
A Mathematical Analysis of Memory Lifetime in
a simple Network Model of Memory

Pascal Helson∗

June 11, 2020

Contents
1 Introduction 2

2 The model and the estimator 4
2.1 The neural network and the protocol . . . . . . . . . . . . . . . . . . 4
2.2 Presentation of the estimator . . . . . . . . . . . . . . . . . . . . . . 5

3 Results 10
3.1 Binomial mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Simulations 20

5 Discussion 22

A Proofs 26
A.1 Proof of Proposition 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.2 Proof of Proposition 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.3 Proof of Lemma 3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Abstract
We study the learning of an external signal by a neural network and the time to forget
it when this network is submitted to noise. The presentation of an external stimulus to
the recurrent network of binary neurons may change the state of the synapses. Multiple
presentations of a unique signal leads to its learning. Then, during the forgetting time,
the presentation of other signals (noise) may also modify the synaptic weights. We
construct an estimator of the initial signal using the synaptic currents and define by
this way a probability of error. In our model, these synaptic currents evolve as Markov
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chains. We study the dynamics of these Markov chains and obtain a lower bound on
the number of external stimuli that the network can receive before the initial signal is
considered as forgotten (probability of error above a given threshold). Our results hold
for finite size networks as well as in the large size asymptotic. Our results are based on
a finite time analysis rather than large time asymptotic. We finally present numerical
illustrations of our results.

1 Introduction
[Amit and Fusi, 1994] proposed a model to study the memory capacity of neural net-
works. The main novelty of their work was the online learning and forgetting of a
sequence of random signals. Indeed, in previous models (e.g. [Willshaw et al., 1969]
or [Hopfield, 1982]), signals are stored in a fixed weight matrix. This matrix is de-
termined as a function of signals to learn. These models are called associative or
attractor neural network (ANN) models: a stimulus is said to be stored if its neural
representation is an attractor of the neural dynamics. The maximum storage capac-
ity of ANN models have been widely studied. [Gardner and Derrida, 1988] computed
this capacity for the optimal synaptic weight matrix. They showed that maximal stor-
age is obtained for sparse coding. Moreover, there has been study of the robustness to
noise in the synaptic weight matrix and in the initial input. [Sommer and Dayan, 1998]
proposed Bayesian retrieval processes for a stochastic version of the Willshaw model.
However, beyond the maximum number of stimuli learnt, blackout catastrophe (for-
getting of all memories) appears in ANN models. This blackout can be avoided by
allowing the plasticity of the synapses.

[Amit and Fusi, 1994] proposed the following experimental protocol: a neural net-
work, with both binary synapses and binary neurons, receives and learns new ran-
dom stimuli while forgetting the previous ones. Every signal may affect the synaptic
weights. After a certain amount of time, the first stimulus is presented again (priming)
and the ability of the network to recognize it is questioned: how many stimuli can be
presented before it forgets the initial signal? To provide an answer, Amit and Fusi per-
formed a signal-to-noise ratio (SNR) analysis. The signal under consideration is the
sum of the synaptic currents onto one neuron when the network receives the priming.
As [Gardner and Derrida, 1988] found in the case of the ANN models, Amit and Fusi
concluded that the coding of the stimuli needs to be sparse in order to optimise the
storage capacity. They proposed a scaling of the coding level f (probability that a neu-
ron is selective to a signal) as a function of the size N of the network. According to
their retrieval criterion, the optimal coding level is on the order of f ∼ log(N)

N . In the
large N asymptotic, what they called the storage capacity is then on the order of 1

f2 for
depression probabilities proportional to f .

Extensions and approaches different from SNR have then been studied. First, [Brunel et al., 1998]
studied a different protocol: they fixed the number of random stimuli and presented
them randomly multiple times. Their analysis relied on the comparison of two quan-
tities: the mean potentiation (MP) and the intra-class potentiation (ICP). MP is the
mean of synaptic weights. ICP is the mean of synaptic weights among synapses in-
volved in the learning of a stimulus. Intuitively, when ICP is much larger than MP,
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the trace of a stimulus in the synaptic weights is still non negligible. They found two
possible loading regimes, a low-loading (resp. high-loading) regime with a memory
capacity on the order 1

f (resp. 1
f2 ). [Dubreuil et al., 2014] did a deeper analysis of the

multiple presentations model of [Brunel et al., 1998] and the one shot learning model
of [Amit and Fusi, 1994], under the assumptionN large and f small. Then, [Elliott, 2014]
considered the mean number of signals presented before the synaptic current crosses
a fixed threshold: the mean first passage time (MFPT). More complex and biologi-
cally plausible models have been proposed and analysed numerically in the following
studies: [Amit and Mongillo, 2003, Miller, 2012, Zenke, 2014]. Finally, to the best of
our knowledge, the first article to present a precise way to retrieve stimuli is the one
of [Amit and Huang, 2010]. In this article, they insisted on the role played by the
synaptic correlations and proposed a way to compute numerically an approximation of
the distributions of the synaptic currents. It enables them to introduce a new retrieval
criterion based on what they called retrieval probabilities.

Inspired by this last article, we study here a statistical test based on the synaptic
currents. In particular, we study the probability of error associated to this test. Such an
error has been studied before under some additive assumptions on the distribution of
synaptic currents. [Amit and Huang, 2010] did a numerical analysis with a Gaussian
approximation. [Dubreuil et al., 2014] gave an analytical result on the probability of
no error in the large N asymptotic, assuming independence of synapses (which leads
the synaptic currents to follow Binomial distributions). Here, we perform an analyt-
ical study of this error without such approximations and we manage to control it by
extending previous analytical studies of [Amit and Fusi, 1994, Amit and Huang, 2010]
on some points. First, we give properties of the synaptic current process such as the
spectrum of its transition matrix (Propositions 3.9 and 3.10). Moreover, we study
the case of multiple presentations of the signal to be learnt. Finally, we give in Re-
mark 3.17 and Theorem 3.18 explicit bounds on the time during which a given signal
is kept in memory (probability of error below a given threshold). These results deal
with a broader range of depression probabilities than in the previous studies. We sum-
marize our asymptotic results in Remark 3.19.

The rest of the paper is organised as follows. We expose the model and the sta-
tistical test in Section 2. After learning one specific signal, the network is submitted
to random signals responsible for its forgetting. The statistical test consists in estimat-
ing the initial signal from the pre-synaptic inputs caused by priming (using a threshold
estimator). We measure whether the signal is still in memory by computing the er-
ror associated to this test. After the formal definition of this error, the main results
are presented. Then, Section 3 is devoted to deriving a lower bound on the maximum
number of stimuli one can present while reasonably remembering the initial signal.
This derivation relies on the fact that, asymptotically, as time goes to infinity, synap-
tic currents converge in law to a Binomial mixture (Corollary 3.7). We assume that,
before learning, the synaptic currents follow their stationary distributions. Afterwards,
the learning phase splits the network in two groups: the neurons activated by the signal
and the others. Then, during the forgetting phase, the laws of the synaptic currents of
these two groups are shown to remain Binomial mixtures with an explicit dynamics on
their mixing distributions (Proposition 3.4). In the second part, we evaluate the proba-
bility of error of the test and the maximum number of stimuli one can present before the
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test fails (Remark 3.17 and Theorem 3.18). The computations are based on estimates
on the support and on the tail of the mixing distributions. Then, we perform numerical
simulations in Section 4. Finally, technical results are proved in the Appendix A.

2 The model and the estimator
First, we present the neural network model and the protocol followed for learning and
forgetting. Then, we define the estimator, derive the equations describing the dynamics
of the synaptic currents and detail the main assumptions. Finally, we present typical
numerical simulations at the end of this section.

2.1 The neural network and the protocol
In order to ease the introduction of the different variables, we suggest the reader to
see the model as describing an experiment on a person’s ability to learn a stimulus. In
particular, we ask for how long a learnt signal can persist in memory when the person
is presented some other signals which we termed loosely as noise.

Let us assume that we present a sequence of external stimuli to a network of N + 1
neurons. Thus, we sum over N external synaptic currents to get the total synaptic cur-
rent onto one neuron. We do not study the dynamics of the membrane potential nor
the firing rate of neurons, but rather we consider their neural activities, ξ ∈ {0, 1}N+1.
Hence, the neurons do not have their own dynamics but instead they follow the dy-
namics of the signals. We say that the neuron i is selective (resp. not selective) to a
signal if its neural response is ξi = 1 (resp. ξi = 0). We assume that a given signal
uniquely determines the neural response. Therefore, we refer in an equivalent way to
stimulus/signal or neural response in the following. Signals are assumed to be random
and we denote by (· · · , ξ−1, ξ0, ξ1 · · · ) the corresponding sequence. We call t the time
at which the tth signal after ξ0 is shown. We assume that the ξts are independent and
identically distributed (i.i.d.) random variables (r.v.) in {0, 1}N+1. Moreover, for each
t, the components ξ1

t , · · · , ξN+1
t of ξt are themselves i.i.d. with Bernoulli distribution

with parameter f :
∀i ∈ J1, N + 1K, P

(
ξit = 1

)
= f = 1− P

(
ξit = 0

)
.

The synaptic weight from neuron j to neuron i at time t is denoted by J ijt . It can
only take two values J− < J+ and we denote by Jt = {J ijt , i 6= j} ∈ {J−, J+}N(N+1)

the matrix of synaptic weights. We consider a plasticity rule which can be viewed as a
classic Hebbian rule. The law of Jt+1 only depends on Jt and ξt. The corresponding
transition probabilities are

• P
(
J ijt+1 = J+|J ijt = J−, (ξ

i
t, ξ

j
t ) = (1, 1)

)
= q+,

• P
(
J ijt+1 = J−|J ijt = J+, (ξ

i
t, ξ

j
t ) = (0, 1)

)
= q−01,

• P
(
J ijt+1 = J−|J ijt = J+, (ξ

i
t, ξ

j
t ) = (1, 0)

)
= q−10.
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The transition probabilities not mentioned here and involving the change of state of a
synaptic weight are set to zero. For example, P

(
J ijt+1 = J−|J ijt = J+, (ξ

i
t, ξ

j
t ) = (0, 0)

)
=

0. In order to simplify the notation and without loss of generality, we set:
J− = 0 (weak synapse) and J+ = 1 (strong synapse).

Moreover, in order to avoid critical cases, we also assume that

f, q−01, q
−
10, q

+ ∈ (0, 1]. (1)

The parameters q−01 and q−10 represent respectively the homosynaptic and heterosynaptic
depressions, see [Brunel et al., 1998].

We now give the protocol to learn and then forget a signal. We denote by ξ0 the
signal to be learnt. Before presenting it, we assume that the network has received a lot
of random signals thereby driving the law of the synaptic weights matrix in its “stable”
state at time t = −r + 1 (we prove in Proposition 2.5 that there is a unique invariant
measure). The learning phase consists in performing r presentations of ξ0. In order to
be consistent with the previous description, the sequence of presented stimuli is then
(· · · , ξ−r, ξ0, · · · , ξ0︸ ︷︷ ︸

r times

, ξ1, ξ2 · · · ) that is ξt = ξ0 for t ∈ J−r + 1, 0K. The presentation

of the subsequent signals leads to the forgetting of ξ0.

2.2 Presentation of the estimator
We study the consistency through time of the response of one neuron to the initial
signal. To do so, we consider the previous protocol. After the repetitive presentation
of ξ0, the signal has left a certain footprint in the matrix J1. This trace is subsequently
erased by the presentation of the following signals. How much information from a
stimulus learnt is left at time t? As an answer, we define a probability of error. This
error is associated to a decision rule based on the projection of Jt on ξ0. For the neuron
i, such a projection at time t is given by

∑
j 6=i J

ij
t ξ

j
0. In this framework, neurons are

similar. Hence, in order to simplify the notation and without loss of generality, our
study focuses on neuron i = 1. We denote by ht,

ht =

N+1∑
j=2

J1j
t ξ

j
0, (2)

the synaptic current onto neuron 1 when presenting again ξ0 at time t. In this frame-
work, the initial signal is presented in a fictive way. This means that the synaptic
weights do not change following this fictitious presentations. Note that the process
(ht)t≥0 strongly depends on the initial number K of active neurons

K =

N+1∑
j=2

ξj0. (3)

We denote by ht,K the process equal in law to ht knowing K: ht,K
L
= (ht|K). The

process ht,K is Markovian, see Proposition 2.2.
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We define a threshold estimator ξ̂ : N∗×J0, NK→ {0, 1} such that ξ̂(t, θ) = 1ht>θ

with associated probability of errors:

p0
e(t, θ) = P

(
ξ̂(t, θ) = 1 | ξ1

0 = 0
)

= P
(
ht > θ | ξ1

0 = 0
)
,

p1
e(t, θ) = P

(
ξ̂(t, θ) = 0 | ξ1

0 = 1
)

= P
(
ht ≤ θ | ξ1

0 = 1
)
.

Notation 2.1. We denote by hyt
L
=
(
ht| ξ1

0 = y
)

and hyt,K
L
=
(
ht|ξ1

0 = y,K
)
.

In the following, we shall use the plural ”distributions of hyt,K” to say distributions
of h0

t,K and h1
t,K . The probability of error p0

e(t, θ) = P
(
h0
t > θ

)
(resp. p1

e(t, θ) =

P
(
h1
t ≤ θ

)
) corresponds to the probability that the estimator responds positively (resp.

negatively) to the priming presented at time t > 0 whereas the neuron was not activated
(resp. activated) initially. We aim at evaluating these errors: for fixed δ ∈ (0, 1), we
estimate the largest time t∗ such that both p0

e and p1
e are smaller than δ up to time t∗,

t∗(δ, r,N) := max
θ∈J0,NK

(
inf
{
t ≥ 1, p0

e(t, θ) ∨ p1
e(t, θ) ≥ δ

})
, (4)

where x ∨ y = max(x, y) and x ∧ y = min(x, y).

Main Results (informal)

For any fixed error δ ∈ (0, 1), there is an unbounded set of couples (N, r) ∈ N∗2 for
which we show the existence of a threshold θδ,r,N ∈ {0, 1, . . . , N} ensuring

t∗(δ, r,N) ≥ inf
{
t ≥ 1, p0

e(t, θδ,r,N ) ∨ p1
e(t, θδ,r,N ) ≥ δ

}
≥ t̂(δ, r,N),

where an explicit formula of t̂ is given in Remark 3.17 for fixed potentiation and de-
pression probabilities. Another formula of t̂ is given in Theorem 3.18 for depression
probabilities depending onN . In particular, assuming that the depression probabilities
are proportional to the coding level f , we obtain that t̂(δ, r,N) is on the order of 1

f2 .
The proofs of these results rely on the study of the Markov chains (ht,K)t≥1 and(
hyt,K

)
t≥1

.

Proposition 2.2. The chains (ht,K)t≥1 and
(
hyt,K

)
t≥1

are Markovian. At the end of

the learning phase, we have

h1,K
L
= h−r+1,K + ξ1

0Bin
(
K − h−r+1,K , 1− (1− q+)r

)
− (1− ξ1

0)Bin
(
h−r+1,K , 1− (1− q−01)r

) (5)

where, conditionally on h−r+1,K , the two Binomial random variables are independent.
And during the forgetting phase, for all t ≥ 1:

ht+1,K
L
= ht,K + ξ1

t

[
Bin

(
K − ht,K , fq+

)
− Bin

(
ht,K , (1− f)q−10

)]
− (1− ξ1

t )Bin
(
ht,K , fq

−
01

)
(6)
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where, conditionally on ht,K , the three Binomial random variables are independent.

The Markov chains
(
hyt,K

)
t≥1

for y ∈ {0, 1}, satisfy the equation (5) with ξ1
0 = y

and the equation (6).

Proof. In order to study the jump from ht,K to ht+1,K , we count the synapses that po-
tentiate and the ones that depress upon presenting a signal ξt. From the definitions (2)
and (3) of ht and ht,K , we only need to consider the K synapses J1j

t with j ≥ 2 such
that ξj0 = 1. At time t, there are ht,K strong synapses and K − ht,K weak synapses.
Given ξ1

t and ht,K , every synapse evolves independently following a Bernoulli law.
From time −r + 1 to 1, if ξ1

0 = 0, every strong synapse is r times candidate to
depression so it has probability 1 − (1 − q−01)r to depress. If ξ1

0 = 1, every weak
synapse is r times candidate to potentiation so it has probability 1 − (1 − q+)r to
potentiate. Equation (5) follows.

From time t ≥ 1 to t+ 1, if ξ1
t = 0, the probability that a strong synapse depresses

is fq−01. If ξ1
t = 1, the probability that a weak synapse potentiates is fq+ and the

probability that a strong synapse depresses is (1− f)q−10. Equation (6) follows.
By definition of hyt,K , the chain satisfies the equations (5) with ξ1

0 = y and (6).

Corollary 2.3. Assume that (1) holds. Then, for all K ∈ J0, NK, the Markov chain
(ht,K)t≥1 admits a unique invariant measure πK with support in J0,KK. Moreover,
for any initial condition h0,K , the Markov chain (ht,K)t≥1 converges in law to πK . In

addition, the chain (ht)t≥1 converges in law to π∞ =
∑N
K=0 P

(
K̂ = K

)
πK where

K̂ =
∑N+1
j=2 ξj0.

Proof. By (1), the Markov chain (ht,K)t≥1 is irreducible and aperiodic on a finite state
space. Thus, it admits a unique invariant measure towards which it converges.

Let K̂ =
∑N+1
j=2 ξj0. From the Bayes’ formula we get that for all l ∈ J0, NK,

lim
t→∞

P (ht = l) = lim
t→∞

(
N∑
K=0

P
(
K̂ = K

)
P (ht,K = l)

)
=

N∑
K=0

P
(
K̂ = K

)
πK(l).

Remark 2.4. The Markov chains
(
hyt,K

)
t≥1

have the same transition matrix as (ht,K)t≥1.

They differ by their distribution at time t = 1. Hence, they all converge to πK . More-
over, both

(
h0
t

)
t≥1

and
(
h1
t

)
t≥1

converge in law to π∞.

Proposition 2.5. Under the assumption (1), the process (ξt, Jt)t≥1 converges to its
unique invariant measure. We denote it by ρ∞.

Proof. Same argument as for Corollary 2.3.

We now give the main assumptions.

Assumption 2.6.

2.6.1 (ξ0, J−r+1)
L
= ρ∞ and in particular h−r+1,K , h

0
−r+1,K , h

1
−r+1,K

L
= πK .

7



2.6.2 Assume that f depends on N . Let us denote it by fN such that lim
N∞

fN = 0 and

lim
N∞

NfN = +∞.

2.6.3 Let q−01,N = aNfN and q−10,N = bNfN with aN , bN : N∗ → R such that aN , bN
both converge in [0,+∞). However, we assume that at least one of the two limits
is not 0 and

lim
N∞

q−01,N = lim
N∞

q−10,N = lim
N∞

b2N
NfNaN

= lim
N∞

bN
NfN

= 0, lim
N∞

NfNaN = +∞.

We consider a general paradigm in which before receiving the stimulus ξ0, many
stimuli have already been sent (· · · , ξ−r−2, ξ−r−1, · · · ). We assume that the process
(ξt, Jt)t≤−r+1 has reached its invariant measure at time t = −r + 1 by Assump-
tion 2.6.1. Then, one key parameter is the coding level f . We assume that it depends
on N in the analysis of the large N asymptotic: Assumption 2.6.2. This assumption
refers to sparse coding as fN tends to 0. An additional constraint put forward is that the
mean number of selective neurons, NfN , needs to be large enough: Assumption 2.6.2.
In this context, we are interested to see how the dependence on N of the depression
probabilities can affect the memory lifetime, see Assumption 2.6.3. This assumption
gives conditions on the large N asymptotic behaviours of the depression probabilities.

First illustrations

In this subsection, we illustrate the dynamics of
(
hyt,K

)
t≥0

and (ht,K)t≥0. In partic-

ular, we are interested in the effects of the coding level fN on these synaptic currents.
Let us assume that the signal ξ0 is of size K = bfNNc, where the floor function bxc
is equal to k ∈ Z if k ≤ x < k+ 1. Let us have a look at the expected size of jumps of
ht,K from the formulas (5), (6).

For t = 1, E
[
h1,K − h−r+1,K |h−r+1,K , ξ

1
0 = 0

]
= −h−r+1,K(1− (1− q−01)r),

E
[
h1,K − h−r+1,K |h−r+1,K , ξ

1
0 = 1

]
= (K − h−r+1,K)(1− (1− q+)r),

∀t > 1, E [ht+1,K − ht,K |ht,K ] = (K − ht,K)f2
Nq

+ − ht,KfN (1− fN )(q−10 + q−01).

From these equations, we note that the average jump size strongly depends on fN .
When fN is close to 1, the reception of ξ0 has a large impact on the weight matrix,
easy to detect. However, the following average jump size are close to the initial one.
Thus, as soon as some other stimuli are presented, the initial signal is forgotten: the
distributions of h0

t,K and h1
t,K quickly overlap. Conversely, when fN is close to 0, the

average jump size is significantly different between the learning (relatively big jumps)
and the forgetting (relatively small jumps) phases. As a consequence, the convergence
to the stationary distribution, and thus forgetting, is slower. However, the learning still
occurs: the initial jump is still big. In order to illustrate these phenomena, we plot
simulation results obtained with a high coding level, fN = 0.8 in Figure 1, and a low
coding level, fN = 0.1 in Figure 2.

Figure 1a shows that the size of jumps is effectively big for fN = 0.8, just after
learning as well as during forgetting time. Figure 1b illustrates the separation between

8



the initial distributions of h0
t,K and h1

t,K . Indeed, at time t = −r + 1 = 0, both h0
0,K

and h1
0,K follow the invariant measure plotted in black. Then, after the reception of ξ0,

the distribution of h0
1,K is shifted to the left and the distribution of h1

1,K to the right.
Initially, the signal is learnt because the distributions are well separated, see Figure 1b.
Figures 1c and 1d exhibit the fast overlapping of these two distributions. Indeed, fol-
lowing the learning phase, the reception of new stimuli makes the two distributions
converge back quickly to the invariant distribution. At time t = 5, the signal is already
forgotten. Figure 2 illustrates the advantages of a low coding level. Indeed, even at time
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Figure 1: (1a) A typical trajectory of ht,800. (1b) The distributions of hy1,800 and the
invariant measure π800. (1c),(1d) The distributions of hyt,800 at time t = 3 and t = 5.
Parameters: r = 1, N = 1000, K = 800, fN = 0.8, q+ = 0.8, q−01 = 0.8 and
q−10 = 0.2.

t = 20, the two distributions do not overlap a lot and they remained uni-modal. This
makes the choice of a threshold estimator reasonable. Moreover, such an estimator
allows a tractable analysis.
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Figure 2: (2a) The distributions of hyt,K at time t = 1 and the invariant measure
π100. (2b) The sum of the two distributions h0

t,K and h1
t,K for t ∈ [1, 20]. The

colour bar gives the probability values. Parameters: r = 1, N = 1000, K = 100,
fN = 0.1, q+ = 0.8, q−01 = 0.8, and q−10 = 0.2.

3 Results
In this section, we first give some properties satisfied by the distributions of hyt,K , see
Notation 2.1, and the invariant measure πK . They enable us to prove Theorem 3.15,
and then our main results, in the second part.

3.1 Binomial mixture
We denote by F[0,1] the set of cumulative distribution functions associated to the set
P([0, 1]) of probability measures on [0, 1].

Definition 3.1. The distribution of X is said to be a Binomial mixture with mixing
distribution g ∈ P([0, 1]) and size parameter K, denoted by BinMix(K, g), if

∀j ∈ J0,KK, P (X = j) =

(
K

j

)∫ 1

0

uj(1− u)K−jg(du).

Remark 3.2.

• X L
= BinMix(K, g) is equivalent to X|Y L

= Bin(K,Y ) where Y is a random
variable independent of the Binomial and with law g. Indeed

P (X = j) =

∫ 1

0

P(X = j|Y = u)g(du) =

(
K

j

)∫ 1

0

uj(1− u)K−jg(du).

We use both notations X L
= BinMix(K, g) and X L

= BinMix(K,Y ).

• The law of X is fully characterized by the moments E(Y ),E(Y 2), · · · ,E(Y K).
Hence, if g̃ ∈ P([0, 1]) is such that ∀k ∈ J0,KK,

∫ 1

0
ukg̃(du) =

∫ 1

0
ukg(du),

then BinMix(K, g̃)
L
= BinMix(K, g).

10



First, we show that the set of Binomial mixtures is stable by the Markov chain
ht,K : assume that ht,K

L
= BinMix(K, gt) for some gt ∈ P([0, 1]), then there exists

a probability gt+1, function of gt, such that ht+1,K
L
= BinMix(K, gt+1). Moreover,

denoting by Gt the cumulative distribution function associated to gt, we show that for
all t ≥ 1, Gt+1(x) = R(Gt)(x) where

Notation 3.3. For all Γ ∈ F[0,1] and u ∈ R,R is defined by

R(Γ)(u)
def
= fNΓ

(
u− fNq+

1− (1− fN )q−10 − fNq+

)
+ (1− fN )Γ

(
u

1− fNq−01

)
.

Proposition 3.4. Let us assume that h−r+1,K
L
= BinMix(K, g−r+1), for g−r+1 ∈

P([0, 1]). Then for all t ≥ 1, ∃gt, g0
t , g

1
t ∈ P([0, 1]) such that ht,K

L
= BinMix(K, gt)

and hyt,K
L
= BinMix(K, gyt ) for y = 0, 1. Moreover, at time t = 1,

G1(u) = fNG−r+1

(
u− 1

(1− q+)r
+ 1

)
+ (1− fN )G−r+1

(
u

(1− q−01)r

)
, (7)

G1
1(u) = G−r+1

(
u− 1

(1− q+)r
+ 1

)
and G0

1(u) = G−r+1

(
u

(1− q−01)r

)
,

(8)

and ∀t ≥1, Gt+1(u) = R(Gt)(u) and Gyt+1(u) = R(Gyt )(u). (9)

Remark 3.5. First, we note that gt does not depend on K. This is crucial for the
proof of Theorems 3.15 and 3.18. Then, let the assumptions of the previous Proposition
hold and denote by Yt a random variable with distribution gt. Knowing Yt, we have
ht,K

L
= Bin (K,Yt). In particular, the mean synaptic current is given by E (ht,K) =

KE (Yt) = KP
(
J1j
t = 1

)
. Indeed, E (ht,K) is the mean number of strong synapses

J1j
t (with j such that ξj0 = 1) at time t.

Finally, we show thatR is contracting and characterises πK .

Proposition 3.6. The applicationR acting onF[0,1] is contracting for the normL1(0, 1).
Moreover, there exists a unique G∗ ∈ F[0,1] invariant forR.

Propositions 3.4 and 3.6 are proved in the Appendices A.1 and A.2.

Corollary 3.7. LetG∗ be the unique fixed point ofR and g∗ its associated distribution.
The invariant measure πK of the Markov chain ht,K satisfies πK = BinMix(K, g∗). In

addition, the invariant measure π∞ of ht is given by π∞ = BinMix
(
K̂, g∗

)
, where

K̂ has a Binomial law with parameters N and fN , the two random variables being
independent. Moreover, the smallest interval [m∞,M∞] containing the support of g∗

verifies

Supp(g∗) ⊂
[
0,

fNq
+

fNq+ + (1− fN )q−10

]
:= [m∞,M∞] . (10)

11



Proof. Let g∗ ∈ P([0, 1]) be a probability distribution such that its cumulative distri-
bution function G∗ satisfies R(G∗) = G∗. Then, by Proposition 3.4, BinMix(K, g∗)
is invariant for (ht,K)t≥1. The result on π∞ follows from Corollary 2.3.

Now, let [m∞,M∞] be the convex envelop of the support of g∗, then Supp(g∗) ⊂
[m∞,M∞] ⊂ [0, 1]. Thus by the equationR(G∗) = G∗, we get

m∞ = m∞(1− fNq−01) ∧
(
m∞

(
1− (1− fN )q−10 − fNq+

)
+ fNq

+
)
,

M∞ = M∞(1− fNq−01) ∨
(
M∞

(
1− (1− fN )q−10 − fNq+

)
+ fNq

+
)
.

As (1 − fNq−01) < 1, the first equation implies that 0 ≤ m∞ ≤ m∞(1 − fNq−01) so
m∞ = 0, and the second equation implies thatM∞ = M∞

(
1− (1− fN )q−10 − fNq+

)
+

fNq
+, thus M∞ = fNq

+

fNq++(1−fN )q−10
.

Remark 3.8. Propositions 3.4, 3.6, and the first part of Corollary 3.7 are in [Amit and Huang, 2010]
with q−10 = 0 and r = 1. We prove them here with a different method.

3.2 Main results
The learning and the forgetting phases are both described by Markov chains. We first
give the spectrum of the transition matrices associated to these chains and then we give
our main results on t∗.

Spectrum

Let Py,K be the transition matrix of the synaptic current
(
hyt,K

)
−r+1<t≤1

. We denote

by νyt,K =
[
νyt,K(0), νyt,K(1), . . . , νyt,K(K)

]
the distribution of hyt,K . We can then

write νy1,K = νy0,KPy,K = νy−r+1,K (Py,K)
r
.

Proposition 3.9. The spectra of P0,K and P1,K are

Σ (P0,K) =
{(

1− q−01

)i
, 0 ≤ i ≤ K

}
and Σ (P1,K) =

{(
1− q+

)i
, 0 ≤ i ≤ K

}
.

Proof. The dynamics give for all j > i, P ij0,K = P ji1,K = 0. So the matrices are
triangular. Their spectra are given by the diagonal elements:

∀i, P ii0,K = (1− q−01)i and P ii1,K = (1− q+)i.

Proposition 3.10. The spectrum of the transition matrix PK of (ht,K)t≥1 is

Σ (PK) =
{

(1− fN )
(
1− fNq−01

)i
+ fN

(
1− (1− fN )q−10 − fNq+

)i
, 0 ≤ i ≤ K

}
.

In the following, we denote by Λ0 = 1 − fNq−01, Λ1 = 1 − (1 − fN )q−10 − fNq+

and
∀i ∈ J0, NK, λi = (1− fN )Λi0 + fNΛi1.

We prove the previous proposition using the

12



Lemma 3.11. Let X and Y be two random variables in [0, 1] with cumulative distri-
bution functions GX and GY . We assume that there exist η ∈ [0, 1], a, ā ∈ [0, 1) and
b, b̄ ∈ (0, 1] with a+ b ≤ 1, ā+ b̄ ≤ 1 such that

GY (u) = ηGX

(
u− a
b

)
+ (1− η)GX

(
u− ā
b̄

)
. (11)

Then ∀k ∈ N, E
[
Y k
]

= ηE
[
(a+ bX)k

]
+ (1− η)E

[
(ā+ b̄X)k

]
.

Proof. First, note that GX
(
u−a
b

)
is the cumulative distribution function of a + bX .

Second, for all random variables U, V,W , we have

GU (z) = ηGV (z) + (1− η)GW (z) =⇒ E[Uk] = ηE[V k] + (1− η)E[W k].

This last result is obtained by differentiation, multiplication by zk and integration. It
ends the proof of the lemma.

In the proof below, we use the classical conventions
(
i

j

)
= 0 when j > i or j < 0.

Proof of Proposition 3.10. We denote by νt,K = [νt,K(0), νt,K(1), . . . , νt,K(K)]

the distribution of ht,K . Its transition matrix PK =
(
P ijK

)
0≤i,j≤K

can be derived

from Proposition 2.2:

P ijK = (1− fN )

(
i

i− j

)
(fNq

−
01)i−j(1− fNq−01)j

+ fN

i∑
l=0

(
i

l

)
((1− fN )q−10)l(Λ1 + fNq

+)i−l
(
K − i
j − i+ l

)
(fNq

+)j−i+l(1− fNq+)K−j−l.

Let us define the two matrices P̃K and QK such that for all 0 ≤ i, j ≤ K:

P̃ ijK = fN

(
j

i

)
Λi1(fNq

+)j−i + (1− fN )δijΛ
i
0 and QijK =

(
K

i

)(
i

j

)
(−1)i−j .

Then, assuming that νt,K
L
= BinMix(K, gt) and denoting byUt =

[
U0
t , U

1
t , . . . , U

K
t

]
with Ukt =

∫
ukgt(du), we get by definition 3.1: νt,K = UtQK . Moreover, by

Lemma 3.11 we haveUt+1 = UtP̃K . Finally, by definition we have νt+1,K = νt,KPK ,
so we obtain:

νt+1,K = Ut+1QK = UtP̃KQK = UtQKQ
−1
K P̃KQK = νt,KQ

−1
K P̃KQK = νt,KPK .

A straightforward computation shows that QKPK = P̃KQK . Thus PK and P̃K have
the same spectrum. Finally, P̃K is a triangular matrix with λi as diagonal elements.

We deduce from Proposition 3.10 the rate of convergence of the law of ht,K .
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Corollary 3.12. For all 0 ≤ K ≤ N , the sequence of the distributions of the synaptic
currents, (νt,K)t≥1, converges exponentially fast to the unique invariant measure πK .
In particular, there exists c ∈ R+ such that the distance in total variation between νt,K
and πK satisfies:

∀t ≥ 1, ||νt,K − πK ||TV :=
1

2

K∑
l=0

|νt,K(l)− πK(l)| ≤ cλt1.

We discuss, in the second paragraph of Section 5, the role played by this eigenvalue
λ1 in our main results.

Memory lifetime

Under Assumption 2.6.1, h−r+1,K follows its invariant distribution πK , a Binomial
mixture by Corollary 3.7. Thus, by Proposition 3.4, the processes (hyt,K)t≥1 follow
also Binomial mixtures. Combining the inequality provided by Lemma 3.13, inequali-
ties on Binomial tails (Lemma 3.14) and a control on the tail of the mixing distribution
g∗ and on the support of g1

t , we prove Theorem 3.15.

Lemma 3.13. Under Assumption 2.6.1, for all θ ∈ J0, NK, P
(
h0
t > θ

)
≤ P (π∞ > θ).

Proof. The proof is recursive and relies on the functional equation for the cumulative
distribution of the synaptic currents (8) under Assumption 2.6.1. From (9), we have for
all x ∈ [0, 1], G0

1(x) = G∗
(
x

Λ0

)
≥ G∗(x). Then,

G0
2(x) = fNG

0
1

(
x− fNq+

Λ1

)
+ (1− fN )G0

1

(
x

Λ0

)
≥ fNG∗

(
x− fNq+

Λ1

)
+ (1− fN )G∗

(
x

Λ0

)
= G∗(x),

and so forth so that for all t ≥ 1 and x, G0
t (x) ≥ G∗(x). It implies that for all K, θ ∈

N, P
(
BinMix(K, g0

t ) > θ
)
≤ P (BinMix(K, g∗) > θ), which ends the proof.

Lemma 3.14. Let SN
L
= Bin(N, p). Then, for all ε ∈ (0, 1)

P (SN ≥ Np(1 + ε)) ≤ exp

(
−Np ε2

2 + ε

)
, (12)

P (SN ≤ Np(1− ε)) ≤ exp

(
−Np ε2

2

)
. (13)

This Lemma is proved in A.3.
We now give our main results.

Theorem 3.15. For y ∈ {0, 1}, let (hyt )t≥1 be the solutions of (5) with ξ1
0 = y and

(6). Let us assume that Assumptions 2.6.1 and 2.6.2 hold and that q−01 and q+ are fixed
in (0, 1] and q−10 in [0, 1].
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Then, for all 0 < δ < 1 and r ∈ N∗, there exists N(δ, r) ∈ N such that for all N ≥
N(δ, r), there exist θδ,N ∈ J0, NK and t̂(δ, r,N) such that for all 1 ≤ t ≤ t̂(δ, r,N),

P
(
h0
t > θδ,N

)
∨ P

(
h1
t ≤ θδ,N

)
≤ δ.

In particular, we have t∗(δ, r,N) ≥ t̂(δ, r,N). This result relies on the study of the
mixing distributions g∗ and g1

t . Thanks to Lemma 3.13, we know that as long as g1
t is

far enough from g∗, the probability of error,
P
(
h0
t > θ

)
∨ P

(
h1
t ≤ θ

)
≤ P (BinMix(K, g∗) > θ)∨ P

(
BinMix(K, g1

t ) ≤ θ
)
,

is small enough. This condition appears as an inequality depending both on the time
and the accepted error δ. As long as this inequality holds, there exists a threshold θ
such that the probability of error is below δ for all previous times.

Example 3.16. We give in Remark 3.17 an explicit formula for the lower bound t̂
on t∗ for any couple (δ, r). We give here a detailed result for a particular choice

of parameters. Let q+ = q−01 = 1, q−10 small enough, and fN =
q−10

3+q−10
. Explicit

computations give

t̂(δ, r,N) =

⌊ log
(

1
9

)
∨ log

(√
−2 log( δ2 )NfN−16 log( δ2 )

3NfN

)
log (1− 4fN )

⌋
.

For instance, for q−10 = 0.005 we get fN = 0.00167 and
t̂(δ = 0.001, r = 1, N = 2.105) = 246 and θδ,N = 122.

We also give a formula when the depression probabilities depend on N in Theo-
rem 3.18.

Proof of Theorem 3.15. The proof follows these lines: from Lemma 3.13 we have that
P
(
h0
t > θ

)
≤ π∞ (]θ,+∞[). Hence, we propose a threshold θ based on the mea-

sure π∞ such that π∞ (]θ,+∞[) ≤ δ and then we bound the time before which
P
(
h1
t ≤ θ

)
≥ δ.

We split π∞ (]θ,+∞[) in two terms. We recall that π∞ = BinMix (K, g∗) with
K
L
= Bin (N, fN ) and [0,M∞] is the smallest interval containing the support of g∗.

So

π∞ (]θ,+∞[) =

∫ M∞

0

P (Bin (K,u) > θ) g∗(du) =

∫ M∞

0

P (Bin (N, fNu) > θ) g∗(du)

≤ P (Bin (N, fNMδ) > θ) +

∫ M∞

Mδ

g∗(du).

The second equality comes from the following property: assume K L
= Bin (N, fN )

and conditionally on K, X is independent of K with law Bin (K, p), then X
L
=

Bin (N, fNp). Let Y ∗ be a random variable with distribution g∗. We propose a value
for Mδ using the Bienaymé-Tchebytchev inequality:

Mδ =

(√
2Var (Y∗)

δ
+ E (Y∗)

)
∧M∞ ⇒

∫ M∞

Mδ

g∗(du) ≤ δ

2
.
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We first fix θδ,N such that P (Bin (N, fNMδ) ≥ θδ,N + 1) ≤ δ
2 . To do so we apply

Lemma 3.14 with ε =
θδ,N+1
NfNMδ

− 1 and obtain:

θδ,N =

⌊
NfNMδ +

√
−2 log

(
δ

2

)
NfNMδ − log

(
δ

2

)⌋
.

We now bound the probability of error P
(
h1
t ≤ θδ,N

)
. Let [m1

t ,M
1
t ] be the small-

est interval containing the support of g1
t . Then, we get:

P
(
h1
t ≤ θδ,N

)
=

∫ M1
t

m1
t

P (Bin (K,u) ≤ θδ,N ) g1
t (du) ≤ P

(
Bin

(
N, fNm

1
t

)
≤ θδ,N

)
.

Using Lemma 3.14 with ε = 1− θδ,N
NfNm1

t
, we get

P
(
Bin

(
N, fNm

1
t

)
≤ θδ,N

)
≤ exp

(
−
(
NfNm

1
t − θδ,N

)2
2NfNm1

t

)
.

Using the inequality
√
x+
√
y ≥
√
x+ y for all x, y > 0, we obtain that if

NfNm
1
t ≥ θδ,N +

√
−2 log(δ)θδ,N − 2 log(δ) (14)

then P
(
h1
t ≤ θδ,N

)
≤ δ. Let us definemδ,N := 1

NfN

(
θδ,N +

√
−2 log(δ)θδ,N − 2 log(δ)

)
.

Using the bound θδ,N ≤
(√

NfNMδ +

√
−2 log( δ2 )

2

)2

we get

NfNmδ,N+
3

2
log(δ) =

(√
θδ,N +

√
−2 log(δ)

2

)2

≤

(√
MδNfN +

√
−2 log(

δ

2
)

)2

.

(15)
We now find m1

t . From equation (9) and the definition of R (see Notation 3.3), we
have

∀t ≥ 1, m1
t+1 = m1

tΛ0 ∧ (m1
tΛ1 + fNq

+).

We note that for N large enough such that m1
t >

fNq
+

Λ0−Λ1
≥M∞, we have

fNq
+

1− Λ1
= M∞ < m1

tΛ1 + fNq
+ < m1

tΛ0 < m1
t .

Denoting by tc = inf{t ∈ N∗,m1
t ≤

fNq
+

Λ0−Λ1
}, we obtain

m1
t =

((
m1

1 −M∞
)

Λ
(t∧tc)−1
1 +M∞

)
Λ

(t−tc)1t>tc
0 . (16)

Let us now consider q+, q−01 and q−10 fixed in (0, 1]. By definition, Mδ ≤M∞, hence

NfNmδ,N ≤

(√
M∞NfN +

√
−2 log

(
δ

2

))2

− 3

2
log(δ).
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Therefore, the inequality (14) holds true as long as

t−1 ≤

⌊ log
(

2
√
−2 log( δ2 )NfNM∞−4 log( δ2 )

NfN (m1
1−M∞)

)
log(Λ1)

⌋
∧ tc


+

with (x)+ = x1x≥0. (17)

But m1
1 = 1 − (1 − q+)r ≥ q+ and both fNq

+

Λ0−Λ1
and M∞ = fNq

+

fNq++(1−fN )(q−01+q−10)

tends to 0 with increasing N so there exists N(δ, r) such that for all N ≥ N(δ, r) we
can remove “( )+” in the inequality (17): that is to say for all N ≥ N(δ, r) such that,

2
√
−2 log( δ2 )NfNM∞ − 4 log( δ2 )

NfN (m1
1 −M∞)

< 1 and m1
1 >

fNq
+

Λ0 − Λ1
.

Using the fact that for all δ ∈ (0, 1),
√
−2 log( δ2 ) ≤ −2 log( δ2 ) and m1

1 ≥ q+ we get
the two following conditions on N :

2 exp

(
− NfN (m1

1 −M∞)

4(
√
NfNM∞ + 1)

)
< δ and

fNq
+

fNq+ + (1− fN )q−10 − fNq
−
01

< q+.

(18)

In the particular case q−10 = 0, we have M∞ = 1 so the dynamics of m1
t is simply

m1
t = m1

1Λt−1
0 . We compute E (Y∗) and Var (Y∗) using Lemma 3.11 and equation (9):

E (Y∗) =
f2
Nq

+

1− λ1
=

fNq
+

fNq+ + (1− fN )(q−01 + q−10)
, Var (Y∗) =

f5
N (1− fN )q+2

q−01

2

(1− λ1)2(1− λ2)
.

Hence,

Mδ =
fNq

+
(

1 + q−01

√
2fN

δ(1−λ2)

)
fNq+ + (1− fN )(q−01 + q−10)

. (19)

We note that 1 − λ2 ∼N∞ 2fN (q−01 + q−10), so Mδ converges to 0 with increasing
N . Thus, by inequality (15), there exists a N(δ, r) such that for all N ≥ N(δ, r),
mδ,N < 1. We conclude that for all N ≥ N(δ, r), the inequality (14) holds true as
long as

t− 1 ≤

⌊
log
((√MδNfN+

√
−2 log( δ2 )

)2
− 3

2 log(δ)

NfN

)
log(Λ0)

⌋
> 0.

Remark 3.17. Recall thatM∞ = fNq
+

1−Λ1
,m1

1 = 1−(1−q+)r,Mδ =
fNq

+
(

1+q−01

√
2fN

δ(1−λ2)

)
fNq++(1−fN )(q−01+q−10)

,

Λ0 = 1− fNq−01, Λ1 = 1− fNq+ − (1− fN )q−10 and λ2 = fNΛ2
1 + (1− fN )Λ2

0.
We proved that under Assumptions 2.6.1 and 2.6.2, for all δ, r, N ≥ N(δ, r) (N

for which the two conditions given by (18) are satisfied), there exists θδ,N ∈ J0, NK
and t̂ such that for all 1 ≤ t ≤ t̂(δ, r,N), P

(
h0
t > θδ,N

)
∨ P

(
h1
t ≤ θδ,N

)
≤ δ.
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In particular, if q−01, q
−
10, q

+ ∈ (0, 1]

t̂(δ, r,N)− 1 =

⌊
log
(

2
√
−2 log( δ2 )NfNM∞−4 log( δ2 )

NfN (m1
1−M∞)

)
log(Λ1)

⌋
∧

⌊
log
(

f2
Nq

+q−01
(1−Λ1)(Λ0−Λ1)(m1

1−M∞)

)
log(Λ1)

⌋
,

and if q−10 = 0, t̂(δ, r,N)− 1 =
⌊ log

((√
MδNfN+

√
−2 log( δ

2
)

)2
− 3

2
log(δ)

NfN

)
log(Λ0)

⌋
.

Theorem 3.18. Assume Assumptions 2.6.1, 2.6.2 and 2.6.3 are satisfied. Then, for all
δ ∈ (0, 1), r large enough, there exists N(δ, r) ∈ N such that for all N ≥ N(δ, r),

t̂(δ, r,N) = tc +

⌊
log (C(δ, r,N))

log(Λ0)

⌋
,

with tc defined in (16) and C(δ, r,N) ∈ (0, 1) satisfies log(C(δ,r,N))
fN

→ +∞. More-

over, if lim aN , and lim bN exist and are finite, log(C(δ,r,N))
log(Λ0) is on the order of 1

f2
N

.

We note that log(Λ0) = log(1 − aNf2
N ) ∼N∞ −aNf2

N . Concerning C(δ, r,N)
(and then t̂(δ, r,N)), it mainly depends on the different large N asymptotic of aN and
bN . We detail in Remark 3.19 the different large N asymptotic of t̂(δ, r,N).

Proof. We use the results proved in the proof of Theorem 3.15. From the dynamics
of m1

t given by the equation (16) and the bound m1
tc ≥ m1

1 ∧M∞, we obtain that the
inequality (14) is satisfied as long as

t− 1 ≤ tc +

⌊ log
(
mδ,N
m1
tc

)
log(Λ0)

⌋
+

≤ tc +

⌊ log
(

mδ,N
(m1

1∧M∞)

)
log(Λ0)

⌋
+

. (20)

We can remove “( )+” in the last inequality if there exists N0 such that

∀N ≥ N0,
mδ,N

(m1
1 ∧M∞)

< 1.

Using the inequality (15), we deduce that this is the case if

C(δ, r,N) =

√
Mδ

m1
1 ∧M∞

+ 2

√
− log( δ2 )

(m1
1 ∧M∞)NfN

< 1. (21)

From the previous computation of Mδ , see equation (19), we obtain

Mδ

M∞
=

(
1− (1− fN )aN

q+ + (1− fN )(aN + bN )

)(
1 + aNfN

√
2fN

δ(1− λ2)

)
.

Thus, we compare the three terms (recalling that m1
1 = 1− (1− q+)r)

aN
q+ + aN + bN

, aNfN

√
2fN

δ(1− λ2)
and

− log( δ2 )

((1− (1− q+)r) ∧M∞)NfN
.
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First, (1 − λ2) ∼N∞ 2f2
N (aN + bN + q+). Then, we have to separate the different

cases:

• If bN tends to +∞, both Mδ and M∞ converge to 0. Hence, (1− (1− q+)r) ∧
M∞ = M∞ and the Assumption 2.6.3 , in particular lim

N∞
q−01,N = lim

N∞
q−10,N =

lim
N∞

b2N
NfNaN

= lim
N∞

bN
NfN

= 0, enables us to conclude that if bN = O(aN ),C(δ, r,N) ∼N∞√
bN
aN

+ 2
√
− log( δ2 )bN
q+NfN

→ 0, else, C(δ, r,N) ∼N∞
(

1− aN
aN+bN

)
so the inequal-

ity (21) holds true for any r and for a N large enough.

• If aN tends to +∞ and not bN , then Mδ converges to 0 and M∞ converges to 1

(resp. q+

q++b ) if bN converges to 0 (resp. b). Thus, C(δ, r,N) converges to 0 with
large N and for any r, the inequality (21) is satisfied.

• If aN tends to 0 and bN converges to b > 0, then Mδ converges to M∞. Then,
there exists r0 such that (1− (1− q+)r0) ∧ M∞ = M∞. Using the assumption
lim
N∞

aNNfN = +∞ we have for all r ≥ r0, C(δ, r,N) ∼N∞
(

1− aN
q++b

)
.

• In all other cases, Mδ and M∞ converges to a value in (0, 1). Moreover, Mδ < M∞
so there exists r0 such that for all r ≥ r0, (1− (1− q+)r0) ∧ M∞ > Mδ , so
C(δ, r,N) converges in (0, 1) with large N .

Remark 3.19. In the large N asymptotic (under Assumptions 2.6.2 and 2.6.3), we can
compute the terms equivalent to t̂ in the different aN , bN cases (a ∈ R+

∗ and b ∈ R+):

conditions on aN , bN and r t̂(δ, r,N) for large N

bN → +∞, bN = O(aN ) , ∀r
log

(√
bN
aN

+2

√
− log( δ

2
)bN

q+NfN

)
f2
NaN

aN , bN → +∞ of same order, ∀r −
log
(

1− aN
aN+bN

)
2f2
NaN

aN = O(bN ) , bN → +∞, ∀r 1
2f2
NbN

aN → +∞, bN → b ∈ R+, ∀r
− log

√ q+(
(1−(1−q+)r)∧ q+

q++b

)
aN

+2

√
− log( δ

2
)(q++b)

q+NfN


f2
NaN

aN → 0, bN → b > 0, ∀r > r0
1

2f2
N (q++b)

aN = a, bN → 0 ou bN = 0, ∀r > r0 −
log
(

q+

(1−(1−q+)r)(q++a)

)
2f2
Na

aN = a, bN = b, ∀r > r0 −
log
(

1− a

q++a+b

)
2f2
Na

Table 1: The large N equivalent of t̂(δ, r,N) in function of aN and bN .
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Remark 3.20. Note that we have also proved the following result:
For every δ > 0 and N large enough, there exists r0 such that, if the initial signal is
presented at least r0 times, then it is well memorized after at least t̂(δ, r,N) presenta-

tions of noisy signals. Moreover, in the large r asymptotic, h0
1,K

L
= δ0 (dirac in 0) and

h1
1,K

L
= δK (dirac in K). Thus, the initial error is null. However, the t̂ increases with

r until reaching a threshold value which is given by the expression of Remarks 3.17
and 3.19 replacing the quantities m1

1 by 1.

4 Simulations
Our code follows these lines. We draw ξ0 andK =

∑N+1
j=2 ξj0. We simulate a trajectory

of ht,K long enough to be under the invariant measure. We perform r presentations of
the signal to be learnt and then compute the trajectories of hyt,K , y ∈ {0, 1}. We
reiterate this procedure NMC = 107 times to get an approximation of the distributions
of hyt .

The result of Theorem 3.15 is interesting for large values of NfN (small errors)
combined with a small fN (non-negligible t̂). In this context, we need to compute
many trajectories before the synaptic currents cross a reasonable threshold θ.

In Figure 3a, the top (resp. bottom) roughly represents the distribution of h1
t,K

(resp. h0
t,K). Before time t = 50, the distribution of h0

t is highly concentrated in 0.
Indeed, looking carefully to Figure 3a, we can observe a residue of this high probability
(dark blue) for very weak synaptic currents until time t = 65, see also Figure 4a. This
concentration drastically reduces the contrast of the plot. That is why the time axis
starts at t = 50 in Figure 3a. This figure shows that a threshold θ around one hundred is
a good choice: it seems to maximises the time for which the threshold estimation holds
true. With this threshold, the numerical errors p0

e(t, θ) and p1
e(t, θ) does not exceed

10−4, see Figure 3b, before time 15. It is coherent with t̂ plotted in Figure 3c. Indeed,
the time t̂ is equal to 12 for errors on the order of 10−4, see Figure 3c. Moreover, in
Remark 3.19, the result t̂ is a maximum between two times. The second one does not
depend on the error δ (it is called tc in the proof of Theorem 3.15, see equation (16)).
This explains the plateau starting at an error just before 10−3 in Figure 3c. Indeed,
for this set of parameters and δ large enough, the time t̂ is equal to tc. Finally, in
Figure 3d, we note that p0

e is above p1
e for small values of t. Then, around time t = 70,

p1
e increases quickly until a value close to one whereas p0

e stays below 10−2. This is
because the majority of the mass of the distribution of h0

t,K stays less than θ. On the
other hand, most of the mass of the distribution of h1

t,K crosses θ around time t = 70.
So, the error p1

e becomes large. We present the histograms of the distributions of the
synaptic currents at certain times.
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Figure 3: (3a) The sum of the distributions of h0
t,K and h1

t,K . The colour bar gives the
probability values. (3b) (resp. (3d)) The numerical errors p0

e(t, θ) and p1
e(t, θ) on a short

(resp. large) timescale. (3c) t̂ as a function of δ on the logarithmic to the base ten scale.
Parameters: θ = 117, N = 20 000, fN = 0.05, q+ = q−01 = 0.5, q−10 = 0.05, r = 3.

We note again that the invariant measure is concentrated around small values. This
enables the post learning distribution of h0

1 to have a small variance, see Figures 4a
and 4c. However, the variance of this distribution increases quickly. In particular, the
distribution of h0

t has a multimodal shape with a high proportion of the mass staying
near 0 for more than 50 presentations after learning. On the other hand, the distribu-
tion of h1

t keeps a unimodal shape with a variance decreasing at the beginning, then
increasing before decreasing again, see Figure 4b. Distributions stay well separated
approximately until time t = 70, see Figure 4d.

In order to illustrate the role played by the parameter r, we plot the distributions
just after the learning phase for different values of r.
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Figure 4: (4a) Histograms of the distributions of h0
t at different times. (4b) Histograms

of the distributions of h1
t at different times. (4c) Distributions of hy1 just after the

learning phase and the invariant measure. (4d) Distributions of hyt at t = 70 and the
invariant measure. Parameters: N = 20 000, fN = 0.05, q+ = q−01 = 0.5, q−10 =
0.05, r = 3.

Because of the parameters choice, the distributions of h0
1 are close to the invariant

measure π∞ whereas the distributions of h1
1 are further from it, see Figures 5a and 5b.

Moreover, the forgetting is really slow. However, if we want the signal to be learnt
correctly with such a small q+, then r has to be high enough. This shows the need
of a large r in view of a slow forgetting. Figures 5c and 5d show well the difference
brought by a higher value of r: the separation between the two distributions is clearer.

5 Discussion
We provide a mathematical framework to study the memory retention of random sig-
nals by a recurrent neural network with binary neurons and binary synapses. We thus
consider a paradigm linking synaptic plasticity and memory: a stimulus is remembered
as long as its trace in the synaptic weights is strong enough. In order to measure the
memory of a stimulus, we study the synaptic current onto one neuron during the pre-
sentation of this stimulus. First, we compute the spectrum of the transition matrix of
the Markov chain associated to the synaptic current. This enables us to conclude that
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Figure 5: (5a) Distributions of h0
1, just after learning, for different values of r and the

invariant measure. (5b) Distributions of h1
1, for different values of r and the invariant

measure. (5c) The sum of the distributions of h0
t and h1

t for r = 5. (5d) The sum of
the distributions of h0

t and h1
t for r = 30. The colour bar gives the probability values.

Parameters: NMC = 106, N = 20 000, fN = 0.1, q−01 = q−10 = 0.01 and q+ = 0.05.

the eigenvalues are strictly different whatever the parameters are. In particular, we
can compute the rate of convergence of the chain to its invariant measure, see Corol-
lary 3.12. Then, we carry on the work done by [Amit and Huang, 2010] on the dynam-
ics of the distributions of the synaptic current and their invariant distribution. This leads
us to control the form of these distributions. Their properties give enough information
to find a lower bound on the time a neuron keeps a good estimate on its response to the
first stimulus and hence remembers it. We measure the quality of this estimation by
performing a statistical test based on the observation of the synaptic current onto one
neuron. We define an error associated to this test which depends on two distributions:
the distribution of the synaptic current knowing that the neuron was selective to the
initial signal and the distribution knowing that the neuron was not selective. Finally,
unlike previous studies, we take into account the possibility that heterosynaptic and
homosynaptic depressions scale differently in the network size N and we consider the
role of presenting several times a signal in the learning phase.

We use the model presented by [Amit and Fusi, 1994] because of its relative sim-
plicity and its consideration of synapse correlations. Their study focused on the first
two moments of the synaptic current. It leads to a result on the memory capacity
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of the network which depends on a global variable, the so-called signal-to-noise ra-
tio (SNR). In particular, they studied the SNR in the large N asymptotic. They ob-
tained a large SNR when the coding level fN is low and the depression probabili-
ties are proportional to fN : q−01,N ∝ q+fN and q−10,N ∝ q+fN . The lowest cod-

ing level possible fN is on the order of log(N)
N and it gives a memory capacity on

the order of −1
log(λ1) ∼N∞

1
f2
N

. In [Romani et al., 2008, Amit and Huang, 2010], they

assumed that q−10,N = 0 and showed the same result using a Gaussian approxima-
tion of the synaptic currents. Under the same assumption as in [Amit and Fusi, 1994](
q−01,N , q

−
10,N ∝ q+fN and fN → 0

)
, our result also predicts a forgetting time on the

order of −1
log(Λ0) ∼N∞

1
f2
N

, see Theorem 3.18. Moreover, we give a result for depres-
sion probabilities not depending on N and our result link the probability of error to the
parameters. Note the presence of Λ0 in our result rather than λ1 in previous studies.
This difference comes from our different measure of memory lifetime. The SNR anal-
ysis is based on the convergence of the means of the synaptic currents whereas our re-
trieval criterion requests the knowledge of their entire distributions. Indeed, we search
for a memory lifetime obtained with a control on the errors p0

e and p1
e. We conjecture

that we could prove similar result as ours with λ1 rather than Λ0. Finally, our results
do not necessarily need the large N asymptotic. Nevertheless, in this asymptotic, the
expression of t̂ simplifies, see Remark 3.19.

In this study, we assume that learning is generated by the divergence of the distribu-
tions of the synaptic currents h0

t and h1
t from their invariant distribution, see Figure 6.

The main role of the number of signal presentations (r) is to separate these two distri-

Figure 6: Illustration of the notations. The variables K0, K1, K∗ have Binomial laws
with parameters N and fN . They are respectively independent from h0

1, h
1
1, π∞.
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butions. Indeed, the larger the r, the more separated the support of the mixing distribu-
tions g0

1 and g1
1 are. In our proofs, we compare g1

t to g∗ after showing that as long as
g1
t is far enough from g∗ it is far enough from g0

t , see Lemma 3.13. As a consequence,
the expression of t̂ is an increasing function of m1

1 −M∞, and so of r.
Let us now discuss the roles of the coding level, the potentiation and depression

probabilities. They affect both learning and forgetting. The coding level directly af-
fects the number of synapses candidate to depression and potentiation. Indeed, looking
at an individual synapse, its probability to potentiate is f2

Nq
+ and its probability to

depress is fN (1 − fN )(q−10 + q−01). Thus, when the coding level is close to one, the
fluctuations are important and seem to cause a fast forgetting as shown in the illustra-
tions of Section 2. Therefore, we used a low coding level, see Assumption 2.6.2. This
choice slows down the forgetting. However, fN cannot be too small because it is detri-
mental to the learning phase as the distance between the two conditional distributions
depends on fN . More particularly, it depends on NfN which then need to be large
enough, see Assumption 2.6.2. The last parameters we can tune are the potentiation
and depression probabilities. As for fN , there is a compromise between their role in
learning and forgetting. Indeed, in order to promote learning, they need to be close
enough to one but on the contrary, small probabilities reduce the forgetting rate. So
we propose to take a potentiation probability (q+) on the order of 1, to learn quickly,
and small depression probabilities, to forget slowly. Potentiation increases the synaptic
currents so it leads to a shift of the distribution of h1

t to the right and for the same rea-
sons, depression results in a shift of the distribution of h0

t to the left. Therefore, smaller
depression than potentiation implies that the distribution of h1

t is significantly shifted
to the right whereas the distribution of h0

t is slightly shifted to the left. In view of
learning, the initial separation between distributions can be limited if the invariant dis-
tribution π∞ is already concentrated on high values of synaptic currents. As there are
two depression probabilities, this situation can be avoided by choosing one probability
big enough and the other one smaller. For example, when depression probabilities de-
pend on N under Assumption 2.6.3, both q−10,N and q−01,N converge to 0. If they both
converge too fast (aN and bN converge to 0), the invariant measure is concentrated
around one and no learning is possible. However, if either aN or bN does not converge
to 0, then the invariant measure is not concentrated around 0 and learning is possible.
Then, depending on the different large N asymptotic of aN and bN , we computed the
different memory lifetime summarized in Table 1. The best memory lifetimes are on
the order of 1

f2
N

and are obtained when aN (resp. bN ) converges to 0 and bN (resp.
aN ) converges to a constant in R+ (resp. R+

∗ ) or (aN , bN ) converges to constants in
R+
∗ × R+. Thus, if one wants to increase the memory lifetime beyond this order, we

seem to need a model more complex.
Our study is valid for a classic learning, which needs multiple stimulus presenta-

tions, but also for a one shot learning. This last one is possible only with a specific
choice of parameters. Indeed, when presenting a stimulus, the synaptic weights be-
tween selective neurons need to be potentiated with a high probability (high q+). When
presenting other stimuli, these same weights need to have a very small probability of
undergoing depression (low q−01 and q−10 ). As a result, following the presentation of a
stimulus, selective neurons develop strong links and then these connections take time to
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disappear. Thus, the experiment associated with this model would focus on recognition
memory. A well-known experiment in this field was carried out by [Standing, 1973].
He showed that humans are able to recognize up to 10,000 images, presented only
once, with 90 percent success rate.

Many perspectives can be studied as a follow-up to this study. First, the anal-
ysis carried out on the synaptic current onto one neuron could be extended to the
entire vector of synaptic currents. The correlations between synaptic weights would
then play a major role. In addition, the model could be completed in order to get
closer to biology. Indeed, the formation of synaptic memory is far more complex than
in our model. In particular, the link between the dynamics of the neurons and the
synaptic weight is missing. Improving the model in this direction could be done by
considering more structured and complex external signals, adding neural layers and
a more realistic membrane potential neural dynamics. In the literature, adding synap-
tic states does not seem to be successful as the authors stated in [Fusi and Abbott, 2007,
Huang and Amit, 2011], whereas meta-plastic transitions brought better SNR results [Fusi et al., 2005,
Roxin and Fusi, 2013, Benna and Fusi, 2016]. Adding neural dynamics in such mod-
els would be a next challenging step. Nevertheless, the model analysed here illustrates
well the trade-off between the plastic and the stable characteristics of memory. Indeed,
learning implies changes of synaptic weights (plasticity) as well as mechanisms which
maintain them (stability). In mathematical terms, stability is related to the minimal
convergence rate and plasticity refers to the sensibility to disturbance. We see that
there is a compromise: the more a dynamics is sensitive to disturbances, the less it is
stable and vice-versa.

Appendix

A Proofs

A.1 Proof of Proposition 3.4
Notation A.1. LetZ be a random variable in [0, 1] with distribution gZ and cumulative
distribution function GZ . We denote by gZ,(a,b) ∈ P([0, 1]) the distribution such that

∀u ∈ R, GZ,(a,b)(u) = GZ

(
u− b
a− b

)
.

Proposition 3.4 relies on the following

Lemma A.2. Let Z be a mixture of Binomial Z = BinMix(K,YZ). Let 0 ≤ b < a <
1. Conditionally on Z, consider two independent Binomial distributions Bin(Z, a) and
Bin(K − Z, b) and define X = Bin(Z, a) + Bin(K − Z, b). Then

X
L
= BinMix (K,YX) with YX = (a− b)YZ + b. (22)

In particular, GX(u) = GZ,(a,b)(u).
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Proof. Let Ũ , (Ui)1≤i≤K , (ξi)1≤i≤K , (ηi)1≤i≤K and (Wi)1≤i≤K be i.i.d. random
variables following the uniform law on [0, 1]. By the first point of Remark 3.2, Z is the
sum of (Zi)1≤i≤K i.i.d. Bernoulli of parameter YZ = G−1

Z (Ũ). Thus, we obtain that
conditionally on Z,

X =

K∑
i=1

Zi1{ξi≤a}︸ ︷︷ ︸
L
=Bin(Z,a)

+

K∑
i=1

(1− Zi)1{ηi≤b}︸ ︷︷ ︸
L
=Bin(K−Z,b)

where the Binomials are independent. Then, let consider ∀i, Zi = 1{Ui≤G−1
Z (Ũ)}.

Thus,

X =

K∑
i=1

1{Ui≤G−1
Z (Ũ)}1{ξi≤a} +

K∑
i=1

1{Ui>G−1
Z (Ũ)}1{ηi≤b}.

So X =

K∑
i=1

1{Ui≤G−1
Z (Ũ),ξi≤a}⋃{Ui>G−1

Z (Ũ),ηi≤b}. (23)

Ui

ξi, ηi

b

a

G−1
Z (Ũ) 1

1

0

Figure 7: In gray, the domain to which the couple (Ui, ξi, ηi) needs to belong to from
the equation (23).

For all Borel set D ⊂ [0, 1]3, P ((Ui, ξi, ηi) ∈ D) = V (D) where V (D) is the
volume of D. Thus, let Wi

L
= U ([0, 1]), then P ((Ui, ξi, ηi) ∈ D) = P (Wi ≤ V (D)) .

We put ξi and ηi on the same axis as they do not depend one on the other so that the
volume V

({
Ui ≤ G−1

Z (Ũ), ξi ≤ a
}⋃{

Ui > G−1
Z (Ũ), ηi ≤ b

})
is equal to the sum

of the tow grey areas (see Figure 7). We deduce that

X =

K∑
i=1

1{Wi≤b+(a−b)G−1
Z (Ũ)} =

K∑
i=1

1{
GZ
(
Wi−b
a−b

)
≤Ũ
} =

K∑
i=1

1{GX(Wi)≤Ũ},
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with GX(w) = GZ,(a,b)(w). We conclude that (22) is satisfied.

Proof of Proposition 3.4.

Proof. We first show (7) and (9) for ht,K , then the rest follows.
At t = 1, from equation (5) we get

L
(
h1,K |ξ1

0 = 1, h−r+1,K

)
= Bin (h−r+1,K , 1) + Bin

(
K − h−r+1,K , 1− (1− q+)r

)
L
(
h1,K |ξ1

0 = 0, h−r+1,K

)
= Bin

(
h−r+1,K , (1− q−01)r

)
.

Applying twice Lemma A.2 with (a, b) = (1, 1 − (1 − q+)r) and then (a, b) = (1 −
(1− q−01)r, 0), we obtain using notation A.1

L
(
h1,K |ξ1

0 = 1, h−r+1,K

) L
= BinMix

(
K, g−r+1,(1,1−(1−q+)r)

)
L
(
h1,K |ξ1

0 = 0, h−r+1,K

) L
= BinMix

(
K, g−r+1,(1−(1−q−01)r,0)

)
.

Thus,
P (h1,K = j|h−r+1,K)

=P
(
ξ1
0 = 1

)
P(h1,K = j|ξ1

0 = 1, h−r+1,K) + P
(
ξ1
0 = 0

)
P(h1,K = j|ξ1

0 = 0, h−r+1,K)

=

(
K

j

)∫ 1

0

uj(1− u)K−j
(
fNg−r+1,(1,1−(1−q+)r)(du) + (1− fN )g−r+1,(1−(1−q−01)r,0)(du)

)
,

which enables to get (7).
Now, assume that ht,K

L
= BinMix(K, gt), for some fixed t ≥ 1. Then, by equation (6)

L
(
ht+1,K |ξ1

t = 1, ht,K
)

= Bin
(
K − ht,K , fNq+

)
+ Bin

(
ht,K , 1− (1− fN )q−10

)
,

L
(
ht+1,K |ξ1

t = 0, ht,K
)

= Bin
(
ht,K , 1− fNq−01

)
,

where Binomials are independent conditionally on ht,K . Applying twice Lemma A.2
with (a, b) = (1− (1− fN )q−10, fNq

+) and (a, b) = (1− fNq−01, 0), we get

L
(
ht+1,K |ξ1

t = 1
) L

= BinMix
(
K, gt,(1−(1−fN )q−10,fNq

+)

)
L
(
ht+1,K |ξ1

t = 0
) L

= BinMix
(
K, gt,(1−fNq−01,0)

)
.

Hence, ht+1,K
L
= BinMix

(
K, fNgt,(1−(1−fN )q−10,fNq

+) + (1− fN )gt,(1−fNq−01,0)

)
,

and we deduce that ht+1,K
L
= BinMix(K, gt+1) with Gt+1(x) = R(Gt)(x).

For the processes
(
hyt,K

)
t≥0

, we proceed exactly with the same method with the

fact that ξ1
0 = y in Proposition 2.2.

A.2 Proof of Proposition 3.6
Proof. 1. The mapR is a contraction
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Let Γ1,Γ2 ∈ F[0,1]. We recall that Λ1 = 1− (1− fN )q−10 − fNq+, Λ0 = 1− fNq−01.
‖R(Γ2)−R(Γ1)‖L1(0,1)

≤
∫ 1

0

fN

∣∣∣∣Γ2

(
u− fNq+

Λ1

)
− Γ1

(
u− fNq+

Λ1

)∣∣∣∣+ (1− fN )

∣∣∣∣Γ2

(
u

Λ0

)
− Γ1

(
u

Λ0

)∣∣∣∣ du
= fN

∫ 1−(1−fN )q−10

fNq+

∣∣∣∣Γ2

(
(u− fNq+)

Λ1

)
− Γ1

(
(u− fNq+)

Λ1

)∣∣∣∣ du
+ (1− fN )

∫ Λ0

0

∣∣∣∣Γ2

(
u

Λ0

)
− Γ1

(
u

Λ0

)∣∣∣∣ du
= fNΛ1

∫ 1

0

|Γ2 (u)− Γ1 (u)| du+ (1− fN )Λ0

∫ 1

0

|Γ2 (u)− Γ1 (u)| du

= (fNΛ1 + (1− fN )Λ0)︸ ︷︷ ︸
λ1

‖Γ2 − Γ1‖L1(0,1).

As λ1 < 1, the mapR acting on F[0,1] is strictly contracting in L1(0, 1).
2. Existence and uniqueness of a fixed point
We now prove the second point of the Lemma. For all Γ0 ∈ F[0,1], by contraction
of R, (Rn (Γ0))n≥0 is a Cauchy sequence for the L1(0, 1) norm. By completeness
of L1(0, 1), this sequence converges to some Γ ∈ L1(0, 1). It remains to prove that
Γ can be chosen in F[0,1]. First, any limit Γ is non decreasing almost everywhere.
Define G∗(x) = lim

y→x+

Γ(y). The function G∗ is càdlàg and satisfies for every x ≤ 0,

G∗(x) = 0 and for every x ≥ 1, G∗(x) = 1. Thus G∗ ∈ F[0,1] and R(G∗) = G∗.
Finally, the uniqueness ofG∗ is deduced from the fact thatR is strictly contracting.

A.3 Proof of Lemma 3.14
Proof. We use the method of [Chernoff, 1952]. Let SN be the sum ofX1, X2, · · · , XN

which are independent Bernoulli random variables of parameter p.
For all ε ∈ (0, 1), u ∈ R+,

P (SN ≥ Np(1 + ε)) = P
(

euSN ≥ eNp(1+ε)u
)
≤

E
(
euSN

)
eNp(1+ε)u

=

∏N
i=1 E

(
euXi

)
eNp(1+ε)u

≤ (1 + p(eu − 1))
N

eNp(1+ε)u
≤ eNp(e

u−1)

eNp(1+ε)u
= eNp(e

u−1−(1+ε)u).

The minimum of the last term is reached for u = log(1 + δ) so

P (X > Np(1 + ε)) ≤
(

eε

(1 + ε)1+ε

)Np
= exp

(
Np
(
ε− (1 + ε) log(1 + ε)

))
.

From the inequality, ∀z > 0, log(1 + z) ≥ 2z
2+z , we obtain (12). In order to show (13),

we proceed with the same method and use the inequality log(1+z) ≥ z
2

2+z
1+z whenever

−1 < z ≤ 0.
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