
Robust Closed-Loop Control of a Cursor in a Person with
Tetraplegia using Gaussian Process Regression

David M. Brandman,
Neuroscience Graduate Program, Department of Neuroscience, Carney Institute for Brain
Science, and School of Engineering, Brown University, Providence, RI02912, U.S.A.; and
Department of Surgery (Neurosurgery), Dalhousie University, Halifax, NS B3H 347 Canada

Michael C. Burkhart,
Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A.

Jessica Kelemen,
Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital,
Boston, MA 02114, U.S.A.

Brian Franco,
Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital,
Boston, MA 02114, U.S.A.

Matthew T. Harrison#,
Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A.

Leigh R. Hochberg#

Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of
Veterans Affairs Medical Center, Providence, RI 02908; Carney Institute for Brain Science and
School of Engineering, Brown University, Providence, RI 02912; Center for Neurotechnology and
Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114; and Neurology,
Harvard Medical School, Boston, MA 02115, U.S.A.

These authors contributed equally to this work.

Abstract

Intracortical brain computer interfaces can enable individuals with paralysis to control external

devices through voluntarily modulated brain activity. Decoding quality has been previously shown

to degrade with signal nonstationarities—specifically, the changes in the statistics of the data

between training and testing data sets. This includes changes to the neural tuning profiles and

baseline shifts in firing rates of recorded neurons, as well as nonphysiological noise. While

progress has been made toward providing long-term user control via decoder recalibration,

relatively little work has been dedicated to making the decoding algorithm more resilient to signal

nonstationarities. Here, we describe how principled kernel selection with gaussian process

regression can be used within a Bayesian filtering framework to mitigate the effects of commonly

encountered nonstationarities. Given a supervised training set of (neural features, intention to

david_brandman@brown.edu.

HHS Public Access
Author manuscript
Neural Comput. Author manuscript; available in PMC 2020 March 14.

Published in final edited form as:
Neural Comput. ; : 1–23. doi:10.1162/neco_a_01129.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

move in a direction)-pairs, we use gaussian process regression to predict the intention given the

neural data. We apply kernel embedding for each neural feature with the standard radial basis

function. The multiple kernels are then summed together across each neural dimension, which

allows the kernel to effectively ignore large differences that occur only in a single feature. The

summed kernel is used for real-time predictions of the posterior mean and variance under a

gaussian process framework. The predictions are then filtered using the discriminative Kalman

filter to produce an estimate of the neural intention given the history of neural data. We refer to the

multiple kernel approach combined with the discriminative Kalman filter as the MK-DKF. We

found that the MK-DKF decoder was more resilient to nonstationarities frequently encountered in-

real world settings yet provided similar performance to the currently used Kalman decoder. These

results demonstrate a method by which neural decoding can be made more resistant to

nonstationarities.

1 Introduction

Brain-computer Interfaces (BCIs) use neural information recorded from the brain for the

voluntary control of external devices (Wolpaw, Birbaumer, McFarland, Pfurtscheller, &

Vaughan, 2002; Hochberg et al., 2006; Schwartz, Cui, Weber, & Moran, 2006; Lebedev &

Nicolelis, 2006, 2017; Fetz, 2007; Chestek et al., 2009; Carmena, 2013; Chhatbar & Francis,

2013). At the heart of BCI systems is the decoder: the algorithm that maps neural

information to a signal used to control external devices. Modern intracortical BCI decoders

used by people with paralysis infer a relationship between neural features (e.g., neuronal

firing rates) and the motor intentions from training data. Hence, high-quality control of an

external effector, such as a computer cursor, is predicated on appropriate selection of a

decoding algorithm.

Decoder selection for intracortical BCI (iBCI) systems traditionally has been based on

extensive study of cortical physiology. In what are now classic experiments, nonhuman

primates were taught to move a planar manipulandum to one of eight different directions

(Georgopoulos, Kalaska, Caminiti, & Massey, 1982). The firing rate as a direction of arm

movement was parsimoniously modeled as a sinusoidal curve. For each neuron, the vector

corresponding to the maximum firing rate (i.e., the phase offset of a cosine function with a

period of 360 degrees) is often referred to as the neuron’s “preferred direction.” The

population vector algorithm scales the preferred directions of the recorded neurons by their

recorded firing rate; the sum is the decoded vector of the intended direction of neural control

(Taylor, Tillery, & Schwartz, 2002; Jarosiewicz et al., 2008; Velliste, Perel, Spalding,

Whitford, & Schwartz, 2008). Given sufficient diversity in preferred directions, the problem

reduces to linear regression: decoding involves learning the least-squares solution to the

surface mapping firing rates to kinematic variables (Kass, Ventura, & Brown, 2005).

Alternative decoding approaches include modeling the probability of observing a neural

spike as a draw from a time-varying Poisson process (Truccolo, Friehs, Donoghue, &

Hochberg, 2008; Brown, Barbieri, Ventura, Kass, & Frank, 2002; Ba, Temereanca, &

Brown, 2014; Shanechi et al., 2017), using support-vector regression (Shpigelman, Lalazar,

& Vaadia, 2008) or neural networks (Sussillo, Stavisky, Kao, Ryu, & Shenoy, 2016).

Brandman et al. Page 2

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

An ongoing area of research in iBCI systems is to ensure robust control for the user.

Degradation in neural control is often attributed to nonstation-arities in the recorded signals,

which are mismatches in the statistics of the neural signals between training and testing

models. These include changes to neural tuning profiles, baseline shifts in firing rates, and

nonphysiological noise. With linear models, nonstationarities have been shown to degrade

decoding performance (Jarosiewicz et al., 2015; Perge et al., 2013). The most common

approach to addressing this mismatch is to recalibrate the decoder’s parameters by

incorporating more recent neural data. This has been described using batch-based updates

with user-defined breaks (Jarosiewicz et al., 2015; Bacher et al., 2015; Gilja et al., 2015),

batch-based updates during ongoing use (Orsborn et al., 2014; Shpigelman et al., 2008), and

continuous updating during ongoing use (Shanechi, Orsborn, & Carmena, 2016; Dangi,

Gowda, Heliot, & Carmena, 2011). Ongoing decoder recalibration traditionally requires

information regarding the cursor’s current location and a known target; alternatively,

retrospective target inference has been described as a way to label neural data with the BCI

user’s intended movement directions based on selections during self-directed onscreen

keyboard use (Jarosiewicz et al., 2015).

While attempts to mitigate nonstationarities have largely focused on recalibration, few

efforts have aimed to make the decoder inherently more resilient to nonstationarities. To our

knowledge, the most extensive study of examining decoder robustness investigated the use

of deep neural networks trained from large amounts of offline data (Sussillo et al., 2016).

While effective for decoding, this method requires tremendous computational data and

resources and required the decoder to be specifically trained to handle nonstationarities

using extensive regularization. Other authors have used Bayesian parameter updates for

addressing nonstationarities (Li, O’Doherty, Lebedev, & Nicolelis, 2011), or adaptive mean

corrections (Homer et al., 2014).

Here, we demonstrate a new decoding algorithm that is more resilient to signal

nonstationarities than the currently used linear decoding models. Our approach builds on the

previously well-established linear state-space dynamical model for neural decoding.

Building on prior work with gaussian process regression (Brandman et al., 2018), the key

innovation is making a nonlinear decoder robust to noise through kernel selection and data

sparsification. Using both offline simulations and online demonstrations with an iBCI user

with paralysis, we demonstrate that our new decoding approach is more resilient to

nonstationarities than the standard Kalman filter currently being used in people.

2 Mathematical Methods

We have previously described closed-loop decoding using gaussian process regression in

detail (Brandman et al., 2018). Briefly, during calibration, (xi, zi) pairs, representing pairs of

neural features and user intention vectors, are collected. We model the neural features as the

firing rates and the total power in the bandpass-filtered signal (see section 3.3) and intentions

as the unit vector to target (see section 3.4). To perform closed-loop decoding, we compute f
(xt), the unfiltered estimate of the user’s intention to control the computer cursor at time t
(see section 2.2). We then filter f (xt) using the discriminative Kalman filter (see section 2.1),

Brandman et al. Page 3

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which provides an estimate of the decoded velocity while incorporating the history of neural

features.

Our previous approach to decoding with gaussian process regression used the entire high-

dimensional neural data set as the basis for computing the measure of similarity between xt

and xi (Brandman et al., 2018). In this letter, we made two important changes to the decoder

to increase its robustness to signal nonstationarities. First, we adopted a kernel that

calculated the similarity between two neural vectors as the arithmetic average over

similarities in each neuron, as opposed to the product that was used by the more standard

isotropic gaussian kernel (see section 2.2). This had the effect of limiting the impact any

single neuron could have on the calculated similarity between two vectors of neural features.

When a nonstationarity occurred in a feature, the decoder “disregarded” this feature without

compromising decoding quality. Second, we sparsified the data by averaging (xi, zi) pairs

into octants. This dramatically decreased the computational load for real-time decoding. We

found that the observed neural features had noise events with surprising frequency (see

section 3.1). Averaging across octants had the effect of mitigating the importance of these

noisy features for decoding.

2.1 Description of Decoding Method.

In this section, we use the convention that random variables are capital letters and their

values are lowercase. For instance, Zt has pdf p(zt). We also emphasize that the i and t
subscripts refer to the training and testing data sets, respectively. We model the hidden state-

space model with states Z1, …, ZT ∈ ℝd representing the intended cursor velocity, and the

observed states X1, …, XT ∈ ℝm representing the neural features related through the

following graphic model:

Z1 …

X1

Zt − 1

Xt − 1

Zt …

Xt

ZT

XT

In typical use, d = 2 (e.g., kinematic computer cursor control), while m = 40 neural features

(Jarosiewicz et al., 2013, 2015; Bacher et al., 2015; Brand- man et al., 2018). We are

interested in the posterior distribution p zt | x1: t ′ being the current hidden state given all

observations up to the present. Upon specifying the state model p zt | zt − 1 that relates how

the hidden state changes over time and the measurement model p xt | zt that relates the

hidden and observed variables, the posterior can be found recursively using the Chapman-

Kolmogorov equation,

p zt x1: t ∝ p xt zt ∫ p zt zt − 1 p zt − 1 x1: t − 1 dzt − 1, (2.1)

Brandman et al. Page 4

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where α means proportional as a function of zt. The standard Kalman filter is obtained when

both the state and measurement models are specified as linear with gaussian noise (Wu et al.,

2005; Simeral, Kim, Black, Donoghue, & Hochberg, 2011). Here, we use a stationary linear

state model with gaussian noise

p z0 = ηd z0; 0, S , (2.2a)

p zt zt − 1 = ηd zt; Azt − 1, Γ , (2.2b)

where A, S, Γ are d × d, S and Γ are proper covariance matrices, S = ASA⊤ + Γ, and ηd(z; μ, Σ)

denotes the d-dimensional multivariate normal density with mean μ, and covariance Σ
evaluated at a point z. We approximate the measurement model using Bayes’ rule,

p xt zt ∝
p zt xt

p zt
≈

ηd zt; f xt , Q
ηd zt; 0, S

, (2.3)

where f :ℝm ℝd is a nonlinear function learned from training data and Q is a d×d
covariance matrix. The posterior is then given recursively by

p zt x1: t ≈ ηd zt; μt, Σt ,
where μ1 = f x1 , Σ1 = Q, and for t ≥ 2,

(2.4)

Mt − 1 = AΣt − 1A⊤ + Γ,

Σt = Q−1 + Mt − 1
−1 − S−1 −1,

μt = Σt Q−1 f xt + Mt − 1
−1 Aμt − 1 .

(2.5)

In this way, we allow the relationship between Xt and Zt to be nonlinear through the function

f, while retaining fast, closed-form updates for the posterior. While f can be learned from

supervised training data using a number of off-the-shelf discriminative methods (Burkhart,

Brandman, Vargas-Irwin, & Harrison, 2016), in this letter, we take f to be the posterior mean

from a gaussian process regression and set Q as the covariance of the training data set. We

call the resulting filter the discriminative Kalman filter (DKF; Burkhart et al., 2016;

Brandman et al., 2018).

Brandman et al. Page 5

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.2. Kernel Selection for Robustness.

As part of decoder calibration, we collect a data set consisting of neural features and

intended velocities, which we refer to as xi, zi 1 ≤ i ≤ n
. These are assumed to be samples

from the graphical model and are used to train a gaussian process regression for p zt | xt . The

gaussian process model takes asymmetric, positive-definite kernel Kθ(⋅ , ⋅) with

hyperparameters θ and predicts the mean inferred velocity f(xt) as

f xt = k*
⊤ Kθ + σn

2In
−1z, (2.6)

where Kθ is the n × n matrix given component-wise by Kθi j = Kθ xi, x j , σn
2 is a noise

parameter for the training data, In is the n-dimensional identity matrix, k*
⊤ is a1 × n vector of

the embedding of the training and testing data, and z is an n × 1 vector of the direction

vectors of a single dimension. We can reexpress equation 2.6 as a linear combination (see

Rasmussen & Williams, 2006 for details):

f xt = ∑
i = 1

n
αiKθ xi, xt , (2.7)

where α = Kθ + σn
2In

−1
z so that αi is a smoothed version of zi. This demonstrates how the

kernel-determined similarity between xi and xt directly determines the impact of the training

point (xi, zi) on the prediction f(xt).

In designing a kernel for robust decoding, we select a kernel that ignores large differences

between xi and xt that occur along a relatively few number of dimensions. This would

potentially make the filter resilient to erratic firing patterns in an arbitrary single neuron.

We use a multiple kernel (MK) approach (Gönen & Alpaydin, 2011) and take

Kθ(x, y) = 1
mσ f

2 ∑
d = 1

m
η1 xd − yd; 0, σ𝓁

2 , (2.8)

where θ = σ f
2, σ𝓁

2 are hyperparameters and xd denotes the dth dimension of x. The similarity

between inputs x and y is given as the average over the similarities in each dimension, where

all dimensions are equally informative.

To illustrate our choice of kernel, it is helpful to compare it against the more standard

isotropic squared exponential kernel, where the sum in equation 2.8 is replaced by a product,

as follows:

Brandman et al. Page 6

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kθ(x, y) = σ f
2 ∏

d = 1

m
η1 xd − yd; 0, σ𝓁

2 . (2.9)

On identical inputs x = y, the Kθ and Kθ both return their maximum value of σ f ′
2 indicating

that x and y are similar. If, holding all other dimensions equal, the absolute difference xi − yi

grows large (this would occur if readings from a single neuron became very noisy or

unreliable), the standard kernel Kθ would become arbitrarily small, while the multiple kernel

Kθ would never fall below m − 1
m σ f

2 . Thus, the multiple kernel continues to identify two

neural vectors as close if they differ along only a single arbitrary dimension (see Figure 1

shows a visualization in two dimensions). Note that as m increases beyond two, this

difference between the kernels becomes even more pronounced.

In contrast to data augmentation methods (An, 1996; Sussillo et al., 2016), we do not need to

handle dropping neuron i and dropping neuron j separately. Altering our model to

accommodate more or different nonstationarities would amount to a simple change in kernel

and not result in increased training time.

2.3. Training Set Sparsification for Robustness.

Training data were gathered during a standard radial center-out task during which the user

attempted to move the cursor to one of eight equally spaced targets arranged on a circle. We

took the (xi, zi) pairs and averaged the neural data over each of the eight targets. The training

set used for gaussian process prediction consisted of these eight (xi, zi) pairs. Besides

making prediction much faster, we found that using this sparsified training set also increased

decoder robustness (see sections 4.1 and 4.2).

3 Experimental Methods

3.1 Permissions.

The Institutional Review Boards of Brown University, Partners Health/Massachusetts

General Hospital, and the Providence VA Medical Center, as well as the U.S. Food and Drug

Administration, granted permission for this study (Investigational Device Exemption). The

participants for this study were enrolled in a pilot clinical trial of the Brain-Gate Neural

Interface System.1

3.2 The Participant.

At the time of the study, T10 was a 35-year-old man with a C4 AIS-A spinal cord injury. He

underwent surgical placement of two 96-channel intracortical silicon microelectrode arrays

(Maynard, Nordhausen, & Normann, 1997) as previously described (Simeral, Kim, Black,

Donoghue, & Hochberg, 2011; Kim, Simeral, Hochberg, Donoghue, & Black, 2008).

1ClinicalTrials.gov Identifier: NCT00912041. Caution: Investigational device. Limited by federal law to investigational use.

Brandman et al. Page 7

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov
http://NCT00912041

Electrodes were placed into the dominant precentral gyrus and dominant caudal middle

frontal gyrus. Closed-loop recording data were used from trial (postimplant) days 259, 265,

272, and 300.

3.3 Signal Acquisition.

Raw neural signals for each electrode were sampled at 30 kHz using the NeuroPort System

(Blackrock Microsystems, Salt Lake City, UT) and then processed using the xPC target real-

time operating system (Mathworks, Natick, MA). Raw signals were downsampled to 15 kHz

for decoding, and then denoised by subtracting an instantaneous common average reference

(Jarosiewicz et al., 2015; Gilja et al., 2015) using 40 of the 96 channels on each array with

the lowest root-mean-square value. The denoised signals were bandpass-filtered between

250 Hz and 5000 Hz using an eighth-order noncausal Butterworth filter (Masse et al., 2015).

Spike events were triggered by crossing a threshold set at 3.5× the root-mean-square

amplitude of each channel, as determined by data from a 1-minute reference block at the

start of each research session. The following neural features were extracted: the rate of

threshold crossings (not spike sorted) on each channel and the total power in the bandpass-

filtered signal (Jarosiewicz et al., 2013, 2015; Bacher et al., 2015; Brandman et al., 2018). A

total of m = 40 features were selected. Neural features were binned in 20 ms nonoverlapping

increments.

3.4 Decoder Calibration.

Task cueing was performed using custom-built software running Matlab (Mathworks,

Natick, MA). The participants used standard LCD monitors placed at 55 to 60 cm, at a

comfortable angle and orientation. T10 engaged in the radial-8 task as previously described

(Jarosiewicz et al., 2013,2015; Bacher et al., 2015; Brandman et al., 2018) (see Figure 2A).

Briefly, targets (size = 2.4 cm, visual angle = 2.5°) were presented sequentially in a pseudo-

random order, alternating between one of eight radially distributed targets and a center target

(radial target distance from center = 12.1 cm, visual angle = 12.6°). Successful target

acquisition required the user to place the cursor (size = 1.5 cm, visual angle = 1.6°) within

the target’s diameter for 300 ms, before a predetermined time-out (5 seconds). Target time-

outs resulted in the cursor moving directly to the intended target, with immediate

presentation of the next target.

Each calibration block lasted 3 minutes. During calibration, decoder parameters were

updated every 2 to 5 seconds as previously described (Brandman et al., 2018). During the

initial stages of calibration, we assisted cursor performance by attenuating the component of

the decoded velocity perpendicular to the target (Jarosiewicz et al., 2013; Velliste et al.,

2008). This automated assistance was gradually decreased until it was removed 100 to 130

seconds after the start of calibration. The coefficients for the MK-DKF decoder were

computed with the calibration block used for the Kalman decoder.

3.5 Noise Injection Experiment.

Once the decoder was calibrated, we sought to investigate the impact of nonstationarities to

the MK-DKF and Kalman decoders. Our approach was to have T10 perform the radial-8

Brandman et al. Page 8

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

task while randomly injecting noise to a single feature and also randomly selecting the

decoder currently being used (see Figure 2A).

Each trial ended after either the target was acquired by having the cursor hold within the

target for 300 ms or a 5 second time-out. At the start of every noise injection trial, the cursor

was recentered over the previously presented target, and the velocity was reset to zero (this

ensured that any potential impact of the cursor’s behavior from the previous trial was

removed). We performed block randomization of the six experimental conditions: combining

one of two decoders (Kalman and MK-DKF) with one of three noise levels (no noise, one z-

score, five z-scores). Both the researchers and T10 were blinded to which decoder–noise

combination was currently being used. To simulate noise, we provided a z-score offset to the

channel with the highest signal-to-noise ratio (Malik et al., 2015), based on the value

computed from the calibration block. We standardized the 40 features and the noise-injected

feature for both the MK-DKF and Kalman decoders. Experiments were performed in 4

minute blocks.

In order to ensure that T10 was blinded to the decoder and noise combination, we ensured

that the kinematic feel of the decoders was similar. That is, we sought to match the mean

speed, smoothing, and innovation terms for the two decoders, since these parameters are

known to have an impact on decoding quality (Willett et al., 2017). For the radial-8 noise-

injection experiment, we matched kinematic parameters in two ways. First, we set the A and

Γ of equation 2.5 to match the Kalman values. Second, to ensure that both decoders moved

at the same speed, we first computed the mean speed values for Kz in the training block,

where K is the Kalman gain matrix. Next, we computed the mean speed value of f (xt) and

then linearly scaled f (xt) to match the mean Kz value.

Hence, in performing head-to-head comparisons, we opted to match the kinematics of the

MK-DKF decoder to the Kalman. We note that it is very likely that we were having a

negative impact on the MK-DKF decoder performance by doing so, since the parameters

used were likely suboptimal compared to those that would have been computed.

3.6 Performance Measurement.

We quantified performance using a grid task after locking decoder parameters (Brandman et

al., 2018; Pandarinath et al., 2017; Nuyujukian, Fan, Kao, Ryu, & Shenoy, 2015) (see Figure

2B). This task consisted of a grid of 36 square targets arranged in a square grid, where the

length of one side of the square grid was 24.2 cm (visual angle = 24.8°). One of targets was

presented at a time in a pseudorandom order. Targets were acquired when the cursor was

within the area of the square for 1 second. Incorrect selections occurred if the cursor dwelled

on a nontarget square for an entire hold period. Each comparison block was 3 minutes in

length.

We measured the achieved bit rate (BR), which measures the effective throughput of the

system (Nuyujukian et al., 2015),

BR =
log2(N − 1)max Sc − Si, 0

t ,

Brandman et al. Page 9

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where N is the number of possible selections; Sc and Si are the number of correctly and

incorrectly selected targets, respectively; and t is the elapsed time within the block.

3.7 Offline Analysis.

We retrospectively analyzed data collected from previous research sessions. We restricted

our analysis to sessions where T10 moved a computer cursor using motor imagery. He

acquired targets using the radial-8 task, the grid task, or free typing tasks (Jarosiewicz et al.,

2015).

3.7.1 Injecting Noise for the MK-DKF and Kalman Decoders.—To investigate the

impact of noise on decoder performance, we performed offline simulations of both the

Kalman and MK-DKF decoders. We computed the angular error between the predicted

decoder value without filtering (i.e., the Kz term and the f(xt) terms of the Kalman and MK-

DKF decoders, respectively) and the label modeled as the vector from cursor to target

(Simeral et al., 2011; Brandman et al., 2018). Data from a single research session were

concatenated together. A decoder was trained using half of the data available for a session

without replacement and then used to predict the mean angular error for the other half of the

data set. Decoder predictions were bootstrapped 100 times.

3.7.2 Offline Assessment of Noise.—Our standard practice is to normalize real-time

neural features using the mean and the standard deviation of the previous block’s worth of

data; this is done to mitigate the effect of signal nonstationarities (Jarosiewicz et al., 2015).

We also use m = 40 features, selected according to a signal-to-noise ratio (Malik et al.,

2015).

As part of the offline analysis, for each session, we incrementally calibrated Kalman

decoders in chronological order of recorded blocks. We then computed the number of times

a feature exceeded a z-score offset in the next block. For instance, to compute the number of

noise events at two z-scores for trial day 295, block 5, we computed the z-score mean and

standard deviations based on data for blocks 1 to 4 and then counted the number of 20 ms

blocks with deviations more than two z-scores away from the mean for each feature.

4 Results

4.1 Offline Analysis: Quantifying the Effect of Noise on Closed-Loop Neural Decoding.

We investigated the impact of noise injection for both the Kalman and MK-DKF decoders

by performing offline simulations of previously collected data. There were 124 research

sessions recorded from participant T10. We identified 96 sessions and a total of 48.2 hours

of closed-loop neural control of a computer cursor, during which many variations of

strapped the data 100 times into nonoverlapping training and testing sets (50–50 splits), and

then used the training data set to compute the coefficients for both the Kalman and MK-DKF

decoders. We measured decoder performance using the predicted angular error between the

simulated decoded direction and the known vector from cursor to target (see section 3.7.1).

Our implementation of the Kalman decoder for closed-loop neural control (Jarosiewicz et

al., 2015; Bacher et al., 2015; Brandman et al., 2018) uses a measure of signal-to-noise to

Brandman et al. Page 10

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

subselect 40 of the 384 features to be used in closed-loop decoding (Malik et al., 2015). We

added noise to the single feature with the highest signal-to-noise ratio in the testing data set

(see Figure 3A). With the Kalman decoder, we found a nearly linear relationship between

the amount of injected noise and the percent change in angular error (R2 = 0.994, p < 10–24).

We then repeated this experiment using the same features for both calibration and noise

injection with the MK-DKF decoder. We found that noise injection had only minimal

changes to the MK-DKF performance despite large noise injection values.

Given the detrimental effect of z-score offsets on decoding performance, a straightforward

solution would be to simply saturate the features used for decoding. That is, all values

greater than a saturation value (e.g., two z-scores) would be set to the saturation value. We

computed the change in angular error as a function of feature saturation threshold (see

Figure 3B). We found that the angular error decreased as saturation levels increased,

reaching the base performance at two z-scores. These results suggested that features could

be saturated at two z-scores without a negative impact on decoding performance.

Next, we quantified the frequency at which two z-score noise events occurred. Across all

features, the two z-score deviations occurred 5.6% ±1.2 (SD) of observed 20 ms bins (see

Figure 3C). Importantly, the same features that had large noise events were those that were

highly informative and incorporated into the Kalman filter according to the feature’s SNR

(Malik et al., 2015). Since real-time neural decoding is commonly performed in 20 ms bins,

these results suggest that apparent noise events are observed roughly three times per second

with our current clinical research-grade neural recording setup.

Intuitively, the data sparsification used with the MK-DKF decoder should result in lower

performance with the Kalman filter. Sparsification of the linear data set would result in the

regression variance being greatly underestimated, and hence result in lower offline decoding

performance. To quantify the effect of sparsification with the Kalman, we averaged the

training data into octants and computed performance using mean angular error. For 95 of the

96 experimental sessions, sparsifying the data resulted in a statistically significant increase

in mean angular error (paired t-test with Bonferonni correction, p < 0.05), with an overall

mean increase of 16% ± 2 (SD).

Taken together, these results suggest that (1) the Kalman decoder is highly sensitive to z-

score offsets, even arising from a single feature; (2) z-score offsets that degrade decoding

performance for the Kalman occur approximately three times per second; and (3) principled

thresholding of features will alleviate some of the effects of z-score offsets. These results

also suggest that the MK-DKF is relatively insensitive to z-score offsets for single features.

4.2 Online Analysis: Closed-Loop Assessment of Both the Kalman and MK-DKF
Decoders.

We characterized the effect that noise events had on closed-loop neural decoding with T10

(see Figure 4A, supplementary movie 1 online). At the start of the research session, we first

calibrated both the Kalman and MK-DKF decoders and then matched their kinematic

coefficients and the subset of features used for decoding (see section 3.5). Next, we

performed a double-blinded randomization procedure where both the decoder and the

Brandman et al. Page 11

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

amount of noise injected were randomly selected every two targets. Neither T10 nor the

researchers were aware of the current decoder/noise combination. Noise was injected by

offsetting the z-score of a single feature, standardized for both decoders (see section 3.5).

T10 was presented with 596 targets in a center-out task over three research sessions (trial

days 259, 265, and 272). For the Kalman decoder, there was a statistically significant dose-

dependent response between the amount of injected noise (no noise, one z-score offset, and

five z-score offsets) and the percentage of targets acquired within a 5 second time-out (χ2, p
< 10–37). By contrast, there was no statistically significant difference between the three noise

conditions with the MK-DKF decoder (χ2, p = 0.81).

We note that in this comparison, the percentage of targets acquired by the MK-DKF decoder

was inferior to that of the Kalman decoder without injected noise (see Figure 4A). In order

to have performed this comparison, we matched the kinematic coefficients of the MK-DKF

to the Kalman decoder (see section 3.5). This ensured that the “feel” of the decoders was

indistinguishable, allowing us to perform the randomized experiment. However, in so doing,

we were likely selecting suboptimal kinematic coefficients for the decoder.

To quantify the performance of both decoders without injected noise and with optimal

kinematic parameters, we calibrated the Kalman and MK-DKF decoders using their

respective optimal kinematic coefficients. After decoder calibration, T10 acquired targets in

the grid task, and the decoder being used was alternated every block (see Figure 4B). There

was no statistically significant difference in bit rate between the two decoders (trial days 272

and 300, N = 12 blocks, Wilcoxon rank-sum test p = 0.48).

5 Discussion

A new neural decoder based on gaussian process regression (MK-DKF) was more resilient

to noise than the traditionally used linear decoding strategy used for closed-loop neural

control. When z-score offsets were added to single channels in the Kalman filter, the

decoding performance degraded; this was not seen with the MK-DKF decoding approach.

After optimizing the parameterizations of both decoders, the communication bit rate was not

statistically different.

5.1 Addressing Nonstationarities in Neural Data.

Robust and reliable control with an intracortical brain-computer interface is predicated on

the properties of the decoding algorithm selected to map high-dimensional neural features to

low-dimensional commands used to control external effectors. End-effector control degrades

without recalibration of decoder parameters (Jarosiewicz et al., 2015; Perge et al., 2013). To

this end, multiple solutions have been proposed to recalibrate decoders based on closed-loop

neural data during use, either when targets are known (Hochberg et al., 2006, 2012; Kim et

al., 2008; Jarosiewicz et al., 2013; Collinger et al., 2013; Wodlinger et al., 2015; Gilja et al.,

2015; Orsborn et al., 2014; Shanechi et al., 2017; Dangi et al., 2011; Carmena, 2013) or

retrospectively inferred (Jarosiewicz et al., 2015). Other approaches have investigated BCI

decoder robustness using a wide variety of specific methods, including adapting a

discriminative Bayesian filter (Brandman et al., 2018), refitting a Kalman filter (Gilja et al.,

Brandman et al. Page 12

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2012; Dangi, Orsborn, Moorman, & Carmena, 2013), Bayesian updating for an unscented

Kalman filter (Li et al., 2011), reweighting a naive Bayes classifier (Bishop et al., 2014),

retraining a kernelized ARMA model (Shpigelman et al., 2008), and reinforcement learning

(Mahmoudi, Pohlmeyer, Prins, Geng, & Sanchez, 2013; Pohlmeyer, Mahmoudi, Geng,

Prins, & Sanchez, 2014), among others.

Rather than adapting the coefficients of the decoder given new closed- loop data, the goal of

robust model selection is to design the decoder to be more resilient to nonstationarities. One

previously described decoder achieved robustness with a multiplicative recursive neural

network and augmenting the training data with perturbations that mimicked the desired

nonstationities against which they wished to train (Sussillo et al., 2016). For example, in

order to train against dropping the ith neuron, exemplars were added to the training data set

where the ith neuron had been zeroed out. This technique of augmenting a training set with

noisy data is well established for increasing generalization performance in neural networks

and is commonly referred to as data augmentation (An, 1996). It requires generating and

training over new artificial data for each individual targeted nonstationarity for each feature.

Hence, exemplars generated to protect the decoder against dropping the ith feature do not

protect against dropping the jth feature.

While effective, there are limitations in applying data augmentation for closed-loop BCI

systems for human users. First, one of the goals of pursuing iBCI research for people is to

develop devices that are intuitive and easy to use, with minimal technician oversight, and

require minimal calibration time. It would not be possible to apply a deep neural network

with a bagging technique in the case where the user is using the system with limited

available data, such as using the system for the first time (Brandman et al., 2018). Second,

the system requires significant computational resources. Bagging enlarges an already

massive data set by orders of magnitude, entailing a commensurate increase in training

burden for the neural network. At least with today’s available hardware and the requirement

for local computation, the increase in computational resources would not be possible for

portable iBCI systems to be used inside homes. By contrast, the MK-DKF decoder did not

require explicit training to acquire robustness. The robust kernel design was able to

distinguish between signal and noise within 3 minutes of calibration.

We note that one straightforward approach to decoder robustness with a linear decoding

strategy such as the Kalman filter would be to saturate features. We found that saturating the

neural features beyond two z-scores did not have a negative impact on offline decoder

performance (see Figure 3B), making the decoder resistant to large feature deviations (see

Figure 3A). The MK-DKF decoder did not require explicit training or setting a signal

saturation threshold to acquire robustness. The robust kernel design was able to distinguish

between signal and noise within 3 minutes of calibration.

While a z-score offset to the Kalman would be predicted to result in a degradation in

performance, it was not known a priori the extent to which a user would be able to

compensate for the bias that would develop during closed-loop performance. We have

previously described how closed-loop cursor control degrades with a baseline shift in firing

rate of a neuron, resulting in a cursor bias (Perge et al., 2013), and described strategies that

Brandman et al. Page 13

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

may be used to enhance control for the user (Jarosiewicz et al., 2015). Our results quantified

the effect of signal degradation as a function of z-score offset. We did not observe a noise-

dependent degradation of the MK-DKF decoder and demonstrated its resistance compared to

the Kalman filter.

5.2 Experimental Design.

To our knowledge, our methodological approach to comparing decoders by randomly

interleaving decoders in real time has not been described in the human iBCI literature. There

are two alternative research designs that we could have taken. First, we could have tested the

Kalman on one day and the MK-DKF on the next. However, the experience of multiple iBCI

groups (Jarosiewicz et al., 2015; Collinger et al., 2013; Bouton et al., 2016) suggests that

decoder performance may change dramatically from day to day. Hence, this approach would

need a large number of research sessions to demonstrate changes in decoder performance

that could not be better explained by signal interday nonstationarities. We opted not to take

this approach in the interest of decreasing the amount of session time where the user was

deliberately presented with a decoder that would “break” periodically from noise injection.

Second, we could have calibrated a decoder and then immediately tested it (Kalman), and

then switched decoders and repeated the procedure (MK-DKF). Indeed, this block-by-block

approach has already been described in examining the neural decoding using gaussian

process regression (Brandman et al., 2018). However, T10 had previously told us that trying

to use a decoder when it “wasn’t working properly” was “hard work.” In fact, he would stop

trying to control the cursor when he thought it was not working well as he was already aware

that “we could do better.” Given that we were deliberately causing the decoder not to work

properly by noise injection, it was important for us not to design an experiment where T10

would simply give up if he knew which decoder was currently being used. Hence, blinding

T10 to the decoder became critical.

We note that the goal of this experiment was to compare two different decoding algorithms

with a similar linear state-space decoding setup. However, the kinematic parameters used in

linear state-space-models have a substantial effect on decoding performance (Willett et al.,

2017). Hence, in order to isolate exactly the effect of the decoder, we needed to ensure that

all of the relevant variables of kinematic parameters were controlled. We designed an

experiment where T10, as well as the researchers in the room, would be blinded to the

decoder and the amount of injected noise.

5.3 Growth Directions for MK-DKF.

Our implementation of the MK-DKF decoder provides an exciting foundation from which to

explore decoder robustness. For instance, our approach naively provided a uniformly

weighted linear addition of multiple kernels, thereby making the explicit assumption that

each feature is equally important for decoding. One approach would be to incorporate

techniques in kernel learning (Gonen & Alpaydin, 2011). For instance, one could learn a

convex sum of weights for the linear combination of kernels that “align:” to a training kernel

(Cortes, Mohri, & Rostamizadeh, 2012). Alternatively, one could be explore alternative

distance metrics. For instance, rather than using Euclidean distances between features, one

Brandman et al. Page 14

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

could apply a spike train distance metric (Victor & Purpura, 1997). This metric can be

adapted as a valid kernel embedding function and used for decoding neural data (Park, Seth,

Paiva, Li, & Principe, 2013; Brockmeier et al., 2014; Li, Brockmeier, Choi, Francis,

Sanchez, & Principe, 2014). It has also been shown to perform better than Euclidean

distances when visualizing complex neuronal data sets (VargasIrwin, Brandman,

Zimmermann, Donoghue, & Black, 2015).

6 Conclusion

BCIs have the potential improve the quality of life for people with paralysis. Here we

present experimental evidence that a decoder using gaussian process regression is robust to

nonstationarities in neural signals compared to the previously used Kalman filter.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank participant T10 and his family; B. Travers and D. Rosler for administrative support; C. Grant for clinical
assistance; and Arthur Gretton for discussions on kernel selection. This work was supported by the National
Institutes of Health: National Institute on Deafness and Other Communication Disorders (NIDCD R01DC009899),
Rehabilitation Research and Development Service, Department of Veterans Affairs (B6453R and N9228C);
National Science Foundation (DMS1309004); National Institutes of Health (IDeA P20GM103645,
R01MH102840); Massachusetts General Hospital (MGH)—Deane Institute for Integrated Research on Atrial
Fibrillation and Stroke; Joseph Martin Prize for Basic Research; the MGH Executive Committee on Research
(ECOR) of Massachusetts General Hospital; Canadian Institute of Health Research (336092); Killam Trust Award
Foundation; and Brown Institute of Brain Science. The content of this letter is solely our responsibility and does not
necessarily represent the official views of the National Institutes of Health, the Department of Veterans Affairs, or
the U. S. government.

References

An G (1996). The effects of adding noise during backpropagation training on a generalization
performance. Neural Comput, 8(3), 643–674.

Ba D, Temereanca S, & Brown EN (2014). Algorithms for the analysis of ensemble neural spiking
activity using simultaneous-event multivariate point-process models. Frontiers in Computational
Neuroscience, 8, 6. [PubMed: 24575001]

Bacher D, Jarosiewicz B, Masse NY, Stavisky SD, Simeral JD, Newell K, … Hochberg LR (2015).
Neural point-and-click communication by a person with incomplete locked-in syndrome.
Neurorehabilitation and Neural Repair, 29(5), 462–471. [PubMed: 25385765]

Bishop W, Chestek CC, Gilja V, Nuyujukian P, Foster JD, Ryu SI,… Yu BM (2014). Self-recalibrating
classifiers for intracortical brain-computer interfaces. J. Neural Eng, 11(2), 026001. [PubMed:
24503597]

Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, Nielson DM, … Rezai AR
(2016). Restoring cortical control of functional movement in a human with quadriplegia. Nature,
533, 247–250. [PubMed: 27074513]

Brandman DM, Hosman T, Saab J, Burkhart MC, Shanahan BE, Ciancibello JG, … Hochberg LR
(2018). Rapid calibration of an intracortical brain-computer interface for people with tetraplegia.
Journal of Neural Engineering, 15(2), 026007.

Brockmeier AJ, Choi JS, Kriminger EG, Francis JT, & Principe JC (2014). Neural decoding with
kernel-based metric learning. Neural Computation, 26(6), 1080–1107. [PubMed: 24684447]

Brandman et al. Page 15

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brown E, Barbieri R, Ventura V, Kass R, & Frank L (2002). The time-rescaling theorem and its
application to neural spike train data analysis. Neural Computation, 14(2), 325–346. [PubMed:
11802915]

Burkhart MC, Brandman DM, Vargas-Irwin CE, & Harrison MT (2016). The discriminative Kalman
filter for nonlinear and non-gaussian sequential Bayesian filtering. arXiv:1608/06622 [stat ML].

Carmena JM (2013). Advances in neuroprosthetic learning and control. PLoS Biology, 11(5), 1–4.

Chestek CA, Cunningham JP, Gilja V, Nuyujukian P, Ryu SI, & Shenoy KV (2009). Neural prosthetic
systems: Current problems and future directions. In Proceedings of the 2009 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3369–3375).
Piscataway, NJ: IEEE.

Chhatbar PY, & Francis JT (2013). Towards a naturalistic brain-machine interface: Hybrid torque and
position control allows generalization to novel dynamics. PLoS One, 8(1), e52286.

Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ,… Schwartz AB
(2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet,
381(9866), 557–564. [PubMed: 23253623]

Cortes C, Mohri M, & Rostamizadeh A (2012). Algorithms for learning kernels based on centered
alignment. Journal of Machine Learning, 13, 795–828.

Dangi S, Gowda S, Heliot R, & Carmena JM (2011). Adaptive Kalman filtering for closed-loop brain-
machine interface systems. In Proceedings of the 2011 5th International IEEE/EMBS Conference
on Neural Engineering (pp. 609–612). Piscataway, NJ: IEEE.

Dangi S, Orsborn AL, Moorman HG, & Carmena JM (2013). Design and analysis of closed-loop
decoder adaptation algorithms for brain-machine interfaces. Neural Comput, 25(7), 1693–1731.
[PubMed: 23607558]

Fetz EE (2007). Volitional control of neural activity: Implications for brain-computer interfaces.
Journal of Physiology, 579(Pt. 3), 571–579. [PubMed: 17234689]

Georgopoulos A, Kalaska J, Caminiti R, & Massey J (1982). On the relations between the direction of
two-dimensional arm movements and cell discharge in primate motor cortex. Journal of
Neuroscience, 2(11), 1527–1537. [PubMed: 7143039]

Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM, … Shenoy KV (2012). A high-
performance neural prosthesis enabled by control algorithm design. Nat. Neurosci, 15(12), 1752–
1757. [PubMed: 23160043]

Gilja V, Pandarinath C, Blabe CH, Nuyujukian P, Simeral JD, Sarma AA, … Henderson JM (2015).
Clinical translation of a high-performance neural prosthesis. Nature Medicine, 21(10), 1142–1145.

Gönen M, & Alpaydin E (2011). Multiple kernel learning algorithms. Journal of Machine Learning
Research, 12,2211–2268.

Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, … Donoghue JP (2012).
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature,
485(7398), 372–375. [PubMed: 22596161]

Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, … Donoghue JP (2006).
Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099),
164–171. [PubMed: 16838014]

Homer ML, Perge JA, Black MJ, Harrison MT, Cash SS, & Hochberg LR (2014). Adaptive offset
correction for intracortical brain-computer interfaces. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 22(2), 239–248. [PubMed: 24196868]

Jarosiewicz B, Chase SM, Fraser GW, Velliste M, Kass RE, & Schwartz AB (2008). Functional
network reorganization during learning in a brain-computer interface paradigm. Proceedings of the
National Academy of Sciences of the United States of America, 105(49), 19486–19491. [PubMed:
19047633]

Jarosiewicz B, Masse NY, Bacher D, Cash SS, Eskandar E, Friehs G, .. . Hochberg LR (2013).
Advantages of closed-loop calibration in intracortical brain-computer interfaces for people with
tetraplegia. Journal of Neural Engineering, 10(4), 046012.

Jarosiewicz B, Sarma AA, Bacher D, Masse NY, Simeral JD, Sorice B, … Hochberg LR (2015).
Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer
interface. Science Translational Medicine, 7(313), 1–11.

Brandman et al. Page 16

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kass RE, Ventura V, & Brown EN (2005). Statistical issues in the analysis of neuronal data. J.
Neurophysiol, 94, 8–25. [PubMed: 15985692]

Kim S-P, Simeral JD, Hochberg LR, Donoghue JP, & Black MJ (2008). Neural control of computer
cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. Journal of
Neural Engineering, 5(4), 455–476. [PubMed: 19015583]

Lebedev MA, & Nicolelis MAL (2006). Brain-machine interfaces: Past, present and future. Trends in
Neurosciences, 29(9), 536–546. [PubMed: 16859758]

Lebedev MA, & Nicolelis MA (2017). Brain-machine interfaces: From basic science to
neuroprostheses and neurorehabilitation. Physiol. Rev, 97(2), 767–837. [PubMed: 28275048]

Li L, Brockmeier AJ,Choi JS, Francis JT, Sanchez JC, & Principe JC (2014). A tensor-product-kernel
framework for multiscale neural activity decoding and control. Computational Intelligence and
Neuroscience, 2014, art. 2.

Li Z, O’Doherty JE, Lebedev MA, & Nicolelis MA (2011). Adaptive decoding for brain-machine
interfaces through Bayesian parameter updates. Neural Comput, 23(12), 3162–3204. [PubMed:
21919788]

Mahmoudi B, Pohlmeyer EA, Prins NW, Geng S, & Sanchez JC (2013). Towards autonomous
neuroprosthetic control using Hebbian reinforcement learning. J. Neural Eng, 10(6), 066005.

Malik WQ, Hochberg LR, Donoghue JP, Brown EN, Member S, Hochberg LR,… Brown EN (2015).
Modulation depth estimation and variable selection in state-space models for neural interfaces.
IEEE Trans. Biomed. Eng, 62(2), 570–581. [PubMed: 25265627]

Masse NY, Jarosiewicz B, Simeral JD, Bacher D, Stavisky SD, Cash SS, … Donoghue JP (2015).
Non-causal spike filtering improves decoding of movement intention for intracortical BCIs.
Journal of Neuroscience Methods, 244,94–103. [PubMed: 25681017]

Maynard EM, Nordhausen CT, & Normann RA (1997). The Utah intracortical electrode array: A
recording structure for potential brain-computer interfaces. Electroencephalography and Clinical
Neurophysiology, 102(3), 228–239. [PubMed: 9129578]

Nuyujukian P, Fan JM, Kao JC, Ryu SI, & Shenoy KV (2015). A highperformance keyboard neural
prosthesis enabled by task optimization. IEEE Transactions on Biomedical Engineering, 62(1),
21–29. [PubMed: 25203982]

Orsborn AL, Moorman HG, Overduin SA, Shanechi MM, Dimitrov DF, & Carmena JM (2014).
Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control.
Neuron, 82(6), 1380–1393. [PubMed: 24945777]

Pandarinath C, Nuyujukian P, Blabe CH, Sorice BL, Saab J, Willett F,… Henderson JM (2017). High
performance communication by people with paralysis using an intracortical brain-computer
interface. eLife, 1–27.

Park IM, Seth S, Paiva ARC, Li L, & Principe JC (2013). Kernel methods on spike train space for
neuroscience: A tutorial. IEEE Signal Processing Magazine, 30(4), 149–160.

Perge JA, Homer ML, Malik WQ, Cash S, Eskandar E, Friehs G, … Hochberg LR (2013). Intra-day
signal instabilities affect decoding performance in an intracortical neural interface system. Journal
of Neural Engineering, 10(3), 036004.

Pohlmeyer EA, Mahmoudi B, Geng S, Prins NW, & Sanchez JC (2014). Using reinforcement learning
to provide stable brain-machine interface control despite neural input reorganization. PLoS One,
9(1), 1–12.

Rasmussen CE, & Williams CKI (2006). Gaussian processes for machine learning. Cambridge, MA:
MIT Press.

Schwartz AB, Cui XT, Weber DJ, & Moran DW (2006). Brain-controlled interfaces: Movement
restoration with neural prosthetics. Neuron, 52(1), 205–220. [PubMed: 17015237]

Shanechi MM, Orsborn AL, & Carmena JM (2016). Robust brain-machine interface design using
optimal feedback control modeling and adaptive point process filtering. PLoS Computational
Biology, 12(4), 1–29.

Shanechi MM, Orsborn AL, Moorman HG, Gowda S, Dangi S, & Carmena JM (2017). Rapid control
and feedback rates enhance neuroprosthetic control. Nature Communications, 8, 13825.

Brandman et al. Page 17

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shpigelman L, Lalazar H, & Vaadia E (2008). Kernel-ARMA for hand tracking and brain-machine
interfacing during 3D motor control In Koller D, Schuurmans D, Bengio Y, & Bottou L (Eds.),
Neural information processing systems, 21 (pp. 1489–1496). Red Hook, NY: Curran.

Simeral JD, Kim S-P, Black MJ, Donoghue JP, & Hochberg LR (2011). Neural control of cursor
trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical
microelectrode array. Journal of Neural Engineering, 8(2), 025027.

Sussillo D, Stavisky SD, Kao JC, Ryu SI, & Shenoy KV (2016). Making brain-machine interfaces
robust to future neural variability. Nature Communications, 7, 1–12.

Taylor DM, Tillery SIH, & Schwartz AB (2002). Direct cortical control of 3D neuroprosthetic devices.
Science, 296(5574), 1829–1832. [PubMed: 12052948]

Truccolo W, Friehs GM, Donoghue JP, & Hochberg LR (2008). Primary motor cortex tuning to
intended movement kinematics in humans with tetraplegia. Journal of Neuroscience, 28(5), 1163–
1178. [PubMed: 18234894]

Vargas-Irwin CE, Brandman DM, Zimmermann JB, Donoghue JP, & Black MJ (2015). Spike train
SIMilarity Space (SSIMS): A framework for single neuron and ensemble data analysis. Neural
Computation, 27(1), 1–31. [PubMed: 25380335]

Velliste M, Perel S, Spalding MC, Whitford AS, & Schwartz AB (2008). Cortical control of a
prosthetic arm for self-feeding. Nature, 453(7198), 1098–1101. [PubMed: 18509337]

Victor J, & Purpura K (1997). Metric-space analysis of spike trains: Theory, algorithms and
application. Network: Computation in Neural Systems, 8(2), 127–164.

Willett FR, Pandarinath C, Jarosiewicz B, Murphy BA, Memberg WD, Blabe CH, … Ajiboye AB
(2017). Feedback control policies employed by people using intracortical brain-computer
interfaces. Journal of Neural Engineering, 14(1), 16001.

Wodlinger B, Downey JE, Tyler-Kabara EC, Schwartz AB, Boninger ML, & Collinger JL (2015). Ten-
dimensional anthropomorphic arm control in a human brain machine interface: Difficulties,
solutions, and limitations. Journal of Neural Engineering, 12(1), 016011.

Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, & Vaughan TM (2002). Brain-computer
interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791. [PubMed:
12048038]

Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ, Biemenstock E,… Black MJ (2005). Bayesian
population decoding of motor cortical activity using a Kalman filter. Neural Computation, 18(1),
80–118.

Brandman et al. Page 18

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Schematic demonstrating the effect of kernel selection on the measure of similarity for two-

dimensional neural features. Since kernel similarity between two points depends on only

their coordinate-wise differences, we let p1 = (0, 0) be a point at the origin and consider the

kernel-determined similarity between p1 and a second point p2 = (x, y). For each plot, the

color at (x, y) represents the measure of similarity according to the selected kernel

Kθ p1, p2 . Traveling along the red line illustrates the effect of increasing the difference in

measurements for a single neuron. For the RBF kernel (A), moving along the arrow results

in the kernel becoming arbitrarily small. By contrast, the MK kernel (B) never falls below

half of the value at the origin as it moves along the arrow. For 40 dimensions, the MK kernel

would never fall below 39/40 of its maximal value. Hence, when the RBF kernel is used for

closed-loop decoding, nonstationarities from a single neural feature would result in no

similarity between the current neural feature and any of the training data. By contrast, the

MK kernel will remain relatively unaffected by even a drastic change in a single neuron and

continue to effectively use the information from the remaining neurons.

Brandman et al. Page 19

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
(A) Radial-8 task. Eight targets are presented on the screen (blue circle). T10 was instructed

to move the cursor (white circle) to the goal (red circle). Targets were acquired when the

cursor overlapped the target for 300 ms. (B) Grid task. Square targets were arranged in a

grid. T10 was instructed to move the cursor (white circle) to the target (green square). A

target was acquired when T10 held the cursor within any square for 1 second. Note that

unlike the radial-8 task, incorrect targets were scored.

Brandman et al. Page 20

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
(A) Change in angular error as a function of z-score offset for the Kalman filter, the Kalman

filter with feature saturation, and MK-DKF decoders. We identified 96 research sessions

where T10 performed closed-loop neural control. For each session, we performed a 50–50

split of the data and used the training data to compute the coefficients for the decoders; then

we predicted the angular error on the testing data. Next, we added a z-score offset to a single

channel (standardized for each decoder). The shaded areas represent the standard error of

measurement for each decoder. (B) Change in angular error as a function of feature

thresholding. During the bootstrapping procedure, we saturated features for both the training

and testing data sets and computed the change in angular error compared to no saturation.

The shaded area represents the standard error of measurement. (C) Examining the frequency

of noise events. For each of the bootstrapped simulations, we counted the frequency at

which each feature was incorporated into the decoder (m = 40), as well as the frequency at

which the feature was observed to deviate by more than two z-scores.

Brandman et al. Page 21

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
(A) Percentage of targets acquired during closed-loop cursor control by T10 in the radial-8

task. On research days 259, 265, 272, and 300, T10 acquired targets wherein the decoder

(Kalman and MK-DKF) and the amount of noise (no noise, one z-score, five z-scores) were

randomly selected. There was no statistically significant difference in performance across

the noise injection trials for the MK-DKF decoder (χ2, p = 0.81) There was a statistically

significant difference across conditions for the Kalman decoder (χ 2, p < 10–37). To ensure

that T10 could not distinguish between which decoder was being used, the kinematic

parameters of the MK-DKF matched to the Kalman decoder. (B) Performance of both the

MK-DKF and Kalman decoders with optimal kinematic parameters. There was no

statistically significant difference in bit rate between the two decoders (trial days 272 and

300, Wilcoxon rank-sum test p = 0.48).

Brandman et al. Page 22

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Introduction
	Mathematical Methods
	Description of Decoding Method.
	Kernel Selection for Robustness.
	Training Set Sparsification for Robustness.

	Experimental Methods
	Permissions.
	The Participant.
	Signal Acquisition.
	Decoder Calibration.
	Noise Injection Experiment.
	Performance Measurement.
	Offline Analysis.
	Injecting Noise for the MK-DKF and Kalman Decoders.
	Offline Assessment of Noise.

	Results
	Offline Analysis: Quantifying the Effect of Noise on Closed-Loop Neural Decoding.
	Online Analysis: Closed-Loop Assessment of Both the Kalman and MK-DKF Decoders.

	Discussion
	Addressing Nonstationarities in Neural Data.
	Experimental Design.
	Growth Directions for MK-DKF.

	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:

