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Abstract

Intracortical brain computer interfaces can enable individuals with paralysis to control external 

devices through voluntarily modulated brain activity. Decoding quality has been previously shown 

to degrade with signal nonstationarities—specifically, the changes in the statistics of the data 

between training and testing data sets. This includes changes to the neural tuning profiles and 

baseline shifts in firing rates of recorded neurons, as well as nonphysiological noise. While 

progress has been made toward providing long-term user control via decoder recalibration, 

relatively little work has been dedicated to making the decoding algorithm more resilient to signal 

nonstationarities. Here, we describe how principled kernel selection with gaussian process 

regression can be used within a Bayesian filtering framework to mitigate the effects of commonly 

encountered nonstationarities. Given a supervised training set of (neural features, intention to 
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move in a direction)-pairs, we use gaussian process regression to predict the intention given the 

neural data. We apply kernel embedding for each neural feature with the standard radial basis 

function. The multiple kernels are then summed together across each neural dimension, which 

allows the kernel to effectively ignore large differences that occur only in a single feature. The 

summed kernel is used for real-time predictions of the posterior mean and variance under a 

gaussian process framework. The predictions are then filtered using the discriminative Kalman 

filter to produce an estimate of the neural intention given the history of neural data. We refer to the 

multiple kernel approach combined with the discriminative Kalman filter as the MK-DKF. We 

found that the MK-DKF decoder was more resilient to nonstationarities frequently encountered in-

real world settings yet provided similar performance to the currently used Kalman decoder. These 

results demonstrate a method by which neural decoding can be made more resistant to 

nonstationarities.

1 Introduction

Brain-computer Interfaces (BCIs) use neural information recorded from the brain for the 

voluntary control of external devices (Wolpaw, Birbaumer, McFarland, Pfurtscheller, & 

Vaughan, 2002; Hochberg et al., 2006; Schwartz, Cui, Weber, & Moran, 2006; Lebedev & 

Nicolelis, 2006, 2017; Fetz, 2007; Chestek et al., 2009; Carmena, 2013; Chhatbar & Francis, 

2013). At the heart of BCI systems is the decoder: the algorithm that maps neural 

information to a signal used to control external devices. Modern intracortical BCI decoders 

used by people with paralysis infer a relationship between neural features (e.g., neuronal 

firing rates) and the motor intentions from training data. Hence, high-quality control of an 

external effector, such as a computer cursor, is predicated on appropriate selection of a 

decoding algorithm.

Decoder selection for intracortical BCI (iBCI) systems traditionally has been based on 

extensive study of cortical physiology. In what are now classic experiments, nonhuman 

primates were taught to move a planar manipulandum to one of eight different directions 

(Georgopoulos, Kalaska, Caminiti, & Massey, 1982). The firing rate as a direction of arm 

movement was parsimoniously modeled as a sinusoidal curve. For each neuron, the vector 

corresponding to the maximum firing rate (i.e., the phase offset of a cosine function with a 

period of 360 degrees) is often referred to as the neuron’s “preferred direction.” The 

population vector algorithm scales the preferred directions of the recorded neurons by their 

recorded firing rate; the sum is the decoded vector of the intended direction of neural control 

(Taylor, Tillery, & Schwartz, 2002; Jarosiewicz et al., 2008; Velliste, Perel, Spalding, 

Whitford, & Schwartz, 2008). Given sufficient diversity in preferred directions, the problem 

reduces to linear regression: decoding involves learning the least-squares solution to the 

surface mapping firing rates to kinematic variables (Kass, Ventura, & Brown, 2005). 

Alternative decoding approaches include modeling the probability of observing a neural 

spike as a draw from a time-varying Poisson process (Truccolo, Friehs, Donoghue, & 

Hochberg, 2008; Brown, Barbieri, Ventura, Kass, & Frank, 2002; Ba, Temereanca, & 

Brown, 2014; Shanechi et al., 2017), using support-vector regression (Shpigelman, Lalazar, 

& Vaadia, 2008) or neural networks (Sussillo, Stavisky, Kao, Ryu, & Shenoy, 2016).
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An ongoing area of research in iBCI systems is to ensure robust control for the user. 

Degradation in neural control is often attributed to nonstation-arities in the recorded signals, 

which are mismatches in the statistics of the neural signals between training and testing 

models. These include changes to neural tuning profiles, baseline shifts in firing rates, and 

nonphysiological noise. With linear models, nonstationarities have been shown to degrade 

decoding performance (Jarosiewicz et al., 2015; Perge et al., 2013). The most common 

approach to addressing this mismatch is to recalibrate the decoder’s parameters by 

incorporating more recent neural data. This has been described using batch-based updates 

with user-defined breaks (Jarosiewicz et al., 2015; Bacher et al., 2015; Gilja et al., 2015), 

batch-based updates during ongoing use (Orsborn et al., 2014; Shpigelman et al., 2008), and 

continuous updating during ongoing use (Shanechi, Orsborn, & Carmena, 2016; Dangi, 

Gowda, Heliot, & Carmena, 2011). Ongoing decoder recalibration traditionally requires 

information regarding the cursor’s current location and a known target; alternatively, 

retrospective target inference has been described as a way to label neural data with the BCI 

user’s intended movement directions based on selections during self-directed onscreen 

keyboard use (Jarosiewicz et al., 2015).

While attempts to mitigate nonstationarities have largely focused on recalibration, few 

efforts have aimed to make the decoder inherently more resilient to nonstationarities. To our 

knowledge, the most extensive study of examining decoder robustness investigated the use 

of deep neural networks trained from large amounts of offline data (Sussillo et al., 2016). 

While effective for decoding, this method requires tremendous computational data and 

resources and required the decoder to be specifically trained to handle nonstationarities 

using extensive regularization. Other authors have used Bayesian parameter updates for 

addressing nonstationarities (Li, O’Doherty, Lebedev, & Nicolelis, 2011), or adaptive mean 

corrections (Homer et al., 2014).

Here, we demonstrate a new decoding algorithm that is more resilient to signal 

nonstationarities than the currently used linear decoding models. Our approach builds on the 

previously well-established linear state-space dynamical model for neural decoding. 

Building on prior work with gaussian process regression (Brandman et al., 2018), the key 

innovation is making a nonlinear decoder robust to noise through kernel selection and data 

sparsification. Using both offline simulations and online demonstrations with an iBCI user 

with paralysis, we demonstrate that our new decoding approach is more resilient to 

nonstationarities than the standard Kalman filter currently being used in people.

2 Mathematical Methods

We have previously described closed-loop decoding using gaussian process regression in 

detail (Brandman et al., 2018). Briefly, during calibration, (xi, zi) pairs, representing pairs of 

neural features and user intention vectors, are collected. We model the neural features as the 

firing rates and the total power in the bandpass-filtered signal (see section 3.3) and intentions 

as the unit vector to target (see section 3.4). To perform closed-loop decoding, we compute f 
(xt), the unfiltered estimate of the user’s intention to control the computer cursor at time t 
(see section 2.2). We then filter f (xt) using the discriminative Kalman filter (see section 2.1), 

Brandman et al. Page 3

Neural Comput. Author manuscript; available in PMC 2020 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which provides an estimate of the decoded velocity while incorporating the history of neural 

features.

Our previous approach to decoding with gaussian process regression used the entire high-

dimensional neural data set as the basis for computing the measure of similarity between xt 

and xi (Brandman et al., 2018). In this letter, we made two important changes to the decoder 

to increase its robustness to signal nonstationarities. First, we adopted a kernel that 

calculated the similarity between two neural vectors as the arithmetic average over 

similarities in each neuron, as opposed to the product that was used by the more standard 

isotropic gaussian kernel (see section 2.2). This had the effect of limiting the impact any 

single neuron could have on the calculated similarity between two vectors of neural features. 

When a nonstationarity occurred in a feature, the decoder “disregarded” this feature without 

compromising decoding quality. Second, we sparsified the data by averaging (xi, zi) pairs 

into octants. This dramatically decreased the computational load for real-time decoding. We 

found that the observed neural features had noise events with surprising frequency (see 

section 3.1). Averaging across octants had the effect of mitigating the importance of these 

noisy features for decoding.

2.1 Description of Decoding Method.

In this section, we use the convention that random variables are capital letters and their 

values are lowercase. For instance, Zt has pdf p(zt). We also emphasize that the i and t 
subscripts refer to the training and testing data sets, respectively. We model the hidden state-

space model with states Z1, …, ZT ∈ ℝd representing the intended cursor velocity, and the 

observed states X1, …, XT ∈ ℝm representing the neural features related through the 

following graphic model:

Z1 …

X1

Zt − 1

Xt − 1

Zt …

Xt

ZT

XT

In typical use, d = 2 (e.g., kinematic computer cursor control), while m = 40 neural features 

(Jarosiewicz et al., 2013, 2015; Bacher et al., 2015; Brand- man et al., 2018). We are 

interested in the posterior distribution p zt | x1: t ′ being the current hidden state given all 

observations up to the present. Upon specifying the state model p zt | zt − 1  that relates how 

the hidden state changes over time and the measurement model p xt | zt  that relates the 

hidden and observed variables, the posterior can be found recursively using the Chapman-

Kolmogorov equation,

p zt x1: t ∝ p xt zt ∫ p zt zt − 1 p zt − 1 x1: t − 1 dzt − 1, (2.1)
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where α means proportional as a function of zt. The standard Kalman filter is obtained when 

both the state and measurement models are specified as linear with gaussian noise (Wu et al., 

2005; Simeral, Kim, Black, Donoghue, & Hochberg, 2011). Here, we use a stationary linear 

state model with gaussian noise

p z0 = ηd z0; 0, S , (2.2a)

p zt zt − 1 = ηd zt; Azt − 1, Γ , (2.2b)

where A, S, Γ are d × d, S and Γ are proper covariance matrices, S = ASA⊤ + Γ, and ηd(z; μ, Σ)

denotes the d-dimensional multivariate normal density with mean μ, and covariance Σ 
evaluated at a point z. We approximate the measurement model using Bayes’ rule,

p xt zt ∝
p zt xt

p zt
≈

ηd zt; f xt , Q
ηd zt; 0, S

, (2.3)

where f :ℝm ℝd is a nonlinear function learned from training data and Q is a d×d 
covariance matrix. The posterior is then given recursively by

p zt x1: t ≈ ηd zt; μt, Σt ,
where μ1 = f x1 , Σ1 = Q, and for t ≥ 2,

(2.4)

Mt − 1 = AΣt − 1A⊤ + Γ,

Σt = Q−1 + Mt − 1
−1 − S−1 −1,

μt = Σt Q−1 f xt + Mt − 1
−1 Aμt − 1 .

(2.5)

In this way, we allow the relationship between Xt and Zt to be nonlinear through the function 

f, while retaining fast, closed-form updates for the posterior. While f can be learned from 

supervised training data using a number of off-the-shelf discriminative methods (Burkhart, 

Brandman, Vargas-Irwin, & Harrison, 2016), in this letter, we take f to be the posterior mean 

from a gaussian process regression and set Q as the covariance of the training data set. We 

call the resulting filter the discriminative Kalman filter (DKF; Burkhart et al., 2016; 

Brandman et al., 2018).
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2.2. Kernel Selection for Robustness.

As part of decoder calibration, we collect a data set consisting of neural features and 

intended velocities, which we refer to as xi, zi 1 ≤ i ≤ n
. These are assumed to be samples 

from the graphical model and are used to train a gaussian process regression for p zt | xt . The 

gaussian process model takes asymmetric, positive-definite kernel Kθ( ⋅ , ⋅ ) with 

hyperparameters θ and predicts the mean inferred velocity f(xt) as

f xt = k*
⊤ Kθ + σn

2In
−1z, (2.6)

where Kθ is the n × n matrix given component-wise by Kθi j = Kθ xi, x j , σn
2 is a noise 

parameter for the training data, In is the n-dimensional identity matrix, k*
⊤ is a1 × n vector of 

the embedding of the training and testing data, and z is an n × 1 vector of the direction 

vectors of a single dimension. We can reexpress equation 2.6 as a linear combination (see 

Rasmussen & Williams, 2006 for details):

f xt = ∑
i = 1

n
αiKθ xi, xt , (2.7)

where α = Kθ + σn
2In

−1
z so that αi is a smoothed version of zi. This demonstrates how the 

kernel-determined similarity between xi and xt directly determines the impact of the training 

point (xi, zi) on the prediction f(xt).

In designing a kernel for robust decoding, we select a kernel that ignores large differences 

between xi and xt that occur along a relatively few number of dimensions. This would 

potentially make the filter resilient to erratic firing patterns in an arbitrary single neuron.

We use a multiple kernel (MK) approach (Gönen & Alpaydin, 2011) and take

Kθ(x, y) = 1
mσ f

2 ∑
d = 1

m
η1 xd − yd; 0, σ𝓁

2 , (2.8)

where θ = σ f
2, σ𝓁

2  are hyperparameters and xd denotes the dth dimension of x. The similarity 

between inputs x and y is given as the average over the similarities in each dimension, where 

all dimensions are equally informative.

To illustrate our choice of kernel, it is helpful to compare it against the more standard 

isotropic squared exponential kernel, where the sum in equation 2.8 is replaced by a product, 

as follows:
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Kθ(x, y) = σ f
2 ∏

d = 1

m
η1 xd − yd; 0, σ𝓁

2 . (2.9)

On identical inputs x = y, the Kθ and Kθ both return their maximum value of σ f ′
2  indicating 

that x and y are similar. If, holding all other dimensions equal, the absolute difference xi − yi

grows large (this would occur if readings from a single neuron became very noisy or 

unreliable), the standard kernel Kθ would become arbitrarily small, while the multiple kernel 

Kθ would never fall below m − 1
m σ f

2 . Thus, the multiple kernel continues to identify two 

neural vectors as close if they differ along only a single arbitrary dimension (see Figure 1 

shows a visualization in two dimensions). Note that as m increases beyond two, this 

difference between the kernels becomes even more pronounced.

In contrast to data augmentation methods (An, 1996; Sussillo et al., 2016), we do not need to 

handle dropping neuron i and dropping neuron j separately. Altering our model to 

accommodate more or different nonstationarities would amount to a simple change in kernel 

and not result in increased training time.

2.3. Training Set Sparsification for Robustness.

Training data were gathered during a standard radial center-out task during which the user 

attempted to move the cursor to one of eight equally spaced targets arranged on a circle. We 

took the (xi, zi) pairs and averaged the neural data over each of the eight targets. The training 

set used for gaussian process prediction consisted of these eight (xi, zi) pairs. Besides 

making prediction much faster, we found that using this sparsified training set also increased 

decoder robustness (see sections 4.1 and 4.2).

3 Experimental Methods

3.1 Permissions.

The Institutional Review Boards of Brown University, Partners Health/Massachusetts 

General Hospital, and the Providence VA Medical Center, as well as the U.S. Food and Drug 

Administration, granted permission for this study (Investigational Device Exemption). The 

participants for this study were enrolled in a pilot clinical trial of the Brain-Gate Neural 

Interface System.1

3.2 The Participant.

At the time of the study, T10 was a 35-year-old man with a C4 AIS-A spinal cord injury. He 

underwent surgical placement of two 96-channel intracortical silicon microelectrode arrays 

(Maynard, Nordhausen, & Normann, 1997) as previously described (Simeral, Kim, Black, 

Donoghue, & Hochberg, 2011; Kim, Simeral, Hochberg, Donoghue, & Black, 2008). 

1ClinicalTrials.gov Identifier: NCT00912041. Caution: Investigational device. Limited by federal law to investigational use.
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Electrodes were placed into the dominant precentral gyrus and dominant caudal middle 

frontal gyrus. Closed-loop recording data were used from trial (postimplant) days 259, 265, 

272, and 300.

3.3 Signal Acquisition.

Raw neural signals for each electrode were sampled at 30 kHz using the NeuroPort System 

(Blackrock Microsystems, Salt Lake City, UT) and then processed using the xPC target real-

time operating system (Mathworks, Natick, MA). Raw signals were downsampled to 15 kHz 

for decoding, and then denoised by subtracting an instantaneous common average reference 

(Jarosiewicz et al., 2015; Gilja et al., 2015) using 40 of the 96 channels on each array with 

the lowest root-mean-square value. The denoised signals were bandpass-filtered between 

250 Hz and 5000 Hz using an eighth-order noncausal Butterworth filter (Masse et al., 2015). 

Spike events were triggered by crossing a threshold set at 3.5× the root-mean-square 

amplitude of each channel, as determined by data from a 1-minute reference block at the 

start of each research session. The following neural features were extracted: the rate of 

threshold crossings (not spike sorted) on each channel and the total power in the bandpass-

filtered signal (Jarosiewicz et al., 2013, 2015; Bacher et al., 2015; Brandman et al., 2018). A 

total of m = 40 features were selected. Neural features were binned in 20 ms nonoverlapping 

increments.

3.4 Decoder Calibration.

Task cueing was performed using custom-built software running Matlab (Mathworks, 

Natick, MA). The participants used standard LCD monitors placed at 55 to 60 cm, at a 

comfortable angle and orientation. T10 engaged in the radial-8 task as previously described 

(Jarosiewicz et al., 2013,2015; Bacher et al., 2015; Brandman et al., 2018) (see Figure 2A). 

Briefly, targets (size = 2.4 cm, visual angle = 2.5°) were presented sequentially in a pseudo-

random order, alternating between one of eight radially distributed targets and a center target 

(radial target distance from center = 12.1 cm, visual angle = 12.6°). Successful target 

acquisition required the user to place the cursor (size = 1.5 cm, visual angle = 1.6°) within 

the target’s diameter for 300 ms, before a predetermined time-out (5 seconds). Target time-

outs resulted in the cursor moving directly to the intended target, with immediate 

presentation of the next target.

Each calibration block lasted 3 minutes. During calibration, decoder parameters were 

updated every 2 to 5 seconds as previously described (Brandman et al., 2018). During the 

initial stages of calibration, we assisted cursor performance by attenuating the component of 

the decoded velocity perpendicular to the target (Jarosiewicz et al., 2013; Velliste et al., 

2008). This automated assistance was gradually decreased until it was removed 100 to 130 

seconds after the start of calibration. The coefficients for the MK-DKF decoder were 

computed with the calibration block used for the Kalman decoder.

3.5 Noise Injection Experiment.

Once the decoder was calibrated, we sought to investigate the impact of nonstationarities to 

the MK-DKF and Kalman decoders. Our approach was to have T10 perform the radial-8 
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task while randomly injecting noise to a single feature and also randomly selecting the 

decoder currently being used (see Figure 2A).

Each trial ended after either the target was acquired by having the cursor hold within the 

target for 300 ms or a 5 second time-out. At the start of every noise injection trial, the cursor 

was recentered over the previously presented target, and the velocity was reset to zero (this 

ensured that any potential impact of the cursor’s behavior from the previous trial was 

removed). We performed block randomization of the six experimental conditions: combining 

one of two decoders (Kalman and MK-DKF) with one of three noise levels (no noise, one z-

score, five z-scores). Both the researchers and T10 were blinded to which decoder–noise 

combination was currently being used. To simulate noise, we provided a z-score offset to the 

channel with the highest signal-to-noise ratio (Malik et al., 2015), based on the value 

computed from the calibration block. We standardized the 40 features and the noise-injected 

feature for both the MK-DKF and Kalman decoders. Experiments were performed in 4 

minute blocks.

In order to ensure that T10 was blinded to the decoder and noise combination, we ensured 

that the kinematic feel of the decoders was similar. That is, we sought to match the mean 

speed, smoothing, and innovation terms for the two decoders, since these parameters are 

known to have an impact on decoding quality (Willett et al., 2017). For the radial-8 noise-

injection experiment, we matched kinematic parameters in two ways. First, we set the A and 

Γ of equation 2.5 to match the Kalman values. Second, to ensure that both decoders moved 

at the same speed, we first computed the mean speed values for Kz in the training block, 

where K is the Kalman gain matrix. Next, we computed the mean speed value of f (xt) and 

then linearly scaled f (xt) to match the mean Kz value.

Hence, in performing head-to-head comparisons, we opted to match the kinematics of the 

MK-DKF decoder to the Kalman. We note that it is very likely that we were having a 

negative impact on the MK-DKF decoder performance by doing so, since the parameters 

used were likely suboptimal compared to those that would have been computed.

3.6 Performance Measurement.

We quantified performance using a grid task after locking decoder parameters (Brandman et 

al., 2018; Pandarinath et al., 2017; Nuyujukian, Fan, Kao, Ryu, & Shenoy, 2015) (see Figure 

2B). This task consisted of a grid of 36 square targets arranged in a square grid, where the 

length of one side of the square grid was 24.2 cm (visual angle = 24.8°). One of targets was 

presented at a time in a pseudorandom order. Targets were acquired when the cursor was 

within the area of the square for 1 second. Incorrect selections occurred if the cursor dwelled 

on a nontarget square for an entire hold period. Each comparison block was 3 minutes in 

length.

We measured the achieved bit rate (BR), which measures the effective throughput of the 

system (Nuyujukian et al., 2015),

BR =
log2(N − 1)max Sc − Si, 0

t ,
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where N is the number of possible selections; Sc and Si are the number of correctly and 

incorrectly selected targets, respectively; and t is the elapsed time within the block.

3.7 Offline Analysis.

We retrospectively analyzed data collected from previous research sessions. We restricted 

our analysis to sessions where T10 moved a computer cursor using motor imagery. He 

acquired targets using the radial-8 task, the grid task, or free typing tasks (Jarosiewicz et al., 

2015).

3.7.1 Injecting Noise for the MK-DKF and Kalman Decoders.—To investigate the 

impact of noise on decoder performance, we performed offline simulations of both the 

Kalman and MK-DKF decoders. We computed the angular error between the predicted 

decoder value without filtering (i.e., the Kz term and the f(xt) terms of the Kalman and MK-

DKF decoders, respectively) and the label modeled as the vector from cursor to target 

(Simeral et al., 2011; Brandman et al., 2018). Data from a single research session were 

concatenated together. A decoder was trained using half of the data available for a session 

without replacement and then used to predict the mean angular error for the other half of the 

data set. Decoder predictions were bootstrapped 100 times.

3.7.2 Offline Assessment of Noise.—Our standard practice is to normalize real-time 

neural features using the mean and the standard deviation of the previous block’s worth of 

data; this is done to mitigate the effect of signal nonstationarities (Jarosiewicz et al., 2015). 

We also use m = 40 features, selected according to a signal-to-noise ratio (Malik et al., 

2015).

As part of the offline analysis, for each session, we incrementally calibrated Kalman 

decoders in chronological order of recorded blocks. We then computed the number of times 

a feature exceeded a z-score offset in the next block. For instance, to compute the number of 

noise events at two z-scores for trial day 295, block 5, we computed the z-score mean and 

standard deviations based on data for blocks 1 to 4 and then counted the number of 20 ms 

blocks with deviations more than two z-scores away from the mean for each feature.

4 Results

4.1 Offline Analysis: Quantifying the Effect of Noise on Closed-Loop Neural Decoding.

We investigated the impact of noise injection for both the Kalman and MK-DKF decoders 

by performing offline simulations of previously collected data. There were 124 research 

sessions recorded from participant T10. We identified 96 sessions and a total of 48.2 hours 

of closed-loop neural control of a computer cursor, during which many variations of 

strapped the data 100 times into nonoverlapping training and testing sets (50–50 splits), and 

then used the training data set to compute the coefficients for both the Kalman and MK-DKF 

decoders. We measured decoder performance using the predicted angular error between the 

simulated decoded direction and the known vector from cursor to target (see section 3.7.1).

Our implementation of the Kalman decoder for closed-loop neural control (Jarosiewicz et 

al., 2015; Bacher et al., 2015; Brandman et al., 2018) uses a measure of signal-to-noise to 
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subselect 40 of the 384 features to be used in closed-loop decoding (Malik et al., 2015). We 

added noise to the single feature with the highest signal-to-noise ratio in the testing data set 

(see Figure 3A). With the Kalman decoder, we found a nearly linear relationship between 

the amount of injected noise and the percent change in angular error (R2 = 0.994, p < 10–24). 

We then repeated this experiment using the same features for both calibration and noise 

injection with the MK-DKF decoder. We found that noise injection had only minimal 

changes to the MK-DKF performance despite large noise injection values.

Given the detrimental effect of z-score offsets on decoding performance, a straightforward 

solution would be to simply saturate the features used for decoding. That is, all values 

greater than a saturation value (e.g., two z-scores) would be set to the saturation value. We 

computed the change in angular error as a function of feature saturation threshold (see 

Figure 3B). We found that the angular error decreased as saturation levels increased, 

reaching the base performance at two z-scores. These results suggested that features could 

be saturated at two z-scores without a negative impact on decoding performance.

Next, we quantified the frequency at which two z-score noise events occurred. Across all 

features, the two z-score deviations occurred 5.6% ±1.2 (SD) of observed 20 ms bins (see 

Figure 3C). Importantly, the same features that had large noise events were those that were 

highly informative and incorporated into the Kalman filter according to the feature’s SNR 

(Malik et al., 2015). Since real-time neural decoding is commonly performed in 20 ms bins, 

these results suggest that apparent noise events are observed roughly three times per second 

with our current clinical research-grade neural recording setup.

Intuitively, the data sparsification used with the MK-DKF decoder should result in lower 

performance with the Kalman filter. Sparsification of the linear data set would result in the 

regression variance being greatly underestimated, and hence result in lower offline decoding 

performance. To quantify the effect of sparsification with the Kalman, we averaged the 

training data into octants and computed performance using mean angular error. For 95 of the 

96 experimental sessions, sparsifying the data resulted in a statistically significant increase 

in mean angular error (paired t-test with Bonferonni correction, p < 0.05), with an overall 

mean increase of 16% ± 2 (SD).

Taken together, these results suggest that (1) the Kalman decoder is highly sensitive to z-

score offsets, even arising from a single feature; (2) z-score offsets that degrade decoding 

performance for the Kalman occur approximately three times per second; and (3) principled 

thresholding of features will alleviate some of the effects of z-score offsets. These results 

also suggest that the MK-DKF is relatively insensitive to z-score offsets for single features.

4.2 Online Analysis: Closed-Loop Assessment of Both the Kalman and MK-DKF 
Decoders.

We characterized the effect that noise events had on closed-loop neural decoding with T10 

(see Figure 4A, supplementary movie 1 online). At the start of the research session, we first 

calibrated both the Kalman and MK-DKF decoders and then matched their kinematic 

coefficients and the subset of features used for decoding (see section 3.5). Next, we 

performed a double-blinded randomization procedure where both the decoder and the 
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amount of noise injected were randomly selected every two targets. Neither T10 nor the 

researchers were aware of the current decoder/noise combination. Noise was injected by 

offsetting the z-score of a single feature, standardized for both decoders (see section 3.5).

T10 was presented with 596 targets in a center-out task over three research sessions (trial 

days 259, 265, and 272). For the Kalman decoder, there was a statistically significant dose-

dependent response between the amount of injected noise (no noise, one z-score offset, and 

five z-score offsets) and the percentage of targets acquired within a 5 second time-out (χ2, p 
< 10–37). By contrast, there was no statistically significant difference between the three noise 

conditions with the MK-DKF decoder (χ2, p = 0.81).

We note that in this comparison, the percentage of targets acquired by the MK-DKF decoder 

was inferior to that of the Kalman decoder without injected noise (see Figure 4A). In order 

to have performed this comparison, we matched the kinematic coefficients of the MK-DKF 

to the Kalman decoder (see section 3.5). This ensured that the “feel” of the decoders was 

indistinguishable, allowing us to perform the randomized experiment. However, in so doing, 

we were likely selecting suboptimal kinematic coefficients for the decoder.

To quantify the performance of both decoders without injected noise and with optimal 

kinematic parameters, we calibrated the Kalman and MK-DKF decoders using their 

respective optimal kinematic coefficients. After decoder calibration, T10 acquired targets in 

the grid task, and the decoder being used was alternated every block (see Figure 4B). There 

was no statistically significant difference in bit rate between the two decoders (trial days 272 

and 300, N = 12 blocks, Wilcoxon rank-sum test p = 0.48).

5 Discussion

A new neural decoder based on gaussian process regression (MK-DKF) was more resilient 

to noise than the traditionally used linear decoding strategy used for closed-loop neural 

control. When z-score offsets were added to single channels in the Kalman filter, the 

decoding performance degraded; this was not seen with the MK-DKF decoding approach. 

After optimizing the parameterizations of both decoders, the communication bit rate was not 

statistically different.

5.1 Addressing Nonstationarities in Neural Data.

Robust and reliable control with an intracortical brain-computer interface is predicated on 

the properties of the decoding algorithm selected to map high-dimensional neural features to 

low-dimensional commands used to control external effectors. End-effector control degrades 

without recalibration of decoder parameters (Jarosiewicz et al., 2015; Perge et al., 2013). To 

this end, multiple solutions have been proposed to recalibrate decoders based on closed-loop 

neural data during use, either when targets are known (Hochberg et al., 2006, 2012; Kim et 

al., 2008; Jarosiewicz et al., 2013; Collinger et al., 2013; Wodlinger et al., 2015; Gilja et al., 

2015; Orsborn et al., 2014; Shanechi et al., 2017; Dangi et al., 2011; Carmena, 2013) or 

retrospectively inferred (Jarosiewicz et al., 2015). Other approaches have investigated BCI 

decoder robustness using a wide variety of specific methods, including adapting a 

discriminative Bayesian filter (Brandman et al., 2018), refitting a Kalman filter (Gilja et al., 
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2012; Dangi, Orsborn, Moorman, & Carmena, 2013), Bayesian updating for an unscented 

Kalman filter (Li et al., 2011), reweighting a naive Bayes classifier (Bishop et al., 2014), 

retraining a kernelized ARMA model (Shpigelman et al., 2008), and reinforcement learning 

(Mahmoudi, Pohlmeyer, Prins, Geng, & Sanchez, 2013; Pohlmeyer, Mahmoudi, Geng, 

Prins, & Sanchez, 2014), among others.

Rather than adapting the coefficients of the decoder given new closed- loop data, the goal of 

robust model selection is to design the decoder to be more resilient to nonstationarities. One 

previously described decoder achieved robustness with a multiplicative recursive neural 

network and augmenting the training data with perturbations that mimicked the desired 

nonstationities against which they wished to train (Sussillo et al., 2016). For example, in 

order to train against dropping the ith neuron, exemplars were added to the training data set 

where the ith neuron had been zeroed out. This technique of augmenting a training set with 

noisy data is well established for increasing generalization performance in neural networks 

and is commonly referred to as data augmentation (An, 1996). It requires generating and 

training over new artificial data for each individual targeted nonstationarity for each feature. 

Hence, exemplars generated to protect the decoder against dropping the ith feature do not 

protect against dropping the jth feature.

While effective, there are limitations in applying data augmentation for closed-loop BCI 

systems for human users. First, one of the goals of pursuing iBCI research for people is to 

develop devices that are intuitive and easy to use, with minimal technician oversight, and 

require minimal calibration time. It would not be possible to apply a deep neural network 

with a bagging technique in the case where the user is using the system with limited 

available data, such as using the system for the first time (Brandman et al., 2018). Second, 

the system requires significant computational resources. Bagging enlarges an already 

massive data set by orders of magnitude, entailing a commensurate increase in training 

burden for the neural network. At least with today’s available hardware and the requirement 

for local computation, the increase in computational resources would not be possible for 

portable iBCI systems to be used inside homes. By contrast, the MK-DKF decoder did not 

require explicit training to acquire robustness. The robust kernel design was able to 

distinguish between signal and noise within 3 minutes of calibration.

We note that one straightforward approach to decoder robustness with a linear decoding 

strategy such as the Kalman filter would be to saturate features. We found that saturating the 

neural features beyond two z-scores did not have a negative impact on offline decoder 

performance (see Figure 3B), making the decoder resistant to large feature deviations (see 

Figure 3A). The MK-DKF decoder did not require explicit training or setting a signal 

saturation threshold to acquire robustness. The robust kernel design was able to distinguish 

between signal and noise within 3 minutes of calibration.

While a z-score offset to the Kalman would be predicted to result in a degradation in 

performance, it was not known a priori the extent to which a user would be able to 

compensate for the bias that would develop during closed-loop performance. We have 

previously described how closed-loop cursor control degrades with a baseline shift in firing 

rate of a neuron, resulting in a cursor bias (Perge et al., 2013), and described strategies that 
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may be used to enhance control for the user (Jarosiewicz et al., 2015). Our results quantified 

the effect of signal degradation as a function of z-score offset. We did not observe a noise-

dependent degradation of the MK-DKF decoder and demonstrated its resistance compared to 

the Kalman filter.

5.2 Experimental Design.

To our knowledge, our methodological approach to comparing decoders by randomly 

interleaving decoders in real time has not been described in the human iBCI literature. There 

are two alternative research designs that we could have taken. First, we could have tested the 

Kalman on one day and the MK-DKF on the next. However, the experience of multiple iBCI 

groups (Jarosiewicz et al., 2015; Collinger et al., 2013; Bouton et al., 2016) suggests that 

decoder performance may change dramatically from day to day. Hence, this approach would 

need a large number of research sessions to demonstrate changes in decoder performance 

that could not be better explained by signal interday nonstationarities. We opted not to take 

this approach in the interest of decreasing the amount of session time where the user was 

deliberately presented with a decoder that would “break” periodically from noise injection.

Second, we could have calibrated a decoder and then immediately tested it (Kalman), and 

then switched decoders and repeated the procedure (MK-DKF). Indeed, this block-by-block 

approach has already been described in examining the neural decoding using gaussian 

process regression (Brandman et al., 2018). However, T10 had previously told us that trying 

to use a decoder when it “wasn’t working properly” was “hard work.” In fact, he would stop 

trying to control the cursor when he thought it was not working well as he was already aware 

that “we could do better.” Given that we were deliberately causing the decoder not to work 

properly by noise injection, it was important for us not to design an experiment where T10 

would simply give up if he knew which decoder was currently being used. Hence, blinding 

T10 to the decoder became critical.

We note that the goal of this experiment was to compare two different decoding algorithms 

with a similar linear state-space decoding setup. However, the kinematic parameters used in 

linear state-space-models have a substantial effect on decoding performance (Willett et al., 

2017). Hence, in order to isolate exactly the effect of the decoder, we needed to ensure that 

all of the relevant variables of kinematic parameters were controlled. We designed an 

experiment where T10, as well as the researchers in the room, would be blinded to the 

decoder and the amount of injected noise.

5.3 Growth Directions for MK-DKF.

Our implementation of the MK-DKF decoder provides an exciting foundation from which to 

explore decoder robustness. For instance, our approach naively provided a uniformly 

weighted linear addition of multiple kernels, thereby making the explicit assumption that 

each feature is equally important for decoding. One approach would be to incorporate 

techniques in kernel learning (Gonen & Alpaydin, 2011). For instance, one could learn a 

convex sum of weights for the linear combination of kernels that “align:” to a training kernel 

(Cortes, Mohri, & Rostamizadeh, 2012). Alternatively, one could be explore alternative 

distance metrics. For instance, rather than using Euclidean distances between features, one 
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could apply a spike train distance metric (Victor & Purpura, 1997). This metric can be 

adapted as a valid kernel embedding function and used for decoding neural data (Park, Seth, 

Paiva, Li, & Principe, 2013; Brockmeier et al., 2014; Li, Brockmeier, Choi, Francis, 

Sanchez, & Principe, 2014). It has also been shown to perform better than Euclidean 

distances when visualizing complex neuronal data sets (VargasIrwin, Brandman, 

Zimmermann, Donoghue, & Black, 2015).

6 Conclusion

BCIs have the potential improve the quality of life for people with paralysis. Here we 

present experimental evidence that a decoder using gaussian process regression is robust to 

nonstationarities in neural signals compared to the previously used Kalman filter.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic demonstrating the effect of kernel selection on the measure of similarity for two-

dimensional neural features. Since kernel similarity between two points depends on only 

their coordinate-wise differences, we let p1 = (0, 0) be a point at the origin and consider the 

kernel-determined similarity between p1 and a second point p2 = (x, y). For each plot, the 

color at (x, y) represents the measure of similarity according to the selected kernel 

Kθ p1, p2 . Traveling along the red line illustrates the effect of increasing the difference in 

measurements for a single neuron. For the RBF kernel (A), moving along the arrow results 

in the kernel becoming arbitrarily small. By contrast, the MK kernel (B) never falls below 

half of the value at the origin as it moves along the arrow. For 40 dimensions, the MK kernel 

would never fall below 39/40 of its maximal value. Hence, when the RBF kernel is used for 

closed-loop decoding, nonstationarities from a single neural feature would result in no 

similarity between the current neural feature and any of the training data. By contrast, the 

MK kernel will remain relatively unaffected by even a drastic change in a single neuron and 

continue to effectively use the information from the remaining neurons.
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Figure 2: 
(A) Radial-8 task. Eight targets are presented on the screen (blue circle). T10 was instructed 

to move the cursor (white circle) to the goal (red circle). Targets were acquired when the 

cursor overlapped the target for 300 ms. (B) Grid task. Square targets were arranged in a 

grid. T10 was instructed to move the cursor (white circle) to the target (green square). A 

target was acquired when T10 held the cursor within any square for 1 second. Note that 

unlike the radial-8 task, incorrect targets were scored.
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Figure 3: 
(A) Change in angular error as a function of z-score offset for the Kalman filter, the Kalman 

filter with feature saturation, and MK-DKF decoders. We identified 96 research sessions 

where T10 performed closed-loop neural control. For each session, we performed a 50–50 

split of the data and used the training data to compute the coefficients for the decoders; then 

we predicted the angular error on the testing data. Next, we added a z-score offset to a single 

channel (standardized for each decoder). The shaded areas represent the standard error of 

measurement for each decoder. (B) Change in angular error as a function of feature 

thresholding. During the bootstrapping procedure, we saturated features for both the training 

and testing data sets and computed the change in angular error compared to no saturation. 

The shaded area represents the standard error of measurement. (C) Examining the frequency 

of noise events. For each of the bootstrapped simulations, we counted the frequency at 

which each feature was incorporated into the decoder (m = 40), as well as the frequency at 

which the feature was observed to deviate by more than two z-scores.
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Figure 4: 
(A) Percentage of targets acquired during closed-loop cursor control by T10 in the radial-8 

task. On research days 259, 265, 272, and 300, T10 acquired targets wherein the decoder 

(Kalman and MK-DKF) and the amount of noise (no noise, one z-score, five z-scores) were 

randomly selected. There was no statistically significant difference in performance across 

the noise injection trials for the MK-DKF decoder (χ2, p = 0.81) There was a statistically 

significant difference across conditions for the Kalman decoder (χ 2, p < 10–37). To ensure 

that T10 could not distinguish between which decoder was being used, the kinematic 

parameters of the MK-DKF matched to the Kalman decoder. (B) Performance of both the 

MK-DKF and Kalman decoders with optimal kinematic parameters. There was no 

statistically significant difference in bit rate between the two decoders (trial days 272 and 

300, Wilcoxon rank-sum test p = 0.48).
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