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Abstract

Bayesian networks have been widely used in many scientific fields for describing the conditional 

independence relationships for a large set of random variables. This letter proposes a novel 

algorithm, the so-called p-learning algorithm, for learning moral graphs for high-dimensional 

Bayesian networks. The moral graph is a Markov network representation of the Bayesian network 

and also the key to construction of the Bayesian network for constraint-based algorithms. The 

consistency of the p-learning algorithm is justified under the small-n, large-p scenario. The 

numerical results indicate that the p-learning algorithm significantly outperforms the existing ones, 

such as the PC, grow-shrink, incremental association, semi-interleaved hiton, hill-climbing, and 

max-min hill-climbing. Under the sparsity assumption, the p-learning algorithm has a 

computational complexity of O(p2) even in the worst case, while the existing algorithms have a 

computational complexity of O(p3) in the worst case.

1. Introduction

Graphical models have proven to be a useful tool for describing conditional independence 

relationships for a large set of random variables. Two types of graphical models are 

commonly used, Markov networks and Bayesian networks. The Markov network, also 

known as the Markov random field, is a model over an undirected graph. During the past 

decade, the gaussian graphical model (GGM), as a special case of Markov networks, has 

been used in many scientific fields, from computer vision to natural language processing to 

genomics. Due to the mathematical tractability of the gaussian distribution, some efficient 

algorithms have been developed for learning the structure of GGMs—for example, graphical 

Lasso (Yuan & Lin, 2007; Friedman, Hastie, & Tibshirani, 2008), nodewise regression 

(Meinshausen & Bühlmann, 2006), and ψ-learning (Liang, Song, & Qiu, 2015).
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The Bayesian network is a model over a directed acyclic graph. Regarding the relationship 

between Markov networks and Bayesian networks, Pearl (1988) stated that the major 

weakness of Markov networks is their inability to represent induced and nontransitive 

dependencies; two independent variables will be directly connected by an edge merely 

because some other variable depends on both. As a result, many useful independencies go 

unrepresented in the network. Bayesian networks overcome this deficiency by using the 

richer language of directed graphs, where the directions of the arrows permit us to 

distinguish genuine dependencies from spurious dependencies induced by hypothetical 

observations. To illustrate this point, let us consider a set of random variables, where there 

can be four combinations of independence statements for any two variables. Table 1 gives an 

example for each of the three cases that are representable by Markov networks. The fourth 

case, that X and Y are marginally independent but dependent conditioned on variable Z, is 

not representable by a Markov network. As a compromise, the Markov network uses a cycle 

Ⓧ –Ⓩ –Ⓨ – Ⓧto represent the mutual dependence of the three variables. However, the 

fourth case can be easily represented by a Bayesian network using a υ-structure (defined in 

section 2) Ⓧ → Ⓩ ← Ⓨ, which includes two convergent directions on the edges Ⓧ – Ⓩ 
and Ⓨ – Ⓩ. In Bayesian formula, this situation can be described by

π(X, Y |Z) = π(Z | X, Y)π(X)π(Y)
π(Z) ≠ π(X|Z)π(Y |Z),

which quite often holds for real problems. In Bayesian networks, the direction of edges 

represents the “parent of” relationship. For this reason, Bayesian networks have often been 

used in causal inference (see e.g., Spirtes, 2010).

Although the Bayesian network is statistically attractive, learning its structure can be 

difficult, especially under the small-n, large-p scenario, where n denotes the sample size and 

p denotes the number of random variables involved in the network. None of the existing 

algorithms developed for high-dimensional GGMs (e.g., graphical Lasso, nodewise 

regression, and ψ-learning) can be trivially extended to Bayesian networks due to the 

fundamental difference in their structures. In particular, the υ-structure needs care, 

especially when extending a Markov network learning algorithm to Bayesian networks.

The existing Bayesian network learning algorithms can be traced to three categories: 

constraint based, score based, and hybrid. The constraint-based algorithms, stemming from 

the inductive causation (IC) algorithm (Verma & Pearl, 1991), are to learn Bayesian 

networks by conducting a series of conditional independence tests. The grow-shrink (GS; 

Margaritis, 2003), incremental association (Tsamardinos, Aliferis, & Statnikov, 2003; 

Yaramakala & Margaritis, 2005), and PC (Spirtes, Glymour, & Scheines, 2000) algorithms 

belong to this category. These algorithms basically consist of three stages: they first learn the 

moral graph of the Bayesian network, then identify the υ-structures contained in the moral 

graph, and finally identify the derived directions for nonconvergent edges according to logic 

rules. The moral graph, which is formally defined in section 2, can be viewed as a Markov 

network representation of the Bayesian network. The difficulty with these algorithms is that 

they are not well scaled for high-dimensional problems (Aliferis, Statnikov, Tsamardinos, 

Mani, & Koutsoukos, 2010). They often involve some conditional tests with the conditioning 
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set size close to p, which cannot be carried out or is very unreliable when p is greater than n. 

It is remarkable that under the sparsity assumption, which bounds the neighborhood size of 

each node, the PC algorithm has been shown by Kalisch and Bühlmann (2007) to be 

consistent and can execute in a polynomial time of p. Therefore, the PC algorithm has been 

considered in the literature as the state-of-the-art algorithm for learning high-dimensional 

Bayesian networks. Recent applications and extensions of the algorithm can be found in 

Colomboi, Maathuis, Kalisch, and Richardson (2012), Verdugo et al. (2013), Harris and 

Drton (2013), McGeachie, Chang, and Weiss (2014), Cui, Groot, and Heskes (2016), Ha, 

Sun, and Xie (2016), among others.

The score-based algorithms are to find a network that optimizes a selected scoring function 

(e.g., entropy; Herskovits & Cooper, 1990), minimum description length (Lam & Bacchus, 

1994), and Bayesian scores (Cooper & Herskovits, 1992; Heckerman, Geiger, & Chickering, 

1995), which measures the fitness of each feasible network to the data. Under appropriate 

conditions, the score-based algorithms can also be shown to be consistent (see Chickering, 

2002, and Nandy, Hauser, & Maathuis, 2016, for the low- and high-dimensional cases, 

respectively). Unfortunately, the task of finding a network structure that optimizes the 

scoring function is NP-hard (Chickering, 1996), and the search process often stops at a local 

optimal structure. The hybrid algorithms are to combine constraint-based and score-based 

algorithms to offset their respective weakness. Both the sparse candidate algorithm 

(Friedman, Pe’er, & Nachman, 1999) and the max-min hill-climbing (MMHC) algorithm 

(Tsamardinos, Brown, & Aliferis, 2006) belong to this category. They first restrict the parent 

set of each node to a smaller set and then search for the network that maximizes a scoring 

function subject to the constraints imposed by the restricted parent sets.

In this letter, we propose a new algorithm for learning moral graphs for high-dimensional 

mixed types of data. With the moral graph, the structure of the Bayesian network can be 

easily determined by completing the remaining stages of the constrained-based algorithms: 

υ-structure identification and derived direction identification. For example, the υ-structure 

can be identified using the collider set algorithm (Pellet & Elisseeff, 2008) or local 

neighborhood algorithm (Margaritis & Thrun, 2000). Upon completion of the υ-structure 

identification stage, the skeleton and colliders of the Bayesian network can be identified. 

Given the skeleton and colliders, a maximally directed Bayesian network can be obtained 

following the four necessary and sufficient rules (see, e.g., Verma & Pearl, 1992, and 

Kjaerulff & Madsen, 2010), which ensure that no directed cycles and additional colliders are 

created in the graph. The consistency of the proposed algorithm is justified under the small-

n, large-p scenario. The numerical results indicate the superiority of the proposed algorithm 

over the existing ones. Under the sparsity assumption, the proposed algorithm has a 

computational complexity bounded by O(p2), while the computational complexity of the 

existing algorithms is O(p2+a) for some a > 0.

