0.01
SG-0.005
SG-0.001

(b) Sparse initialization.

Figure 5: A comparison between SG and Newton. A 28-300-300-1 network is applied

to train HIGGS. SG-x means that the initial learning rate x is used. For Newton, each

iteration means that we go through line 5 to line 24 in Algorithm 3, while for SG, each

iteration means that we go through the whole training data once. The curve of SG-0.03

in the dense initialization is not presented because the AUC value never exceeds 0.5.

Left: AUC versus number of iterations. Right: AUC versus training time in seconds

(log-scaled).

71

	1 Introduction
	2 Hessian-free Newton Method for Deep Learning
	2.1 Feedforward Networks
	2.2 Hessian-free Newton Method

	3 Distributed Training by Variable Partition
	3.1 Variable Partition
	3.2 Distributed Function Evaluation
	3.2.1 Allreduce and Broadcast Operations

	3.3 Distributed Jacobian Calculation
	3.3.1 Memory Requirement
	3.3.2 Sigmoid Activation Function

	3.4 Distributed Gradient Calculation

	4 Techniques to Reduce Computational, Communication, and Synchronization Cost
	4.1 Diagonal Gauss-Newton Matrix Approximation
	4.2 Product Between Gauss-Newton Matrix and a Vector
	4.3 Subsampled Hessian Newton Method
	4.4 Synchronization Between Partitions
	4.5 Summary of the Procedure

	5 Analysis of the Proposed Algorithm
	5.1 Memory Requirement at Each Partition
	5.2 Computational Cost
	5.3 Communication Cost

	6 Other Implementation Techniques
	6.1 Pipeline Techniques for Function and Gradient Evaluation
	6.2 Sparse Initialization

	7 Existing Optimization Methods for Training Neural Networks
	7.1 Stochastic Gradient Methods

	8 Experiments
	8.1 Analysis of Distributed Newton Methods
	8.2 Comparison with Stochastic Gradient Methods and Support Vector Machines (SVM)
	8.3 Detailed Investigation on the HIGGS Data

	9 Discussion and Conclusions