In this letter, the mixed data are restricted to those consisting of gaussian and multinomial or 

binomial variables only. In this scenario, the joint distribution of the mixed variables is well 

defined for the moral graph (see Lee & Hastie, 2015), for which the conditional distribution 

of each continuous variable given the rest is still gaussian and the conditional distribution of 

each discrete variable given the rest is still multinomial. Therefore, all conditional 

Xu et al. Page 3

Neural Comput. Author manuscript; available in PMC 2019 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



independence tests involved in the proposed algorithm can be conducted under the 

framework of generalized linear models (GLMs). Extension of the proposed algorithm to 

other types of mixed data is discussed in section 6.

The remainder of this letter is organized as follows. Section 2 gives a brief review of the 

theory of Bayesian networks. Section 3 describes the proposed algorithm, with the 

theoretical justification for its consistency deferred to the appendix. Section 4 illustrates the 

proposed algorithm using simulated examples along with comparisons with some existing 

algorithms. Section 5 reports the results for two real data examples. Section 6 concludes 

with a brief discussion of possible extensions of the proposed algorithm to other types of 

mixed data.

2. A Brief Review of Bayesian Network Theory

This section gives a brief review for the Bayesian network theory required by this letter. For 

a full account of the theory, we refer to Jensen and Nielsen (2007) and Scutari and Denis 

(2015).

A Bayesian network can be represented by a directed acyclic graph (DAG) G = (V, E), 

whereV, with a slight abuse of notation, denotes a set of p nodes corresponding to the p 
variables X1, … , Xp, and E = (eij) denotes the adjacency matrix or arc sets. The joint 

distribution of X1, … , Xp is given by

P(X) = ∏
i

q Xi |Pa Xi , (2.1)

where Pa(Xi) denotes the parent nodes or variables of Xi in the network, and q(·|·) specifies 

the conditional distribution of Xi given its parent nodes. In Bayesian networks, each node Xi 

is conditionally independent of its non-descendants (the nodes for which there is no path to 

reach from Xi) given its parents. This is the so-called local Markov property of Bayesian 

networks. The local Markov property implies that the parents are not completely 

independent from their children in the Bayesian network. With Bayes’s theorem, it is easy to 

show how information on a child can change the distribution of the parent. A convergent 

connection Xi → Xk ← Xj is called a υ-structure if there is no arc connecting Xi and Xj. In 

addition, Xk is often called a collider node, and the convergent connection is then called an 

unshielded collider. The υ-structure enables Bayesian networks to represent a type of 

relationship that Markov networks cannot, that is, Xi and Xj are marginally independent but 

also dependent conditional on Xk.

The Markov blanket of a node Xi is the set consisting of the parents of Xi, the children of Xi, 

and the spouse nodes that share a child with Xi. The Markov blanket of a node Xi ∈ V is the 

minimal subset of V such that Xi is independent of all other nodes conditioned on it. The 

Markov blanket is symmetric; if node Xi is in the Markov blanket of Xj, then Xj is also in 

the Markov blanket of Xi.

The moral graph, illustrated by Figure 1, is an undirected graph that is constructed by (1) 

connecting the nonadjacent nodes in each υ-structure with an undirected arc and (2) 
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ignoring the directions of other arcs. This transformation, called moralization, provides a 

simple way to transform a Bayesian network into the corresponding Markov network. In the 

Markov network, all dependencies are explicitly represented, even those that would be 

implicitly implied by υ-structures in a Bayesian network. In the moral graph, the 

neighboring set of each node forms its Markov blanket.

Finally, we give the definition for the faithfulness of graphical models. Let M denote the 

dependence structure of the probability distribution of X—the set of conditional dependence 

relationships between any triplet A, B, C of subsets of X. The graph G is said to be faithful 

or isomorphic to M if for all disjoint subsets A, B, C of X, we have

A ⊥p B|C A ⊥G B|C, (2.2)

where the left denotes the conditional independence in probability, and the right denotes the 

separation in graph (i.e., C is a separator of A and B). For a Markov network, C is said to be 

a separator of A and B if for every a ∈ A and b ∈ B, all paths from a to b have at least one 

node in C. For Bayesian networks, C is said to be a separator of A and B if, along every path 

between a node in A and a node in B, there is a node υ satisfying one of the following two 

conditions: (1) υ has converging arcs and neither υ nor any of its descendants is in C, and 

(2) υ is in C and does not have converging arcs. The faithfulness provides a theoretical basis 

for establishing consistency for constraint-based algorithms.

3. Learning High-Dimensional Moral Graphs

3.1 The p-Learning Algorithm.

Under the assumption of faithfulness, the moral graph can be learned via conditional 

independence tests Xi ⊥P Xj|Sij \ {Xi, Xj} for all ordered pairs of (i, j), where Sij denotes the 

Markov blanket of Xi or Xj. If the conditional independence is true, then there is no arc 

between Xi and Xj. Otherwise, Xi and Xj are in each other’s Markov blanket.

In the literature, quite a few algorithms have been proposed for learning Markov blankets, 

including the grow-shrink Markov blanket (Margaritis, 2003) and incremental association 

(Tsamardinos, Aliferis, & Statnikov, 2003; Yaramakala & Margaritis, 2005) algorithms. The 

grow-shrink Markov blanket algorithm works like a forward selection procedure, which first 

continues to add new variables to the conditioning set (starting with an empty set) until the 

conditional independence holds or there are no more variables to add, and then shrinks the 

conditioning set by removing the variables outside the blanket. The incremental association 

algorithm is an enhancement of the grow-shrink Markov blanket algorithm, which reduces 

the number of conditional tests by arranging the order of the variables to add to the 

conditioning set. A fundamental problem with these algorithms is that they often need to 

perform some conditional tests with the size of the conditioning set close to p. When p is 

greater than n, such tests cannot be carried out or are very unreliable. Their computational 

complexity is O(p2+a) for some 0 < a ≤ 1, where the factor pa accounts for the number of 

conditional independence tests performed for each of p2 pairs of nodes. In the worst case 

that the graph is fully connected, a is equal to 1 for all the algorithms.
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In what follows, we present a new algorithm for learning moral graphs, which can work 

under the scenario n ≪ p and has a computational complexity of O(p2) even in the worst 

case. Instead of identifying the exact Markov blanket for each node, we propose to identify a 

super-Markov blanket Si for each node Xi such that Si ⊆ Si holds, where Si denotes the 

Markov blanket of the node Xi. Let ϕij denote the output of the conditional independence 

test Xi ⊥P Xj|Si \ {Xi, Xj}, that is, ϕij = 1 if the conditional independence holds and 0 

otherwise. Let ϕi j denote the output of the conditional independence test 

Xi ⊥P X j |Si\ Xi, X j . Theorem 1 shows that under the faithfulness assumption, ϕij and ϕi j are 

equivalent in learning moral graphs.

Theorem 1. Assume the faithfulness holds. Let Si denote the Markov blanket of Xi, and let 
Si denote a superset of Si. Then ϕij and ϕi j are equivalent in learning moral graphs in the 

sense that

ϕi j = 1 ϕi j = 1.

Proof. If ϕij = 1, then Si \ {Xi, Xj} forms a separator of Xi and Xj. Since Si ⊂ Si, Si\ Xi, X j  is 

also a separator of Xi and Xj. By faithfulness, we have ϕi j = 1. If ϕi j = 1, then Xi and Xj are 

conditionally independent and Si\ Xi, X j  forms a separator of Xi and Xj. Since Si ⊂ V, V \ 

{Xi, Xj} is also a separator of Xi and Xj and the conditional independence Xi ⊥P Xj|V \ {Xi, 

Xj} holds. By the total conditioning property (property 7 in Pellet & Elisseeff, 2008), which 

shows that X j ∈ Si Xi ⊥pX j |V\ Xi, X j , we have Xj ∉ Si. Therefore, ϕij = 1 holds. □

By the symmetry of Xi and Xj, theorem 1 also holds if Si is replaced by Sj and Si is replaced 

by S j. Although ϕij and ϕi j are equivalent in learning moral graphs, the size of the super-

Markov blanket Si should be as small as possible considering the power of the conditional 

independence tests. A large Si often reduces the power of the conditional independence test.

Based on theorem 1, we propose the so-called p-learning algorithm (see algorithm 1) for 

learning moral graphs, which provides an efficient way to learn the Markov blanket for each 

node simultaneously.

Algorithm 1: p-Learning Algorithm

a. Screening for parents and children nodes: Find a superset of parentsand children 

for each node Xi:

i. For each ordered pair of nodes (Xi, Xj), i, j = 1, 2, … , p, conduct the 

marginal independence test Xi ⊥p Xj and obtain the p-value.

ii. Conduct a multiple hypothesis test at level α1 to identify the pairs of 

nodes that are dependent. Denote the superset by Ai for i = 1, … , p. If 

the size of Ai is greater than n/(cn1 log(n)) for a prespecified constant 
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cn1, reduce it to n/(cn1 log(n)) by removing the variables having larger 

p-values in the marginal independence tests.

b. Spouse nodes amendment. For each node Xi, find the spouse nodes that are not 

included in Ai, that is, find the set Bi = {Xj : Xj ∉ Ai, ∃Xk ∈ Ai ∩ Aj} for i = 1, 

… , p, where Xj is a node not connected but sharing a common neighbor with Xi. 

If the size of Bi is greater than n/(cn2 log(n)) for a prespecified constant cn2, 

reduce it to n/(cn2 log(n)) by removing the variables having larger p-values in the 

spouse test Xi ⊥p Xj|Xk.

c. Screening for the moral graph. Construct the moral graph based on conditional 

independence tests:

i. For each ordered pair of nodes (Xi, Xj), i, j = 1, 2, … , p, conduct the 

conditional independence test Xi ⊥P X j |Si j\ i, j , where Si j = Ai ∪ Bi if |

Ai ∪ Bi \ {i, j}| ≤ |Aj ∪ Bj \ {i, j}| and Si j = A j ∪ B j otherwise.

ii. Conduct a multiple hypothesis test at level α2 to identify the pairs of 

nodes for which they are conditionally dependent, and set the adjacency 

matrix Emb accordingly, where Emb denotes the adjacency matrix of the 

moral graph.

As annotated in algorithm 1, step a is to find a superset of parents and children for each 

node. As pointed out in the appendix, Ai also contains the spouse nodes that are marginally 

dependent with Xi. Step b is to find the spouse nodes that are not included in the superset Ai, 

that is, the nodes that are marginally independent of Xi but dependent on Xi conditioned on 

their common child. Then for each node Xi, we have Si ⊂ Ai ∪ Bi. Hence, we can set 

Si = Ai ∪ Bi. It follows from theorem 1 that this algorithm is valid for learning moral graphs.

The p-values of the individual tests for the marginal independence and conditional 

independence were obtained via the likelihood ratio tests (LRT) under the GLM setting. The 

multiple hypothesis tests were done using an empirical Bayes method developed by Liang 

and Zhang (2008). The advantage of this method is that it allows for the general dependence 

between test statistics. Other multiple hypothesis tests, which account for the dependence 

between test statistics (e.g., Benjamini, Krieger, & Yekutieli, 2006) can also be applied here. 

The performance of multiple hypothesis tests depends on their significance levels. Following 

from theorem 1, a slightly large value of α1 should be used to reduce the risk of Si ⊈ Ai ∪ Bi. 

On the other hand, the power of the conditional independence tests in step c is adversely 

affected by the size of the superset Si and thus by the value of α1. However, we also find that 

such an effect is not very sensitive to the size of Si; including a few extra variables in Si will 

not hurt the power of the moral graph screening tests much. To balance the two ends, we 

suggest setting α1 = 0.1 or 0.2. Throughout examples in this letter, we set α1 = 0.1 and α2 = 

0.05 unless otherwise stated.

In the algorithm, we have restricted the sizes of Ai and Bi based on the sparsity assumption, 

given by condition C of section 3.2, for the high-dimensional Bayesian network. By 
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assuming that each conditional distribution q(·) in equation 2.1 can be represented by the 

probability distribution function of a normal linear regression or multiclass logistic 

regression, we are able to bound the size of each set Ai by O(n/ log(n)) based on the theory 

of sure independence screening (Fan & Lv, 2008; Fan & Song, 2010). (Refer to the appendix 

for details on theoretical development). Further, under the sparsity assumption, we are also 

able to bound the size of each set Bi by O(n/ log(n)). Therefore, the size of each superset 

Si = Ai ∪ Bi can be bounded by O(n/ log(n)). With appropriate choices of cn1 and cn2, we can 

always have |Si| < n holding for all i = 1, 2, … , p when n is reasonably large. In this letter, 

we set cn1 = cn2 = 1 for all examples. In practice, when the sample size n is small, even the 

size of Bi is smaller than the prespecified threshold, we might still conduct spouse tests to 

reduce its size further. Since the size of Si adversely affects the power of the moral graph 

screening test, a smaller Bi is always preferred.

Since both the marginal tests in step a and the conditional independence tests in step c need 

to be performed only once for each ordered pair of nodes, and the multiple hypothesis tests 

can be done in a linear time of the total number of p-values, the computational complexity of 

the p-learning algorithm is O(p2), which is independent of the underlying structure of the 

Bayesian network. In the worst case, the computational complexity of the existing 

algorithms is O(p3).

3.2 Consistency of the p-Learning Algorithm.

This section establishes the consistency of the proposed p-learning algorithm. To achieve 

this goal, we assume that the joint distribution of the underlying true moral graph can be 

reexpressed as

p(x, y |Θ) ∝ exp − 1
2 ∑

s = 1

pc
∑
t = 1

pc
θstxsxt + ∑

s = 1

pc
ϑsxs + ∑

s = 1

pc
∑
j = 1

pd
ρs j y j xs

+ ∑
j = 1

pd
∑

r = 1

pd
ψr j yr, y j ,

(3.1)

where xs denotes the sth of pc continuous variables and yj denotes the jth of pd discrete 

variables. The joint model is parameterized by Θ = [{θst}, {ϑs}, {ρsj},{ψrj}]. (See Yang et 

al., 2014, for more general developments for the joint distribution of mixed graphical 

models.)

As Lee and Hastie (2015) showed, the conditional distributions of equation 3.1 are given by 

gaussian linear regression and multiclass logistic regressions. Therefore, all the conditional 

independence tests conducted in the moral graph learning and υ-structure identification 

stages are well defined, which are equivalent to test whether the corresponding regression 

coefficients equal to zero. To be specific, the test in step a of algorithm 1 is equivalent to 

testing the coefficient of Xj in the GLM,

Xi 1 + X j; (3.2)
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the test in step c of algorithm 1 is equivalent to testing the coefficient of Xj in the GLM,

Xi 1 + X j + ∑
k ∈ Si j\ i, j

Xk;
(3.3)

and the test in the υ-structure identification stage is equivalent to testing the coefficient of Xj 

in the GLM

Xi 1 + X j + ∑
k ∈ Di j

Xk,
(3.4)

where Dij denotes a subset of Bd(Xi) \ {Xj} and Bd(Xi) denotes the neighboring set of Xi in 

the moral graph.

Under the GLM assumption, the consistency of algorithm 1 can be proved based on the 

theory of sure independence screening established in Fan and Song (2010), the theory of the 

ψ-learning algorithm established in Liang et al. (2015), and the theory established in Kalisch 

and Bühlmann (2007) for the PC algorithm. Parallel to the conditions assumed by the PC 

algorithm for the gaussian case, we assume the following conditions:

A. Faithfulness: The moral graph is faithful, for which the joint distribution can be 

expressed in a gaussian-multinomial distribution, equation 3.1.

B. High dimensionality: The dimension pn = O(exp(nδ)), where 0 ≤ δ < (1 − 

2κ)α/(α + 2) for some positive constants κ < 1/2 and α > 0, and the subscript n 
of pn indicates the dependence of the dimension p on the sample size n.

C. Sparsity: The maximum size of the Markov blanket of each node, denoted by 

qn = max1 ≤ j ≤ pn
|Si|, satisfies qn = O nb  for some constant 0 ≤ b < (1 − 2κ)α/(α 

+ 2), where Si denotes the Markov blanket of node i.

D. Identifiability: The regression coefficients satisfy

inf |βi j |C|; βi j |C ≠ 0, i, j = 1, 2, …, pn, C ⊆ 1, 2, …, pn \ i, j , |C| ≤ O(n/log(n)) ≥ c0n−κ,

for some constant c0 > 0, where κ is as defined in condition B and βij|C denotes 

the true regression coefficient of Xj in the GLM, equations 3.2, 3.3, or 3.4.

Since the p-learning algorithm works based on the theory of sure independence screening, 

we follow Fan and Song (2010) to give some conditions for GLMs (see the appendix for 

details) such that the resulting Bayesian network satisfies the sparsity condition C. Fan and 

Song (2010) showed that variable screening can be done in regression coefficients or in p-

values of the conditional independence tests (χ2 test with a degree of freedom of 1), which 

are equivalent to each other. For this reason, the identifiability condition, D, is given in terms 

of regression coefficients. Under these conditions, we show in the appendix that algorithm 1 

is consistent, that is, P Emb
(n) = Emb

(n) 1 and P Ev
(n) = Ev

(n) | Emb
(n) = Emb

(n) 1 as n ∞, where 

Emb
(n) denotes the adjacency matrix of the moral graph, Ev

(n) denotes the set of υ-structures, 
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and Emb
(n) and Ev

(n) denote the estimators of Emb
(n) and Ev

(n) obtained by the p-learning algorithm, 

respectively.

4. Simulation Studies

This section illustrates algorithm 1 for learning moral graphs using simulated examples, 

along with comparisons with a variety of existing algorithms.

4.1 Mixed Data with an AR(2) Structure.

Following Kalisch and Bühlmann (2007), we simulated the mixed data in the following 

procedure: (1) fix an order of variables, (2) randomly mark half of the variables as 

continuous and the rest as binary, (3) fill the adjacency matrix E with some given structures, 

and (4) generate the data according to the adjacency matrix in a sequential manner.

For this example, the variable X1, which corresponds to the first node of the Bayesian 

network, was generated through a gaussian random variable Y1 ~ N(0, 1). We set1 X1 = Y1 

if X1 was set to be continuous, and X1 Binomial n, 1/ 1 + e
−Y1  otherwise. The other 

variables Xj’s, j = 2, 3, … , p, were then sequentially generated by setting

Y j = ∑
i = 1

p
0.5Ei jXi, (4.1)

X j =

Y j + ϵ j,  if X j is continuous,

 Binomial  n,
exp Y j

1 + exp Y j
,  if X j is binary,

(4.2)

where ϵ1, … , ϵp are independent and identically distributed standard gaussian random 

variables, and Eij denotes the (i, j)th entry of E. In this example, we first set E to be of an 

AR(2) structure given by

Ei, j =
1,  if  j − i = 1, i = 1, …, ( j − 1),
1,  if  j − i = 2, i = 1, …, ( j − 2),
0,  otherwise .

(4.3)

Let pc and pd denote the numbers of continuous and discrete variables, respectively. In our 

simulations, we fixed pc = pd = 100, while varying the sample size n at four values: n = 100, 

200, 500, and 1000. For each value of n, 10 data sets were generated independently. The p-

learning algorithm was first applied to this example with the default settings α1 = 0.1 and α2 

= 0.05 and then compared with several popular algorithms that were originally designed for 

learning Bayesian networks. The popular algorithms include the constraint-based algorithms 

such as PC, grow-shrink (GS), incremental association Markov blanket (IAMB), and semi-

interleaved HITON-PC (hiton); the score-based algorithm such as hill-climbing (HC); and 

the hybridbased algorithm such as max-min hill-climbing (MMHC). All of these algorithms 
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were first employed to learn the Bayesian networks using the R package bnlearn under their 

default settings, and then the moral graphs were generated from the learned Bayesian 

networks via the function moral in the R package. The Markov blanket discovery algorithms 

by Gao and Ji (2017a, 2017b) can also be applied to produce a moral graph, but their codes 

are not available to the public and thus are not included for comparison.

To evaluate the performance of each algorithm, the receiver operating characteristic (ROC) 

curve was drawn. The ROC curve is a plot of false-positive rate (FPR) versus true-positive 

rate (TPR), defined by

FPR = FP
FP + TN , TPR = TP

TP + FN ,

where TP, FP, and FN denote true positives, false positives and false negatives, respectively. 

Figure 2 shows the average ROC curves over 10 independent data sets for each algorithm. 

For the algorithm 1, in order to plot the ROC curve, we vary the value of α2. For all other 

algorithms, the package bnlearn provides a bootstrap method to calculate the arc presence 

probabilities, and the ROC curve can be plotted by varying the cutoff value of the 

probability. Table 2 reports the averaged area under the ROC curve and the associated 

standard deviation for all the algorithms. The comparison indicates the superiority of the 

proposed algorithm over the existing ones.

4.2 Sensitivity Analysis.

The p-learning algorithm consists of two parameters: α1 and α2. The α1 controls the size of 

the super-Markov blanket for each node, while α2 controls the false discovery rate (FDR) 

and thus sparsity of the resulting moral graph. In general, we suggest that α1 be set to a 

reasonably large value in order to reduce the risk of Si ∉ Si, where Si and Si denote the 

Markov blanket and super-Markov blanket of node i, respectively. The α2 is a user-specified 

parameter, which should be set by the user according to his or her own purpose. For α1, we 

conducted a sensitivity analysis with the results reported in Table 3, where the data were 

generated as in section 4.1 with an AR(2) structure and pc = pd = p/2, and the ROC curve 

was plotted by fixing the value of α1 and varying the value of α2 from 0 to 1. The results 

show that the performance of the p-learning algorithm is quite robust to the choice of α1; the 

AUC (area under the ROC curve) values are not much changed as α1 varies from 0.05 to 

0.25.

4.3 Mixed Data with General Dependence Structures.

For a thorough comparison, we also considered several other moral graph structures such as 

alarm, barley, ecoli, and magic, which are four popular networks obtained at the Bayesian 

Network Repository (http://www.bnlearn.com/bnrepository/). Since the data for these 

networks are not of mixed type, we simulated the mixed type of data with their known 

network structures as follows. We first randomly marked half of the variables as continuous 

and the rest as binary, filled the adjacency matrix E with the given DAG structure, and then 

simulated the observations in the following steps:

1. Define an ancestor set of variables A, which refer to the nodes with no parents.
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2. For each node i ∈ A, generate a gaussian random variable Yi ~ N(0, 1). Set Xi = 

Yi if Xi is continuous, and set Xi  Binomial (n, 1/(1 + e
−Yi)) otherwise.

3. Define the offspring set O, which refers to the nodes with parents in the ancestor 

set A but O ∩ A = Ø.

4. For each node j ∈ O, generate Xj by setting

Y j = ∑
i ∈ A

0.5Ei jXi, (4.4)

X j =

Y j + ϵ j,  if X j is continuous,

 Binomial  n,
exp Y j

1 + exp Y j
,  if X j is binary,

(4.5)

where ϵj is a standard gaussian random variable and Eij denotes the (i, j) entry of 

E.

5. Update the ancestor set by A = A ∪ O.

6. Iterate between steps 3 and 5 until all nodes are included in the ancestor set A.

For each structure, 10 independent data sets were simulated. Figure 3 and Table 4 report the 

averaged ROC curves and areas under the curves (AUCs) produced by different algorithms 

for these data sets. The comparison shows that algorithm 1 outperforms other algorithms `for 

all types of Bayesian network structures.

4.4 Binary Data with an AR(2) Structure.

For a thorough test for the performance of the proposed algorithm, we have also considered 

the case with binary variables only. We simulated 10 independent data sets as in section 4.1, 

except that all p = 200 variables were set to binary. Figure 4 shows the average ROC curves 

over the 10 data sets for different algorithms, and Table 5 reports the averaged area under the 

ROC curve and the associated standard deviation. The comparison indicates the superiority 

of the proposed algorithm over the existing ones.

4.5 Time Complexity.

This study compares the time complexity of the proposed algorithm with the existing ones. 

In this study, we let the dimension p increase with n in the polynomial p = 0.01n2. Such a 

polynomial setting facilitates the measurement of the time complexity of each algorithm in 

the form of O(pν). Different settings of (n, p) were considered, including (100, 100), (141, 

200), (200, 400), (264, 700), and (300, 900). For each setting of (n, p), an independent data 

set was simulated as in section 4.1 with pc = pd = p/2, different algorithms were applied to 

learn the moral graph from the data set, and the CPU time (in minutes) was recorded on a 

Xeon Gold 6126 CPU@2.60 GHz machine. (See Table 6 for details.) For each algorithm, 

the recorded CPU time was fitted by a linear regression
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log(T) = β0 + v log(p) + ϵ, ϵ N 0, σ2 ,

where σ2 denotes the variance of the random error and T denotes the recorded CPU time. 

The fitting results, including R2 and the OLS estimate of ν and its standard deviation, are 

reported in Table 6. In addition, we report in Table 6 the p-values of the tests for the 

hypotheses,

H0:vm ≤ vp versus H1:vm > vp, m ∈ GS, IAMB,  hiton, PC, hc, mmhc ,

where νp = 1.861 denotes the value of ν for the p-learning algorithm and νm denotes the 

value of ν for the algorithm m. The tests show that the time complexity of the p-learning 

algorithm is significantly lower than the existing algorithms (at a significance level of 0.05). 

More important, algorithm 1 outperforms the existing algorithms in recovering the 

underlying moral graph.

5. Real Example

This study aims to learn an interactive genomics network for Breast Cancer (BRCA), which 

incorporates gene expressions (mRNA-array data), mutations, and DNA methylations. The 

data set was downloaded from the Cancer Genome Atlas (TCGA) at https://tcga-

data.nci.nih.gov/tcga/. For mRNA gene expressions, we used the microarray data collected 

from the Agilent custom 244,000 array (Agilent) platform, which includes 17,814 

normalized mRNA expressions. The mutations were defined by a binary variable, where 1 

stands for all the nonsilent mutations and 0 for silent mutations or not being mutated, 

resulting in 16,806 genes with mutations. DNA methylations were measured at the probe 

level, where each probe represents a CpG site. This data set consists of 27,578 CpG sites. 

Based on the suggestions from Zhang, Burdette, and Wang (2014), we classified methylation 

levels using the k-means clustering algorithm into either hyper or hypo states, which are 

represented as 0 and 1, respectively. In summary, the data set consists of mRNA gene 

expressions, mutations, and DNA methylations, which are either gaussian or binary 

distributed. We present our analysis for the genes that overlap with the BRCA pathways 

available in the Kyoto Encyclopedia of Genes and Genomes (KEGG). For mutations, we use 

only those included in the BRCA pathway. For methylations, we include only the CpG 

islands where the genes in the BRCA pathway locate. As a result, we have a data set with 

129 mRNA gene expressions, 11 mutations, and 315 DNA methylations, with 287 

observations.

In the genomics network, there exist some parents-children associations from mutations or 

DNA methylation to gene expressions, which imply that the mutations and DNA 

methylations can regulate gene expressions. However, according to biological knowledge, 

there should not exist the parents-children association among themselves; that is, any 

mutation-mutation, methylation-methylation, or mutation-methylation edges should not exist 

in the skeleton of Bayesian networks. Therefore, to generate biologically meaningful 

network structures, edge restriction rules should be considered when constructing mixed 
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graphical models. Under the framework of algorithm 1, these restriction rules can be easily 

incorporated into network construction.

Suppose that edges in the skeleton network can exist only among a subset of variables or 

they are exempt among certain types of variables. In this scenario, we define a set E, which 

contains all pairs of variables with possible edges. For example, in the genomic network, 

edges are exempted from the pairs between discrete variables; hence, E contains all (i, j) 
pairs, i, j = 1, 2, … , p excluding the pairs between discrete variables. Then a restricted p-

learning algorithm can be proposed by modifying steps a.i and c.i in algorithm 1 as follows:

a.i′. For each ordered pair of nodes (Xi, Xj), where (i, j) ∈ E, conduct the marginal 

independence test Xi ⊥p Xj and obtain the p-value.

c.i′. For each ordered pair of nodes (Xi, Xj), where (i, j) ∈ E, conduct the conditional 

independence test Xi ⊥P X j |Si j\ i, j , where Si j = Ai ∪ Bi if 

|Ai ∪ Bi\ i, j | ≤ |A j ∪ B j\ i, j | and Si j = A j ∪ B j otherwise.

Under the edge restriction case, the independence and conditional independence screening 

are conducted only for the potential pairs of nodes in the set E, and therefore the edges in the 

resulting network can be chosen only from the set E. However, based on the definition of 

moral graphs, which should link the two nodes together if they have at least one common 

child, we should finally add edges between the pairs (i, j) ∉ E if they share at least a common 

child. In applying the p-learning algorithm to this example, we set the parameters α1 = 0.05 

and α2 = 0.02. The resulting moral network is shown in Figure 5.

From Figure 5, some hub genes, mutations, or methylations can be identified, which might 

play an important role in the development of breast cancer. A hub gene refers to a gene with 

with strong connectivity to other genes, mutations, or methylations. The hub mutation or hub 

methylation can be defined similarly, which might regulate the expression of quite a few 

genes. Table 7 lists the top five hub genes, mutations, and methylations identified by 

algorithm 1 for this data set, some of which have been verified in the existing literature. For 

example, PIK3R1 is the first hub gene, for which Cizkova et al. (2013) stated that PIK3R1 

underexpression is an independent prognostic marker in breast cancer. NOTCH2 is another 

hub gene, for which Wang et al. (2016) claimed that NOTCH2 is downregulated and plays 

suppressive roles in breast cancer and the high NOTCH2 expression is shown to predict 

good survival for breast cancer patients. We also identified the mutation TP53, which is 

known to be the most frequent genetic alterations in breast cancer (Bertheau et al., 2013; 

Silwal-Pandit et al., 2014). Moreover, Silwal-Pandit et al. (2014) reported that TP53 

mutation status is a strong marker of prognosis and has distinct prognostic relevance across 

different breast cancer subtypes. As for hub methylations, we identified CpG sites 

cg01230931, which is located in the promoter region of the gene APC. Virmani et al. (1998) 

mentioned that the aberrant of APC methylation had been reported in breast cancer and the 

frequency of APC methylation is significantly higher in breast cancer cases groups than 

healthy controls and also increases with tumor stage and size.

For comparison, we have applied other algorithms to this data set. Figure 6 showed the 

networks produced by the incremental association Markov blanket (IAMB), hill-climbing 
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(hc), max-min hill-climbing (mmhc), and semi-interleaved HITON-PC (hiton) algorithms 

under their default settings in the bnlearn package. The networks produced by the IAMB and 

hiton algorithms are too sparse and lose too much information about genomics associations. 

The network produced by the mmhc algorithm reveals some hub genes such as PIK3CD and 

FGF1, but it fails to identify the TP53 mutation and many important methylations. The hc 

algorithm produced an overly dense network, which has too many highly connected genes. 

Both the grow-shrink (GS) and PC algorithms produced an empty network. The comparison 

indicates that the proposed algorithm outperforms all others for this example.

6. Discussion

We have proposed a novel algorithm, the so-called p-learning algorithm, for learning moral 

graphs for high-dimensional Bayesian networks, and justified the consistency of the p-

learning algorithm under the small-n, large-p scenario. The numerical results indicate that 

algorithm 1 significantly outperforms the existing ones, such as the PC, grow-shrink, IAMB, 

hiton-pc, hill-climbing, and max-min hill-climbing algorithms.

In this letter, we consider only the binary data and the mixed data of gaussian and binary 

variables. Extension of algorithm 1 to some other types of mixed data is straightforward. For 

example, for nongaussian continuous random variables, the nonparanormal transformation 

proposed by Liu, Lafferty, and Wasserman (2009) can be applied to gaussianize the data 

prior to applying the proposed algorithm. For Poisson random variables, the random-effect 

model-based transformation proposed by Jia, Xu, Xiao, Lamba, and Liang (2017) can be 

first applied to continuize the data, and the nonparanormal transformation can then be 

applied to gaussianize the data. The negative binomial data can be treated in the same way. 

For some other types of discrete data, we might regroup and treat them as multinomial data.

Finally, we note that the moral graph is a Markov network representation of a Bayesian 

network, and learning the Markov network for mixed data is of great interest in the current 

literature. For example, Cheng, Li, Levina, and Zhu (2013) proposed a conditional gaussian 

distribution-based algorithm and Fan, Liu, and Ning (2017) proposed a semiparametric 

latent variable algorithm to tackle the problem. The conditional gaussian distribution used in 

Cheng et al. (2013) is similar to equation 3.1 but includes more interaction terms. They used 

the nodewise regression method to estimate the Markov network structure. The 

semiparametric latent variable algorithm works by introducing a latent gaussian variable for 

each of the discrete variables and then estimating the Markov network using a regularization 

method. However, as Fan et al. (2017) stated, the conditional independence between the 

latent variables does not imply the conditional independence between the observed discrete 

variables. The copula PC algorithm (Cui et al., 2016) might suffer from the same problem.
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Appendix:: Consistency of Moral Graph Learning

To indicate that p can grow as a function of n, we rewrite p as pn, rewrite the distribution 

function P in (2.1) as P(n), and rewrite the true Bayesian network G as G(n) = (V(n), E(n)). Let 

𝒢(n) = 𝒱(n), ℰ(n)  denote the marginal association network, where 𝒱(n) = V(n) and the 

association are measured by the coefficients of the marginal regression,

Xi 1 + X j, i, j = 1, 2, …, pn, (A.1)

which can be normal linear regression or multiclass logistic regression depending on the 

type of Xi. Let γij denote the coefficient of Xj in equation A.1, which is called the marginal 

regression coefficient (MRC) in this letter. Then we have

ℰ(n) = (i, j):γi j ≠ 0, i, j = 1, …, pn .

Let νn denote a threshold value of the MRC, let ℰvn
 denote the edge set of the network 

obtained through MRC thresholding at νn, and let ℰvn
 denote the neighborhood of node i in 

ℰvn
. That is, we define

ℰvn
= (i, j): |γ i j| > vn , and ℰv, i = j: j ≠ i, |γ i j| > vn . (A.2)

For convenience, we call the network with the edge set ℰvn
 the thresholding MRC network.

Similarly, we let βij denote the regression coefficient of Xj in the nodewise GLM:

Xi 1 + X j + ∑
k ∈ V(n)\ i, j

Xk .
(A.3)

Following from the total conditioning property of Bayesian networks (Pellet & Elisseeff, 

2008), which shows that X j ∈ Si Xi ⊥pX j |V \ Xi, X j , we have βi j ≠ 0 X j ∉ Si. Let 

Emb
(n) = (i, j): βi j ≠ 0, i, j = 1, …, pn  denote the edge set of the moral graph. We partition Emb

(n)

into two subsets: Ep
(n) = (i, j): βi j ≠ 0, γi j ≠ 0  and Es

(n) = (i, j): βi j ≠ 0, γi j = 0  The former set 

contains the parent-child links as well as the spouse links for which the two spouse variables 

are marginally dependent. The latter set contains the spouse links for which the two spouse 

variables are marginally independent but dependent conditioned on their common child.

Let Zi = 1, Xi, 1, …, Xi, qn
′, where Xi, 1, …, Xi, qn

⊂ X1, X2, …, X pn
\ Xi , and qn is 

bounded by O(n/ log(n)). In this letter, qn is allowed to increase with n at an appropriate rate. 

The regression model Xi ~ Zi is assumed with quasi-likelihood function −l Zi
⊤ξi, Xi , where 

ξi denotes the vector of regression coefficients. Let
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ξi* = arg min
ξi

El Ziξi, Xi ,
(A.4)

be the population parameter and

ξ i* = arg min
ξi

Pnl Ziξi, Xi ,
(A.5)

be the maximum likelihood estimator (MLE), where Pn f (X, Y) = n−1∑i = 1
n f Xi, Y i  is the 

empirical measure and

l(X; θ) = − [θX − b(θ) − log c(X)],

denotes the log-density function (in the canonical form) of the exponential family, where b(·) 

and c(·) denote some known functions. Assume that ξi* is an interior point of a sufficiently 

large, compact, and convex set F ∈ R
qn + 1

. For any pair (Zi, Xi), the following conditions 

are assumed:

E1: The Fisher information,

I ξi = E ∂
∂ξi

l Zi
Tξi, Xi

∂
∂ξi

l Zi
Tξi, Xi

T
,

is finite and positive at ξi = ξi*. Moreover, ‖I ξi ‖F = supξ: ∈ F, ‖z‖ = 1‖I ξ j
1/2z‖ exists, 

where ‖·‖ is the Euclidean norm.

E2: The function l zi
Tξi, xi  satisfies the Lipschitz property with positive constant kn,

|l zi
Tξi, xi − l zi

Tξi′, xi |In zi, xi ≤ kn|zi
Tξi − zi

Tξi′|In zi, xi ,

for ξi, ξi′ ∈ F, where In(zi, xi) = I((zi, xi) ∈ Ωn) with Ωn = {(z, x) : |(z, x)|∞ ≤ Kn} for 

some sufficiently large, positive constants Kn, and ‖·‖∞ is the supremum norm. In 

addition, there exists a sufficiently large constant C such that with 

bn = CknVn
−1(q/n)1/2 and

sup
ξi ∈ F, ‖ξi − ξi*‖ ≤ bn

|E l Zi
Tξ, Xi − l Zi

Tξi*, Xi 1 − In Zi, Xi | ≤ o(q/n),

where Vn is the constant given in condition E3.

E3: The function l Xi
Tξi, Xi  is convex in ξi, satisfying

Xu et al. Page 17

Neural Comput. Author manuscript; available in PMC 2019 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E l Zi
Tξi, Xi − l Zi

Tξi*, Xi ≥ Vn‖ξi − ξi*‖2

for all ‖ξi − ξi*‖ ≤ bn and some positive constants Vn.

E4: There exist some positive constants m0, m1, s0, s1, and α, such that for 

sufficiently large t,

P |X j| > t ≤ m1 − s1 exp −m0tα , j = 1, …, pn,

where α is as defined in condition B of section 3.2, and

E exp b Zi
Tξi + s0 − b Zi

Tξi + E exp b Zi
Tξi − s0 − b Zi

Tξi ≤ s1,

where ξi = βi j: βi j ≠ 0, j ∈ P(i) , P(i) = j: (i, j) ∈ Ep
(n) ,, and Zi contains the 

corresponding predictors defined in model 2.1—Zi
Tξi = βi0 + ∑ j ∈ P(i) X jβi j.

E5: The variance Var Zi
Tξi  is bounded from above and below for all i = 1, … , pn, 

where Zi and ξi are as specified in condition D in section 3.2.

E6: Either b″(·) is bounded or XM = X1, …, X pn

T
 follows an elliptically contoured 

distribution, that is,

XM = Σ1/2RU,

and |Eb′ Zi
⊤ξi Zi

⊤ξi − βi0 | is bounded, where U is uniformly distributed on the unit 

sphere in p-dimensional Euclidean space, independent of the nonnegative random 

variable R, Σ = Var(XM), and λmax(Σ) = O(nτ)for some constant 0 ≤ τ < 1 − 2κ, 

where κ is as defined in condition B of section 3.2.

Assumption E6 implies that the largest eigenvalue of Σ is allowed to grow with n, but the 

growth rate should be restricted. Otherwise, the resulting thresholding network can be dense.

To establish the consistency of the p-screening algorithm for moral graph learning, we first 

note that following from the definition of P(i) and condition D of section 3.2, there exists a 

constant c2 such that

min
i

min
j ∈ P(i)

|γi j| ≥ c2n−κ . (A.6)

Lemma 1 concerns the sure screening property of the thresholded association network, and 

lemma 2 concerns the neighborhood size of each node of the thresholded association 
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network. Their proofs can be simply modified from that of theorems 4 and 5 of Fan and 

Song (2010), respectively.

Lemma 1. Suppose that the conditions A, B, and E1 to E4 hold:

i. If Kn = o(n(1−2κ)/(α+2)), then for any c3 > 0, there exists a positive constant c4 

such that

P max
1 ≤ i, j ≤ pn

|γ i j − γi j| ≥ c3n−κ ≤ O pn
2 exp −c4n(1 − 2κ)α/(α + 2) = o(1) . (A.7)

ii. If, in addition, condition D holds, then by taking νn = c5n−κ with 0 < c5 ≤ c2/2, 
we have

P P(i) ⊆ ℰvn, i ≥ 1 − O pn exp −c4n(1 − 2κ)α/(α + 2) = 1 − o(1), (A.8)

P Ep
(n) ⊆ ℰvn

≥ 1 − O pn
2 exp −c4n(1 − 2κ)α/(α + 2) = 1 − o(1) . (A.9)

Lemma 2. Suppose that conditions A, B, and E1 to E6 hold. If Kn = o(n(1−2κ)/(α+2)), then 
for any νn c5n−κ, we have

P |ℰvn, i
| ≤ O n2κ + τ ≥ 1 − O pn exp −c4n(1 − 2κ)α/(α + 2) = 1 − o(1) . (A.10)

Since the exact value of 2κ + τ is unknown, we may bound the size of the neighboring set 

ℰvn, i by O(n/ log(n)) in practice. However, when n is large, n/ log(n) can be too large. An 

excessively large size of the set will adversely affect the power of the moral graph screening 

tests. To address this issue, we propose a multiple hypothesis test-based procedure: step a.ii 

for preidentification of the nonzero marginal association measure. To justify this procedure, 

we have the following lemmas.

Lemma 3. Assume conditions A, B, D, and E1 to E4 hold. If ηn = 1
2c2n−k, where c2 is 

defined in equation A.6, then

P Ep
(n) ⊂ ℰηn

= 1 − o(1), as n ∞ .

Proof. Let Aij denote that an error event occurs when testing the hypotheses H0 : γij = 0 

versus H : γij ≠ 0 for variables Xi and Xj. Let Ai j
I  and Ai j

II denote the false-positive and false-

negative errors, respectively. Then Ai j = Ai j
I ∪ Ai j

II, where
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 False‐positive error Ai j
I : |γ i j| >

c2
2 n−κ  and γi j = 0,

 False‐negative error Ai j
II : |γ i j| ≤

c2
2 n−κ  and γi j ≠ 0

. (A.11)

By equation A.6, minij |γij| ≥ c2n−κ for the links in Ep
(n). Therefore, by lemma 1.i,

P[Missing a link of Ep
(n) in ℰηn

]

≤ P max
1 ≤ i, j ≤ pn

|γ i j − γi j| ≥ c2/2n−κ ≤ o(1) . (A.12)

□

Therefore, based on lemmas 1, 2, and 3, we propose to restrict the size of the set Ai (in 

algorithm 1) for each node to be

min |ℰηn, i|,
n

cn1 log(n) , (A.13)

where cn1 is a small constant—for example, cn = 1, 2, or 3. The value of ηn can be 

determined through a simultaneous test for the hypotheses H0 : γij =0 ↔ H1 : γij ≠ 0, 1 ≤ i 
≤ j≤ pn, at a significance level of α1.

Lemma 4 concerns the convergence of the MLE of the regression coefficients for which all 

the true predictors have been included. The lemma is a restatement of theorem 1 of Fan and 

Song (2010):

Lemma 4. Assume conditions A, B, and E1 to E3 hold. If Kn = o(n(1−2κ)/(α+2)), then for any 
constant c7 > 0, there exists a constant c8 > 0 such that

P max
1 ≤ i ≤ pn

|ξ i − ξi*| ≥ c7n−κ ≤ O pn exp −c8n(1 − 2κ)α/(α + 2) = o(1), (A.14)

where ξi* is defined in equation A.4 and ξ i is the MLE of ξi*.

Recall that if the Markov blanket Si (of node Xi) is contained in Zi, then ξi, ik
* = βi j for j ∈ Si 

and X j = Xi, ik
, and ξi, ik

* = 0 otherwise.

Let βi j denote the estimate of βij obtained in step c of algorithm 1. Let ζn denote the 

threshold value of βi j, and let Emb, ζn
(n)  denote the network obtained through thresholding βi j. 

That is, we define
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Emb, ζn
(n) = (i, j): |βi j| > ζn .

To establish the consistency of Emb, ζn
, we first note that as implied by condition D and the 

total conditioning property, there exists a constant c6 such that the true regression 

coefficients {βij}defined in equation A.3 satisfy

min
i

min
j ∈ Si

|βi j| ≥ c6n−κ,
(A.15)

where κ is as defined in condition (B). Let ℰ* denote the edge set of a marginal association 

network for which each node has a degree of O(n/ log(n)), adjacent to O(n/ log(n)) highest 

associated nodes. It follows from lemmas 1 and 2 that

P Ep
(n) ⊆ ℰ* ≥ 1 − O pn

2 exp −c4n(1 − 2κ)α/(α + 2) = 1 − o(1) . (A.16)

Let B = ∪i = 1
pn Bi, where Bi is defined in step b of the p-screening algorithm. We have 

Es
(n) ⊂ B. Further, by lemma 3, we have Emb

(n) = Ep
(n) ∪ Es

(n) ⊂ (ℰ* ∩ ℰηn
) ∪ B.

Lemma 5 establishes the consistency of Emb, ζn
(n)  as an estimate of Emb

(n) conditioned on 

Emb
(n) ⊆ ℰ* ∩ ℰηn

∪ B. Its proof is based on equation A.15 and follows closely the proof of 

lemma 3, and is thus omitted here.

Lemma 5. Assume that the conditions A, B, C, D, and E1 to E6 hold and that 

Emb
(n) ⊆ ℰ* ∩ ℰηn

∪ B is true. Let ζn = 1
2c6n−κ. If Kn = o(n(1−2κ)/(α+2)). Then

P Emb, ζn
(n) = Emb

(n) | Emb
(n) ⊆ ℰ* ∩ ℰηn

∪ B = 1 − o(1), as n ∞ .

As a summary for the above results, we have the following theorem, which establishes the 

consistency of Emb, ζn
(n)  as an estimate of the adjacency matrix of the moral graph Emb

(n).

Theorem 2. Consider a Bayesian network with distribution P(n) defined in equation 2.1 for 
mixed GLM variables. Assume the conditions A, B, C, D, and E1 to E6 hold. If Kn = 

o(n(1−2κ)/(α+2)), then

P Emb, ζn
(n) = Emb

(n) ≥ 1 − o(1), as n ∞ .
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Proof. By invoking lemma 3, equation A.16, and lemma 5, we have

P Emb, ζn
(n) = Emb

(n) ≥ P Emb, ζn
(n) = Emb

(n) | Emb
(n) ⊆ ℰ* ∩ ℰηn

∪ B P Emb
(n) ⊆ ℰ* ∩ ℰηn

∪ B ≥ [1 − o(1)][1 − o(1

) + 1 − o(1) − 1] = 1 − o 1 .

□
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Figure 1: 
(a) A Bayesian network. (b) The moral graph corresponding to panel a, where edges 5–7 and 

8–11 are added.
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Figure 2: 
Averaged ROC curves produced by different algorithms for learning the moral graph with an 

AR(2) structure: p-learn denotes the proposed algorithm; GS denotes the grow-shrink 

algorithm; IAMB denotes the incremental association Markov blanket algorithm; hiton 

denotes the semi-interleaved HITON-PC algorithm; PC denotes the PC algorithm; hc 

denotes the hill-climbing algorithm; and mmhc denotes the max-min hill-climbing 

algorithm.
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Figure 3: 
Averaged ROC curves produced by different algorithms for learning moral graphs with 

different dependency structures. (a) Alarm structure with (n, pc, pd) = (3000, 19, 18). (b) 

Barley structure with (n, pc, pd) = (3000, 24, 24). (c) Ecoli structure with (n, pc, pd) = (3000, 

23, 23). (d) Magic structure with (n, pc, pd) = (3000, 32, 32), where p-learn denotes the 

proposed algorithm; GS denotes the grow-shrink algorithm; IAMB denotes the incremental 

association Markov blanket algorithm; hiton denotes the semi-interleaved HITON-PC 

algorithm; PC denotes the PC algorithm; hc denotes the hill-climbing algorithm; and mmhc 

denotes the max-min hill-climbing algorithm.
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Figure 4: 
Averaged ROC curves produced by different algorithms for learning the moral graph with an 

AR(2) structure and binary variables only. p-learn denotes the proposed algorithm; GS 

denotes the grow-shrink algorithm; IAMB denotes the incremental association Markov 

blanket algorithm; hiton denotes the semi-Interleaved HITON-PC algorithm; PC denotes the 

PC algorithm; hc denotes the hill-climbing algorithm; and mmhc denotes the max-min hill-

climbing algorithm.
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Figure 5: 
The moral network produced by algorithm 1 for breast cancer, where the circle nodes denote 

genes, the square nodes denote mutations, and the star nodes denote DNA methylations.
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Figure 6: 
The genomics networks produced by different algorithms for the breast cancer data set.
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Xu et al. Page 31

Table 1:

Conditional Independence Represented by Markov Networks.

Conditional Independence
Marginal Independence

X ⊥p Y X ⊥pY

X ⊥p Y|Z Ⓧ Ⓨ − Ⓩ Ⓧ – Ⓩ – Ⓨ

X ⊥pY |Z Nonrepresentable Ⓧ – Ⓨ – Ⓩ

Neural Comput. Author manuscript; available in PMC 2019 November 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 32

Table 2:

Averaged Areas under the ROC Curves Produced by Different Algorithms for Recovering the Moral Graph 

with an AR(2) Structure.

n GS IAMB hiton PC hc mmhc p-learn

100 0.538 0.642 0.683 0.642 0.813 0.667 0.857

(0.001) (0.001) (0.002) (0.003) (0.005) (0.003) (0.005)

200 0.547 0.681 0.735 0.690 0.830 0.706 0.877

(0.001) (0.001) (0.002) (0.003) (0.003) (0.002) (0.002)

500 0.559 0.693 0.751 0.715 0.885 0.737 0.940

(0.002) (0.001) (0.003) (0.004) (0.003) (0.004) (0.002)

1000 0.557 0.683 0.765 0.709 0.899 0.737 0.977

(0.002) (0.001) (0.002) (0.003) (0.002) (0.004) (0.001)

Notes: The numbers of continuous and binary variables (pc, pd) were fixed to (100, 100). The numbers in parentheses represents the standard 

deviation of the areas averaged over 10 data sets. The bold numbers indicate that the proposed algorithm 1 significantly outperforms the 
competitors.
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Table 3:

Averaged Areas under the ROC Curves Produced by Algorithm 1 with Different Values of α1.

n\α1 0.05 0.1 0.15 0.2 0.25

100 0.863 0.857 0.854 0.836 0.826

(0.005) (0.005) (0.004) (0.005) (0.005)

200 0.873 0.877 0.872 0.869 0.868

(0.003) (0.002) (0.003) (0.003) (0.002)

500 0.941 0.940 0.940 0.939 0.939

(0.001) (0.001) (0.002) (0.003) (0.005)

1000 0.977 0.977 0.977 0.977 0.977

(0.001) (0.001) (0.001) (0.001) (0.001)

Notes: The data were generated as in section 4.1 with an AR(2) structure and pc = pd = 100. The numbers in parentheses represent the standard 

deviation of the areas averaged over 10 data sets.

Neural Comput. Author manuscript; available in PMC 2019 November 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 34

Table 4:

Averaged Areas under the ROC Curves Produced by Different Algorithms for Learning Moral Graphs with 

Different Dependency Structures.

Structure GS IAMB hiton PC hc mmhc p-learn

Alarm 0.600 0.594 0.740 0.735 0.774 0.740 0.894

(0.008) (0.006) (0.005) (0.005) (0.006) (0.005) (0.014)

Barley 0.619 0.581 0.738 0.707 0.782 0.755 0.873

(0.005) (0.003) (0.003) (0.007) (0.003) (0.005) (0.012)

Ecoli 0.633 0.668 0.836 0.792 0.839 0.826 0.919

(0.006) (0.002) (0.003) (0.008) (0.005) (0.003) (0.006)

magic 0.591 0.561 0.612 0.585 0.628 0.657 0.857

(0.005) (0.002) (0.003) (0.006) (0.004) (0.004) (0.003)

Notes: The numbers in the parentheses represent the standard deviation of the areas averaged over 10 data sets. The bold numbers indicate that the 
proposed algorithm 1 significantly outperforms the competitors.

Neural Comput. Author manuscript; available in PMC 2019 November 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 35

Table 5:

Averaged Areas under the ROC Curves Produced by Different Algorithms for Learning the Moral Graph with 

an AR(2) Structure and Binary Variables Only.

n GS IAMB hiton PC hc mmhc p-learn

100 0.564 0.646 0.659 0.596 0.580 0.613 0.829

(0.002) (0.005) (0.008) (0.006) (0.005) (0.006) (0.006)

200 0.585 0.695 0.707 0.612 0.569 0.646 0.820

(0.002) (0.005) (0.007) (0.004) (0.004) (0.004) (0.004)

500 0.593 0.743 0.769 0.623 0.650 0.676 0.954

(0.003) (0.004) (0.004) (0.004) (0.006) (0.005) (0.002)

1000 0.601 0.772 0.799 0.636 0.657 0.684 0.983

(0.002) (0.003) (0.003) (0.005) (0.004) (0.005) (0.001)

Notes: The numbers in the parentheses represent the standard deviation of the areas averaged over 10 data sets. The bold numbers indicate that the 
proposed algorithm 1 significantly outperforms the competitors.
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Table 6:

Computational Time (in CPU Minutes Recorded on a Xeon Gold 6126 CPU@2.60 GHz Computer) of 

Different Algorithms for Recovering the Moral Graph with an AR(2) Structure.

GS IAMB hiton PC hc mmhc p-learn

(n, p)

(100,100) 0.9 1.1 3.0 7.1 1.4 2.9 4.1

(141,200) 3.2 3.9 34.2 82.2 6.5 32.3 15.9

(200,400) 18.6 18.6 499.7 1304.1 49.7 520.5 54.4

(264,700) 50.0 46.8 5320 12239.3 253.0 4785.3 152.5

(300,900) 102.4 97.1 14560.8 33389.9 624.2 13545.3 254.8

Regression

R2 0.9962 0.9969 0.9987 0.9993 0.9954 0.9991 0.9997

v 2.157 2.017 3.886 3.872 2.786 3.866 1.861

sd v 0.076 0.065 0.080 0.059 0.110 0.068 0.019

Test

p-value 7.9 × 10−5 0.011 0 0 5.8 × 10−17 0 —
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Table 7:

Top Five Hub Genes, Mutations, and Methylations Identified by Algorithm 1.

Rank Gene Links Mutation Links Methylation Links

1 PIK3R1 13 TP53 4 cg01240931 15

2 NOTCH2 11 - - cg01830294 13

3 CTNNB1 11 - - cg04658354 12

4 FGF1 8 - - cg19088651 12

5 PIK3CD 8 - - cg15791248 10

Note: “Links” denotes the number of edges connected to the corresponding node in the network.

Neural Comput. Author manuscript; available in PMC 2019 November 23.


	Abstract
	Introduction
	A Brief Review of Bayesian Network Theory
	Learning High-Dimensional Moral Graphs
	The p-Learning Algorithm.
	Algorithm 1: p-Learning Algorithm

	Consistency of the p-Learning Algorithm.

	Simulation Studies
	Mixed Data with an AR(2) Structure.
	Sensitivity Analysis.
	Mixed Data with General Dependence Structures.
	Binary Data with an AR(2) Structure.
	Time Complexity.

	Real Example
	Discussion
	Consistency of Moral Graph Learning
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:
	Table 6:
	Table 7:

