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Abstract

Multi-view alignment, achieving one-to-one correspondence of multi-view inputs, is
critical in many real-world multi-view applications, especially for cross-view data anal-
ysis problems. Recently, an increasing number of works study this alignment problem
with Canonical Correlation Analysis (CCA). However, existing CCA models are prone
to misalign the multiple views due to either the neglect of uncertainty or the incon-
sistent encoding of the multiple views. To tackle these two issues, this paper studies
multi-view alignment from the Bayesian perspective. Delving into the impairments of
inconsistent encodings, we propose to recover correspondence of the multi-view inputs
by matching the marginalization of the joint distribution of multi-view random variables
under different forms of factorization. To realize our design, we present Adversarial
CCA (ACCA) which achieves consistent latent encodings by matching the marginal-
ized latent encodings through the adversarial training paradigm. Our analysis based
on conditional mutual information reveals that ACCA is flexible for handling implicit
distributions. Extensive experiments on correlation analysis and cross-view generation
under noisy input settings demonstrate the superiority of our model.

1 Introduction
Multi-view learning is the subfield of machine learning that considers learning from
data with multiple feature sets. This paradigm has attracted increasing attention due
to the emerging multi-view data that have facilitated various real-world applications,
such as video surveillance (Wang, 2013), information retrieval (Elkahky et al., 2015)
and recommender systems (Elkahky et al., 2015). In these applications, it is critical to
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achieve instance-level multi-view alignment, such that themultiple data streams achieve
great one-to-one correspondence (Li et al., 2018). For example, considering traditional
multi-view learning tasks, e.g. multi-view classification (Qi et al., 2016), multi-view
clustering (Chaudhuri et al., 2009) on face images in video surveillance, the input data
corresponds to face images taken from different angles. In these case, input feature
sets with low one-to-one correspondence degrade the alignment of the multiple views,
thus severely affect the performance of the desired tasks. Furthermore, multi-view
alignment plays an even more critical role in cross-view data analysis (Jia and Ruan,
2016) problems, namely, to analyse one view of the data given the input from the other
view. For example, cross-view retrieval (Elkahky et al., 2015) aims to search for the
corresponding object in the target view by given the quay in the other view; cross-view
generation (Regmi and Borji, 2018) seeks to generate target objects given the cross-view
inputs. Both of them are promising real-world application in which alignment of the
incorporated views is critical for the performance.

Canonical Correlation Analysis (CCA) (Hotelling, 1936) provides a primary tool
to study instance-level multi-view alignment under subspace learning mechanism (Xu
et al., 2013). In this setting, the instances of two views, X and Y , are assumed to be
generated from a common latent subspace Z, the alignment problem is to find two
mapping functions, namely F(X) and G(Y ), such that the embeddings of corresponding
input pairs are close to each other regarding the linear correlation. The instance (xi, yi)
are in exact correspondence if and only if F(xi) = G(yi) (Ma and Fu, 2011). However,
existing CCAmodels are prone to misalignment, due to either the neglect of uncertainty
or the inconsistent encoding of the multiple views.

Following the principle of classic CCA, vanilla CCAmodels study multi-view align-
ment with deterministic mapping functions (Oh et al., 2018). Such CCA models are
opting to misalign the multiple views since uncertainty is not considered. To be specific,
the classic CCA obtains the shared latent space by maximumly correlating the determin-
istic point embeddings, achieved with a linear mapping of the two views. Some works,
such as Kernel CCA (KCCA) (Lai and Fyfe, 2000) and Deep CCA (DCCA) (Andrew
et al., 2013) and Multi-View AutoEncoder (MVAE) (Ngiam et al., 2011), extend the
classic CCA with nonlinear mapping or through cross-view reconstruction, to exploit
nonlinear correlation for the alignment. The mapping functions F(·) and G(·) are non-
linear in these models. As depicted in Fig. 1(a), these methods all exploit the subspace
Z with deterministic point embeddings, namely zx = F(x) and zy = G(y) are points in
Rd. Without an inference mechanism to evaluate the quality of obtained latent codes,
the mapping function obtained in those models is susceptible to noisy inputs (Kendall
and Gal, 2017), which can consequently result in misalignment of the multiple views.
For example, for observation “ 1 ” in Fig. 1(a), inputs in the two views are obviously
projected faraway in the embedding space - they are projected into different clusters, 5
and 2 respectively, while they are suppose to be close to each other around the ground
truth cluster 7. Moreover, without prior regularization on the shared subspace, these
models can not allow easy latent interpolations, since their latent spaces are discon-
tinuous. In such cases, the training samples are encoded into non-overlapping zones
chaotically scattered across space, with “holes” between the zones where the model has
never been trained (Tolstikhin et al., 2017). Therefore, thesemodels can not facilitate the
cross-view generation task since the generation results are quite likely to be unrealistic.
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Figure 1: The motivation of Adversarial CCA. (a) Vanilla CCA models misalign the
multiple views with discontinuous latent space and unrealistic generated data. (b) The
latent encodings matched with KL-divergence are inconsistent, leading to misalignment
of the multiple views. (c) Adversarial learning facilitates consistent encodings for the
multiple views by matching marginalized latent encodings with flexible priors.

Generative CCA models, such as probabilistic CCA (PCCA) (Bach and Jordan,
2005), Variational CCA (VCCA) (Wang et al., 2016) and Multi-Channel Variational
Autoencoder (MCVAE) (Antelmi et al., 2019), overcome the aforementioned issue with
probability. However, they suffer frommisalignment due to the impairments of inconsis-
tent encodings. Specifically, these models adopt the Kullback-Leibler divergence (KL-
divergence) between the encodings of individual input example, i.e. Q(Z |X = x) and
Q(Z |Y = y) and the prior P0(Z), as the criterion to match the latent encodings of differ-
ent views. However, such constraint can simply force the matching of the encodings of
individual input to the common prior (Tolstikhin et al., 2017). Even if the constraint is
satisfied, the encodings of the data samples from both the two views can be intersected.
In this way, the correspondence between the latent codes of paired inputs is violated.
Such inconsistent latent encodings would cause one-to-many correspondence between
the instances of the incorporated views, indicating the multiple views are misaligned. As
depicted in Fig. 1(b), although all these latent encodings match the prior, the encodings
of the instances from both the two views are intersected in the common latent space.
This arouses confusion on the correspondence between the instances in the two views,
e.g.“ 1 ” and “ 2 ” both exhibit one-to-many correspondence. Such inconsistency not
only weakens the alignment of the two spaces but also influences the quality of data
reconstruction. Moreover, to achieve a tractable solution for the inference, these models
restrict the latent space with simple Gaussian prior, i.e. p0(z) ∼ N(0, Id), so that the
constraint can be computed analytically. However, such prior is not expressive enough
to capture the true posterior distributions (Mescheder et al., 2017). Therefore, the latent
space may not be expressive enough to preserve the instance-level correspondence of
the data samples. These impairments lead to an inferior alignment of the multiple views
and thus also degrade the models’ performance in cross-view generation tasks.

To tackle the aforementioned issues, in this paper, we study the instance-level multi-
view alignment from a Bayesian perspective. With an in-depth analysis of existing CCA
models with respect to latent distribution matching, we figure out the impairments of
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Table 1: Comparison of different CCA methods for multi-view alignment.

Category Methods
Nonlinear
mapping

Criterion
Evaluation

Consistent
encoding

Avoids Gaussian
restriction on p(z)

Implicit
posteriors p(z|x, y)

Vanilla
CCA models

CCA 7 Linear correlation 7 7 -
KCCA 3 Linear correlation 7 7 -
DCCA 3 Linear correlation 7 7 -
DCCAE 3 Linear correlation 7 7 -
MVAE 3 - - - -

Generative
CCA models

PCCA 7 KL-divergence 7 7 7

VCCA 3 KL-divergence 7 7 7

Bi-VCCA 3 KL-divergence 7 7 7

MCVAE 3 KL-divergence 7 7 7

ACCA (ours) 3 Adversarial learning 3 3 3

inconsistent encodings in the existing CCA models. We then propose to recover con-
sistency of multiple views and thereby boost the cross-view generation performance, by
matching the marginalization of the joint distribution of multi-view random variables
under different forms of factorization, i.e. Eq. (5). To realize our marginalization design,
we present Adversarial CCA (ACCA) which achieves consistent latent encoding of the
multiple views by matching the marginalized posteriors to flexible prior distributions
through the adversarial training paradigm. Analysing the conditional independent as-
sumption in CCA with conditional mutual information (CMI), we reveal that, compared
with existing CCA methods, our ACCA is flexible for handling implicit distributions.
The contributions of this work can be summarized as follows:

1. We provide a systematic study onCCA-based instance-levelmulti-view alignment.
We figure out the impairments of inconsistent encodings in the existing CCA
models and propose to study multi-view alignment based on the marginalization
principle of Bayesian inference, to recover consistency of multiple views.

2. We design adversarial CCA (ACCA) which achieves consistent latent encoding
of the multiple views and is flexible for handling implicit distributions. To the
best of our knowledge, we are the first to elaborate the superiority of adversarial
learning in multi-view alignment scenario.

3. We analyse the connection of ACCA and existing CCAmodels based on CMI and
reveals the superiority of ACCA benefited from the consistent latent encoding.
Our CMI-based analysis and the consistent latent encoding can provide insights
for a flexible design of other CCA models for multi-view alignment.

The rest of this paper is organized as follows. In Section 2, we review the existing
CCA models regarding latent distribution matching. In Section 3, we elaborate our
design to study multi-view alignment through marginalization and present our design
of Adversarial CCA (ACCA). In Section 4, we discuss the advantages of our model
by comparing existing models based on CMI. In Section 5, we demonstrate the supe-
rior alignment performance of ACCA with model verification and various real-world
applications. Section 6 concludes the paper and envisions future work.
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2 Deficiencies of existing CCA models
In this section, we review the multi-view alignment achieved with existing CCA models
in terms of latent distribution matching.

2.1 Vanilla CCA models and the neglect of uncertainty
Vanilla CCAmodels are prone to misalignment since data uncertainty is not considered.

Canonical Correlation Analysis (CCA) (Hotelling, 1936) is a powerful statistical
tool for multi-view data analysis. Let {x(i), y(i)}Ni=1 denote the collection of N i.i.d.
samples with pairwise correspondence in multi-view scenario (In the following, we use
(x, y) to denote any one instance in this set, for simplicity). The classic CCA aims to find
linear projections for the two views, (W ′

x X,W
′
yY ), such that the correlation between the

projections are mutually maximized, namely max corr{W ′
xX,W

′
yY } =

W
′
xΣxyWy√

W
′
xΣxxWxW

′
yΣyyWy

,

where Σxx and Σyy are the covariance of X and Y ; Σxy denotes the cross-covariance.
With linear projections, the classic CCA simply exploits linear correlation among the
multiple views to achieve alignment. It is often insufficient to analyse complex real-world
data that exhibits higher-order correlations (Suzuki and Sugiyama, 2010).

Various CCA models are proposed to exploit nonlinear correlation for multi-view
alignment with deterministic nonlinear mappings. Kernel CCA (KCCA) and Deep CCA
(DCCA) exploit nonlinear correlation by extending CCAwith nonlinear mapping imple-
ment with kernel methods and Deep Neural Networks (DNNs), respectively. Some other
works, e.g. deep canonically correlated autoencoders (DCCAE) (Wang et al., 2015),
extend nonlinear CCA with self-reconstruction for each view. However, since there is a
trade-off between canonical correlation of the learned bottleneck representations and the
reconstruction, the cross-view relationship captured in the common subspace is often
inferior to that of DCCA (Wang et al., 2016). Multi-View AutoEncoder (MVAE) aims
to establish strong connection between the views through cross-view reconstruction.
Without adopting specific alignment criterion, its objective is given as

min
F,G

1
N

∑
{x,y}
‖x − F−1(F(x))‖2+‖x − F−1(G(y))‖2+‖y − G−1(G(y))‖2+‖y − G−1(F(x))‖2,

where F(.) and G(.) represent nonlinear mapping of X and Y respectively. F−1(.) and
G−1(.) denote the corresponding decoders for the view reconstructions.

Necessities of modelling uncertainty: Without the inference mechanism that can
evaluate the quality of obtained embeddings, these methods are vulnerable to misalign
the multiple views when given noisy inputs (Tolstikhin et al., 2017). As depicted in
Fig. 1(a), for noisy halved images of digit “7”, the two views are misaligned in the
latent space, since their embeddings scatter faraway and are even chaotically embedded
into the different clusters of “2” and “5”, respectively. Moreover, these models can not
well facilitate cross-view generation tasks, since the obtained subspace is discontinuous
under such deterministic mappings. Consequently, interpolations of the latent space
would lead to unrealistic generation results.
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2.2 Generative CCA models and inconsistent latent encodings
Generative CCA models overcome the uncertainty issue by modeling probability. How-
ever, they still suffer from misalignment due to the impairments of inconsistent encod-
ings, caused by the limitation of the KL-divergence alignment criterion.

Let the two input views correspond to random variables X and Y , each of them
are distributed according to an unknown generative process with density p(x) and p(y)
from which we have observations {x(i), y(i)}Ni=1. Probabilistic CCA (PCCA) (Bach and
Jordan, 2005), as generative version of the classic CCA, aligns the multi-view data by
maximizing the correlation between the linearly projected views in a common latent
space with Gaussian prior, namely z ∼ N(0, Id), x |z ∼ N(Wx z + µx,Φx), y |z ∼
N(Wyz + µy,Φy), where d denotes the dimension of the projected space. The KL-
divergence is tractable in this case, since the conjugacy of the prior and the likelihood in
PCCA leads to two favorable conditions. 1). the conditional distribution p(x, y |z) can
be modeled with the joint covariance matrix, with which the conditional independent
constraint (Eq. (1)) for CCA can be easily imposed (Drton et al., 2008) .

p(x, y |z) = p(x |z)p(y |z) (1)

2). the posterior, i.e. p(z |x, y) = p(x,y |z)p(z)
p(x,y) can be calculated analytically (Tipping and

Bishop, 1999).
To exploit nonlinear correlation for alignment, some works extend PCCA with non-

linear mapping. Inspired by variational inference, Wang et al. proposed two generative
CCA variants (Wang et al., 2016), Variational CCA and Bi-VCCA. Both methods mini-
mize a reconstruction cost together with the KL-divergence to regularize the alignment.
Variational CCA (VCCA) penalizes the discrepancy between a single view encoding and
the prior, i.e. DKL(Q(Z |X = x) ‖ P0(Z)), based on a preference for one of the two
views. The two views are not well aligned since the information in the other view is
not exploited. It also cannot handle the cross-view generation task due to this missing
encoding. Bi-VCCA overcomes the limitation by a heuristic combination of the KL-
divergence term obtained with both the two encodings, Q(Z |X = x) and Q(Z |Y = y),
with λ to control the trade-off. To achieve tractable solution for the inference, the
latent space is restricted to be Gaussian distributed, i.e. P0(Z) ∼ N(µ, Σ), so that the
KL-divergence can be computed analytically. Its objective is given as

min
θ,φ

1
N

∑
{x,y}

[
λ[−Eqφ(z |x)[log pθ(x |z) + log pθ(y |z)] + DKL(qφ(z |x) ‖ p0(z))] (2)

+(1 − λ)[−Eqφ(z |y)[log pθ(x |z) + log pθ(y |z)] + DKL(qφ(z |y) ‖ p0(z))]
]
,

where θ is the generative model parameters, φ denotes the variational parameters.
The prototype proposed in Antelmi et al. (2019), namely Multi-Channel Variational
Autoencoder (MCVAE), aims to constraint the expectation of KL-divergence between
the encoding of each view and the target posterior distribution, i.e. Q(Z |X = x),
Q(Z |X = y) and Q(Z |X = x,Y = y) for all the data samples, as the criteria for the
alignment. However, with an explicit conditionally independent assumption (Eq. (1)),
MCVAE achieves the same objective as Bi-VCCA.
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Figure 2: Graphical diagrams for generative nonlinear CCA variants. The solid lines in
each diagram denote the generative models pθ(z)pθ(∗|z). The dashed lines denote the
approximation qφ(z |∗) to the intractable posterior pθ(z |∗). The ∗ indicates x or y.

Impairments of inconsistent latent encodings: Since there exists an encoding and
decoding mechanism for each of the views in generative CCAmodels, the instance-level
alignment of the views can be verified by cross-view generation. Specifically, if the two
views are well aligned, the encoding from one view can then recover the corresponding
data in the other view. In such circumstances, we define the encoding of the two views to
be “consistent”. Therefore, the consistency of the multi-view encodings is a necessary
condition for multi-view alignment in generative CCA models.

However, the aforementioned methods would misalign the multiple views due
to the inconsistent latent encodings caused by the inferior alignment criterion, i.e.
DKL(Q(Z |X) ‖ Q(Z |Y )). First, this criterion can only match the encodings of individual
data samples, while causing inconsistent encoding of the views. As depicted in Fig. 1(b),
in the multi-view learning scenario, it simply forces the encoding from each view, i.e.
Q(Z |X = x) and Q(Z |Y = y), of all the different input examples to individually match
the common prior P0(Z). In this way, the latent encodings from both the two views are
intersected in the common latent space. Such intersection disorganizes the consistency
of the encodings in the latent space, and thus reduce the instance-level alignment of the
two input views. This misalignment also influences the quality of data reconstruction
or generation. Both the two deficiencies are crucial for cross-view generation tasks.
In addition, to compute the KL-divergence analytically, all these methods require the
incorporated distributions, i.e. the prior P0(Z), the posteriors of each view Q(Z |X) and
Q(Z |Y ), to be simple. However, such restriction can lead to inferior inference models
that are not expressive enough to capture the true posterior distribution (Mescheder
et al., 2017). Inexpressiveness of the latent space further limits the models’ ability to
preserve the instance-level correspondence of the data samples.

3 Multi-view alignment via consistent latent encoding
In this section, we study multi-view alignment from a Bayesian perspective. First, we
elaborate the design to achieve consistency of themultiple views throughmarginalization
in Section 3.1. We then present our design of adversarial CCA in Section 3.2.
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3.1 Multi-view alignment through marginalization
To sum up, the KL-divergence criterion adopted in existing CCA models causes impair-
ments of the inconsistent encodings in two aspects:

1. Primarily, it causes inconsistent latent encoding of the two views, since it simply
matches the encodings of individual data samples;

2. It further restricts the expressiveness of the latent space regarding the instance-
level correspondence, since it can only incorporate simple priors directly.

To exploit a better criterion that benefits the alignment, i.e. instance-level consistency,
of the multiple views, we study multi-view alignment from a Bayesian perspective.

From the Bayesian perspective, the primary reason for the inconsistent encoding is
that their KL-divergence criterion measures the disagreement of the posterior distribu-
tions q(z |x) and q(z |y) without considering the condition variable. That is, it simply
matches the encodings of individual data in each view to the prior p0(z) via a heuristic
combination of the KL-divergence between each encoding and the prior, namely

λDKL(q(z |x) ‖ p0(z)) + (1 − λ)DKL(q(z |y) ‖ p0(z)). (3)

Without considering the condition variables X and Y , the encodings of instances from
both the two views can be disorganized overlapped. This degrades the one-to-one
correspondence of the multi-view data in corresponding models.

Based on themarginalization principle of Bayesian inference (Tipping, 2003; Jaynes,
1978), we propose to facilitate consistent latent encoding by simultaneously matching
the multi-view encodings whose condition variables are all integrated out. Specifically,
we first eliminate the misalignment induced by the intersection of the individual sample
encodings by marginalizing the encodings from multiple views and then constrained the
marginalized encodings to overlap with the prior p0(z) simultaneously.

First, within the CCA-based multi-view learning scenario, the joint distribution of
multi-view random variables can be factorized into three different forms, i.e. q(x, z) =
q(z |x)p(x), q(y, z) = q(z |y)p(y), q(x, y, z) = q(z |x, y)p(x, y). Marginalization of these
joint distributions on z results in three marginalized posterior distributions, namely

qx(z) =
∫

q(z |x)p(x) dx, qy(z) =
∫

q(z |y) p(y) dy, qxy(z) =
∬

q(z |x, y)p(x, y)dxdy.

(4)
Then, we propose to match these three marginalized encodings simultaneously, to pro-
vide consistent latent encodings that benefit the multi-view alignment. Since it is
non-trivial to annotate a distribution measurement among the prior p0(z) and other
surrogate distributions marginalized by different views, we represent this idea as

qx(z) ≈ qy(z) ≈ qxy(z) ≈ p0(z), (5)

Compared with the KL-divergence that harshly matches the conditional distribution
of each sample to the prior, our proposed constraint matches the marginal distributions,
i.e.

∫
q(z |x)p(x)dx ≈ p(z). Since we take the input of the conditional variables into

consideration, this constraint is tolerant to the flexibility of the input data. This property
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also makes it praisable for matching multi-view encodings, i.e.
∫

q(z |x)p(x)dx ≈∫
q(z |y)p(y)dy ≈

∫
q(z |x, y)p(x, y)dxdy ≈ p0(z). The multi-view alignment can be

further improved via expanding the expressiveness of the latent space by incorporating
more complex prior distributions (Mathieu et al., 2019).

3.2 Adversarial CCA with consistent latent encoding
To realize our design, we design Adversarial CCA (ACCA) which provides consistent
latent encoding by matching the marginalized latent encodings to flexible priors through
the adversarial training paradigm. We adopt two schemes to facilitate consistent latent
encodings in ACCA.
Encoding with holistic information: To provide different factorization forms for the
joint distribution of multi-view data, we provide holistic information for the latent
encodings, i.e. q(z |x, y), q(z |x) and q(z |y), in ACCA.

Besides the two principle encodings, i.e. q(z |x) and q(z |y), that support the cross-
view analysis, we further explicitly model q(z |x, y) by encoding an auxiliary view XY
that contains all the information of the two views. With the encoding from this auxiliary
view, the latent space is more expressive for the correspondence of the multiple views.
Matching marginalized encodings: We match the marginalization of these holistic
encodings simultaneously with the adversarial learning technique.

The adversarial learning technique minimizes the JS-divergence between two dis-
tributions through binary classification on the samples of the two distributions di-
rectly (Goodfellow et al., 2014). Consequently, any two distributions can be matched
by given their samples. We adopt adversarial learning as the criterion to match the
marginalization of all three encodings to an arbitrary fixed prior p0(z) in ACCA. To be
specific, we apply an adversarial distribution matching scheme on the common latent
space. Within this scheme, each encoder acts as a generator that defines a marginalized
posterior over z (Makhzani et al., 2015) in Eq. (4). The obtained latent codes of indi-
vidual data instances are samples of the corresponding marginalized posteriors, q∗(z).
The three marginalized posteriors constraint to be matched by simultaneously matching
the same prior p0(z), namely Eq. (5), with a shared discriminator (Hoang et al., 2018).
We presents the formulation of the proposed constraints in the following subsection.

Consequently, our ACCA realizes the proposed marginalization design by adversari-
ally matching the marginalized posteriors with a common and flexible prior distribution.
As listed in Table 1, our ACCA excels existing generative CCA models in three aspects.

1. We recover the consistency of multiple views by matching themarginalization of
holistic encodings. This inherence contributes to the consistent latent encoding
of the multiple views that benefits the multi-view alignment.

2. It avoids the Gaussian distribution restriction on p(z). Instead of computing the
criterion analytically, adversarial learning provides an efficient estimation of the
JS-divergence between the encodings (Goodfellow et al., 2014). This benefits
ACCA to handle expressive latent space with flexible prior distributions.

3. It does not require explicit distribution assumptions on the posterior p(z |x, y).
The adversarial learning schemematches the incorporated distributions implicitly.

9



Thus it can benefit the model to omit the sampling operation required in other
generative CCA models, e.g. VCCA and MCVAE.

The graphical diagram of ACCA is presented in Fig. 2(d). Note that, the three en-
codings are all essential in ACCA. First, the encodings of the principle views, i.e. q(z |x)
and q(z |y), are essential to facilitate cross-view analysis with generative CCA methods.
Second, the encoding of the auxiliary view, q(z |x, y), contributes to a latent space that
better encodes the correspondence of the multiple views and thus benefits the multi-view
alignment achieved in ACCA. Indeed, one can achieve expressive representations for the
multi-view data with only the auxiliary encoding. However, this is not the focus of our
work. We further emphasise the significance of the auxiliary view and the superiority
achieved with the adversarial learning in Section 4.2.

3.2.1 Formulation

Based on the aforementioned design, the objective of our ACCA consists of two com-
ponents: 1). The log likelihood (reconstruction) terms for fitting the multi-view data;
and 2). The adversarial learning constraint that contribute to consistent latent encoding.
The objective of our ACCA is given as

min
Θ,Φ
LACCA(x, y) =

1
N

∑
{x,y}

[
− Eqφxy (z |x,y)[log pθx (x |z) + log pθy (y |z)] (6)

−Eqφx (z |x)[log pθx (x |z) + log pθy (y |z)]
−Eqφy (z |y)[log pθx (x |z) + log pθy (y |z)] + RGAN

]
,

where Θ and Φ denotes the parameters of the encoders and the decoders respectively,
i.e. Θ = {θx, θy} and Φ = {φxy, φx, φy}.

The ACCA framework, as illustrated in Fig. 3, consists of 6 subnetworks. The
three encoders, {Ex, Exy, Ey}, and the two decoders {Dx,Dy} constitute the view-
reconstruction scheme, which correspond to the first three terms in Eq. (6). The three
encoders (generators), together with the shared discriminator D̂, compose the adversar-
ial distribution matching scheme. These subnetworks, i.e. {Ex, Exy, Ey, D̂} compose
the adversarial regularizer that promote with RGAN, namely

RGAN(Ex, Ey, Exy, D̂) = Ez∼p(z) log(D̂(z)) + Ezxy∼qφxy (z |x,y) log(1 − D̂(zxy)) (7)

+Ezx∼qφx (z |x) log(1 − D̂(zx)) + Ezy∼qφy (z |y) log(1 − D̂(zy)).

Here, we add the subscripts to discriminate the latent codes z encoded from different
views X,Y, XY . This distinctiveness is criterial in the experiment part.

In practical, our ACCA is jointly trained by alternatively updating two phases-
the reconstruction phase and the regularization phase. In the reconstruction phase,
we update the encoders and the decoders to minimize the reconstruction error of the
two principle views. In the regularization phase, the adversarial networks, with multiple
encoders or generators, are trained following the same alternating procedure as in Hoang
et al. (2018). Once the training procedure is done, the encoders will define expressive
encodings for each view.
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Figure 3: Overall structure of ACCA. The left panel represents encoding with holistic
information scheme; the top right panel corresponds to the cross-view reconstruction;
the bottom right panel illustrates the adversarial learning criterion.

4 Connection to other models
In this section, we discuss the connection between ACCA and other existing models.

4.1 Understanding CCA models with CMI
From a Bayesian perspective, the general CCA models come with an assumption that
the two views, X and Y , are conditionally independent given the latent variable Z , i.e.
Eq. (1), to achieve a tractable solution for inference. However, such an assumption is hard
to verify in real multi-view analysis problems that incorporate complex distributions.
Here, we analyse this inherent assumption of CCA with conditional mutual information.

Given random variables X,Y and Z , the conditional mutual information (CMI)
defines the expected KL-divergence between the conditional joint distribution p(x, y |z)
and the product of the conditional marginal distributions, p(x |z) and p(y |z) (Zhang et al.,
2014).

I(X;Y |Z) = Ep(z)[DKL(p(x, y |z) ‖ p(x |z)p(y |z))] ≥ 0 (8)

The minimum, I(X;Y |Z) = 0, can only be achieved when X and Y are conditional
independent given Z . Consequently, the conditional independent criterion of CCA
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(Eq. (1)) can be achieved by minimizing the CMI. The objective can be given as

Iθ(X;Y |Z)

=

∭
p(z)p(x, y |z) log

p(x, y |z)
p(x |z)p(y |z)dzdxdy

=

∭
p(z |x, y)p(x, y)[log

p(x, y |z)
p(x |z)p(y |z) − log p(x, y) + log p(x, y)]dzdxdy

=

∭
p(z |x, y)p(x, y)[log

p(z |x, y)
p(z) − log p(x |z) − log p(y |z) + log p(x, y)]dzdxdy

= H(X,Y ) + Epθ (x,y)[−Ep(z |x,y)[log pθ(x |z) + log pθ(y |z)] + DKL(pθ(z |x, y) ‖ p(z))],

where H(X,Y ) is a constant and has no effect on the optimization (Gao et al., 2018).
Therefore, the minimum of CMI can be achieved by minimizing the remaining terms,
namely

min
θ
Ep(x,y) [Fθ(x, y)] '

1
N

∑
{x,y}

Fθ(x, y), (9)

where Fθ(x, y) = −Epθ (z |x,y) [log pθ(x |z) + log pθ(y |z)] + DKL(pθ(z |x, y) ‖ p(z)).
Although Eq. (9) presents an objective for minimizing CMI, it is hard to optimize

since the posterior pθ(z |x, y) is unknown or intractable for the practical multi-view
learning problems. Consequently, existing methods make different assumptions on the
incorporated distributions, e.g. prior, likelihood, and posterior, and adopt approximate
inference methods to achieve tractable solutions for multi-view analysis.
Example 1: PCCA (Bach and Jordan, 2005). With an explicit conditional independent
assumption, PCCA adopts Gaussian assumptions for both the likelihood and the prior
to achieve tractable solution for the inference in linear CCA. Under the conditional
independent constraint, the minimum of CMI, i.e. I(X;Y |Z) = 0, is naturally satisfied.
Due to the conjugacy of the prior and the likelihood, the posterior in Eq. (4.1) can be
presented with an analytic solution, with which the model parameters can be directly
estimated with EM algorithms.

z ∼ N(0, Id), x |z ∼ N(Wx z + µx,Φx), y |z ∼ N(Wyz + µy,Φy)

Example 2: MVAE (Ngiam et al., 2011). If we consider Gaussian models with
z ∼ N(µ, 0), pθ(x |z) = N(Fφx (zx), I) and pθ(y |z) = N(Gφy (zy), I), the zx and zy are
obtained as point embedding obtained with F(x) and G(y), i.e. zx = Fθx (x) and
zy = Gθy (y) ( Section 2.1). We can see that the reconstruction terms in Eq. (9) measures
the l2 reconstruction error of the two inputs from the latent code z through the DNNs
defined with F−1 and G−1. The objective of MVAE is

min
θ,φ

1
2N

∑
{x,y}

‖x − F−1
φx
(Fθx (x))‖

2
+ ‖y − G−1

φy
(Gθy (y))‖

2
.

Note that, MVAE is a simpleAE,with no regularization on posterior-and-priormatching.
Example 3: VCCA (Wang et al., 2016). Considering a model where the latent codes z ∼
N(µ, Σ) and the observations x |z and y |z both follow implicit distribution, VCCA adopts
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variational inference to get the approximate posterior for Eq. (4.1) with two additional
assumptions: 1). The single input view can provide sufficient information for the multi-
view encoding, namely qφ(z |x, y) ≈ qφ(z |x); 2). The variational approximate posterior
qφ(z |x) ∼ N(z; µ, Σ), whereΣ = diag(σ2

1 , . . . , σ
2
d ). In this case, theKL-divergence term

can be explicitly computedwithDKL(qφ(z |x) ‖ pθ(z)) = −1
2
∑d

j=1(1 − σ2
j − µ2

j + logσ2
j ).

Note that, p0(z) is defined with explicit form and the encoding functions actually models
the distribution parameters. The latent codes is then obtained by sampling L sam-
ples from the posterior distribution, i.e. zl ∼ qφ(z |x), with the reparameterization
trick (Kingma and Welling, 2013). The objective of VCCA is given as

min
θ,φ

1
N

∑
{x,y}

[
− 1

L

L∑
l=1
[log pθ(x |zl) + log pθ(y |zl)] + DKL(qφ(z |x) ‖ pθ(z))

]
.

s.t. zl
x = µx + Σxε

l, where ε l ∼ N(0, Id), l = 1, . . . , L. (10)

Example 4: Bi-VCCA (Wang et al., 2016). Bi-VCCA adopts the encoding of both the
two views, namely, qθ(z |x) and qθ(z |y) to approximate qθ(z |x, y). Its objective is given
as a heuristic combination of Eq. (10) derived with each encodings, namely

min
θ,φ

1
N

∑
{x,y}

[
[−λ

L

L∑
l=1
[log pθ(x |zl

x) + log pθ(y |zl
x)] + DKL(qφ(z |x) ‖ pθ(z))] (11)

+[−1 − λ
L

L∑
l=1
[log pθ(x |zl

y) + log pθ(y |zl
y)] + DKL(qφ(z |y) ‖ pθ(z))]

]
,

s.t. zl
x = µx + Σxε

l, zl
y = µy + Σyε

l, where ε l ∼ N(0, Id), l = 1, . . . , L, (12)

where λ ∈ [0, 1] is the trade-off factor between the two encodings.

4.2 ACCA versus existing CCA methods
Based on our analysis, we emphasise the superiority of the proposed ACCA (Fig. 1(c))
over the aforementioned CCA prototypes in the following aspects.

1. The adversarial learning criterion enables ACCA to achieve a tractable solution
for multi-view analysis with much flexible prior and posterior distributions. This
benefits the expressiveness of the obtained aligned latent space.

2. The adversarial learning criterion leads to consistent latent encoding in ACCA
by matching marginalization of the incorporated distributions and thus facilitates
ACCA to achieve better instance-level alignment for the multiple views.

3. Appending q(z |x, y) with the auxiliary view XY , our ACCA can better estimate
the minimizing CMI objective (Eq. (9)), compared with other variants that simply
adopt the encodings from individual views, i.e. q(z |x) and q(z |y).

Some works adopt additional penalties, e.g. sparsity constraint (Shi et al., 2019),
on the these prototypes to further enhance the multi-view alignment. For instance,
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Kidron et al. (2007) extends classic CCA with sparsity to enhance its performance
on cross-modal localization task. Jia et al. (2010) introduces structured sparsity into
MVAE. Virtanen et al. (2011) proposes a generative CCA variant that also adopts KL-
divergence as the criterion, with only an additional group sparsity assumption to improve
the variations approximation. Note that, we can also extend ACCA with corresponding
structural priors to enhance the alignment of the multiple views (Mathieu et al., 2019).

Some other works extend these prototypes by further exploiting view-specific in-
formation. Besides the multi-view shared information, these variants also considers
specific information in each view to benefit the alignment task. As a representative,
VCCA-private extends Bi-VCCA by introducing two hidden-variables, hx and hy, to
capture the private information that is not captured with the common variable, Z . It
adopts two extra KL-divergence constraints to match the encoding of the private vari-
ables (Eq.(10)) in (Wang et al., 2016). Our ACCA can also be naturally extended with
such private variables and additional discriminators to further enhance the alignment.

There are also generative CCA works that incorporates additional information, e.g.
supervision, to benefit the multi-view alignment. For example, Multi-view Information
Bottleneck (MVIB) (Federici et al., 2020) aligns the two views in a supervised manner,
in order to obtain multi-view data representations that are maximumly informative about
the downstream prediction task, i.e. X1, X2 → Y . (Note that, Y denotes the label here.)
Consequently, its motivation is different from our ACCA, which target at alignment of
the two views for generation tasks, i.e. X1 ↔ X2. Actually, MVIB even cannot facilitate
our targeted cross-view generation task due to the lack of a generation mechanism. In
addition, besides the minimum CMI criterion, Eq. (8), that formulates ACCA, MVIB
also adopts an additional superfluous information minimization objective to discard the
input information that is irrelevant to its label.

LMIB(θ; λ) = Iθ(Z; X1 |X2)︸         ︷︷         ︸
superfluous information

+λIθ(X1; X2 |Z)

In this sense, MVIB can be regarded as an extension of multi-view alignment that
further incorporates superfluous information to handle supervised downstream tasks.
We can also apply our developed inference method in ACCA to solve the generative
variant of the MVIB objective as well.

Note that, in this work, we focus on studying the classic CCA prototypes in terms
of the multi-view alignment for data generation. Consequently, the above CCA variants
with additional penalties, or with view-specific variables are not for main comparisons
here. The MVIB is not comparable here since it even can not facilitate generation.

4.3 ACCA versus Adversarial Autoencoders (AAEs)
Another work that is highly relevant to our ACCA, isAdversarial Autoencoders (AAEs)
(Makhzani et al., 2015). AAEs adopt adversarial distribution matching to promote the
reconstruction of autoencoders, based on Variational Autoencoders (VAEs). Compared
with AAEs, our ACCA is contributive since we extend the adversarial distribution
matching into the multi-view scenario to facilitate multi-view alignment, especially for
cross-view generation tasks. We also elaborate that our model is reasonable to achieve
superior alignment for multiple views with consistent latent encoding, by analysing the
conditional independent assumption in CCA with CMI.
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4.4 Instance-level alignment versus distribution-level alignment
In this work, we study instance-level multi-view alignment with CCA, namely to achieve
correspondence for instance-embeddings obtained from each view. There are also works
that study the distribution-level alignment of the multiple views. These works focus on
aligning the marginal distribution of the views, i.e. P(X) and P(Y ) without considering
the pairwise correspondence for each instance. Cross-view generation in such setting
is regarded as a style transfer task (Ganin et al., 2016). For example, Cycle-GAN (Zhu
et al., 2017) studies unsupervised image translation in two domains by modelling cycle
consistency. UNIT (Liu et al., 2017) and MUNIT (Huang et al., 2018) study the same
task by incorporating a common latent space into Cycle-GAN. Conditional GANs are
adopted to facilitate the cross-view image synthesis task (Regmi and Borji, 2018). As
this is not the focus of our paper, we do not discuss them further.

5 Experiments
In this section, we evaluate the performance of our ACCA regarding multi-view align-
ment and generation. We first testify the advantages of ACCA in Section 5.1. Then,
we show the superiority of ACCA in achieving multi-view alignment in three aspects.
We conduct correlation analysis to show ACCA captures higher nonlinear correlation
among the multiple views in Section 5.2. We present alignment verification to show
ACCA achieves better instance-level correspondence in the latent space in Section 5.3.
We conduct several cross-view analysis tasks with noisy inputs to show the robustness
of ACCA in achieving instance-level alignment of the multiple views in Section 5.4.

We also evaluate the quality of obtained embeddings regarding downstream super-
vised tasks, to demonstrate our ACCA facilitates superior alignment without sacrificing
discriminative property of the representation. The experiments regarding clustering and
classification are presented in Section 5.4.3 and Section 5.5, respectively.

Note that, our work target at instance-level multi-view alignment and generation.
Consequently, we emphasize the evaluation in the first few subsections, i.e. the preserved
correspondence on the latent embeddings and how well the correspondence can be
recovered from the obtained latent spaces, cross-view generation. The evaluation of the
discriminative property of latent embeddings is presented for better illustration.

In Section 5.6, we present a preliminary study on the influence of view-specific
variables for alignment and generation as future works.

5.1 Superiority of adversarial criterion for multi-view alignment
We first testify the benefits achieved with the adversarial learning alignment criterion,
i.e. consistently matching the marginalized latent encodings with flexible priors.

5.1.1 Consistent encoding in ACCA

We verify the consistent encoding in ACCA with one of the most commonly used multi-
view learning dataset - MNIST left/right halved dataset (MNIST_LR) (Andrew et al.,
2013). Details about the dataset and network design are shown in Table 2.

15



Figure 4: Verification of consistent encoding in ACCA. Left: The holistic encodings
are approximated, i.e. Eq. (5), during the training of ACCA. Right: The minimum
CMI, i.e. Eq. (8), is implicitly achieved in ACCA.

To testify the approximation of the three encodings in ACCA, we estimate the
distribution distances among the three posterior distributionwith kernelMaximumMean
Discrepancy (MMD) (Gretton et al., 2012). Specially, we assign Gaussian mixture prior
(Eq. (13)) for ACCA, and then calculate the sum of the MMD distance between the three
encodings and the prior p0(z) in Eq. (4) during the training process. Fig. 4 shows that
the distance gradually decreases during the convergence of ACCA. This trend verifies
that ACCA can facilitate the matching of non-Gaussian marginalized posteriors, i.e. the
consistent encoding (Eq. (5)).

We also estimate CMI during the model training process with an open-source non-
parametric Entropy Estimation toolbox1. The right subfigure of Fig. 4 illustrates that the
CMI gradually decreases during the training ofACCAand it reaches to zero at a relatively
early stage in the convergence of ACCA. The trend indicates that ACCA implicitly
minimizes CMI and the optimal, I(X;Y |Z) = 0, can be achieved at its convergence.
Consequently, the explicit conditional independent constraint (Eq. (1)) of CCA can be
automatically satisfied in our ACCA.

5.1.2 Flexibility of prior encoding in alignment

We conduct correlation analysis on a toy dataset with non-Gaussian prior to verify that
ACCA benefits from handling implicit distributions for multi-view alignment.
Toy dataset: Following William (2000), we construct a toy dataset that exists nonlinear
dependency between the two views for testing. Let X = W1Z and Y = W2ZT Z , where
Z denotes a 10-D vector with each dimension z ∼ p(z), and W1 ∈ R10×50 , W2 ∈ R10×50

are the random projection matrices to construct the data. Details for the setting are
presented in Table 2. As we consider nonlinear dependency with non-Gaussian prior,
we set p0(z) with a mixture of Gaussian distribution in this experiment.

z ∼ p(z) = 0.2 × N(0, 1) + 0.5 × N(8, 2) + 0.3 × N(3, 1.5). (13)

Dependency metric: Hilbert Schmidt Independence Criterion (HSIC) (Gretton et al.,
2005) is a commonly used measurement for the overall dependency among variables.

1https://github.com/gregversteeg/NPEET
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Table 2: Details of the datasets and network settings with MLPs.

Dataset Statistics
Dimension

of z

Network setting (MLPs)
D̂ = {1024, 1024, 1024}

Parameters

Toy dataset
(Simulated)

# Tr= 8,000
# Te= 2,000

d = 10
Ex = {1024, 1024};
Exy = {1024, 1024};
Ey = {1024, 1024}

For all the dataset:
learning rate = 0.001,

epoch = 100.

For each dataset:
batch size tuned over

{16, 32, 128, 256, 500, 512, 1000};
d tuned over {10, 30, 50, 100}

MNIST L/R halved dataset
(MNIST_LR)

(Andrew et al., 2013)

# Tr= 60,000
# Te= 10,000

d = 30
Ex = {2308, 1024, 1024};
Exy = {3916, 1024, 1024};
Ey = {1608, 1024, 1024}

MNIST noisy dataset
(MNIST_Noisy)

(Wang et al., 2016)

# Tr= 60,000
# Te= 10,000

d = 50
Ex = {1024, 1024, 1024};
Exy = {1024, 1024, 1024};
Ex = {1024, 1024, 1024}

Wisconsin X-ray
Microbeam Database

(XRMB)
(Wang et al., 2016)

# Tr= 1.4M
# Te= 0.1M

d = 112
Ex = {1811, 1811};
Exy = {3091, 3091};
Ey = {1280, 1280}

In this work, we adopt the normalized estimate of HSIC(nHSIC) (Wu et al., 2018) as
the metric to measure the dependency captured by the embeddings of the test set (ZXTe

and ZYTe) of each method. We report the nHSIC computed with both the linear kernel
and the RBF kernel (σ is set with the F-H distance between the points).
Baselines: We compare ACCA with several state-of-the-art vanilla CCA variants here.

• CCA (Hotelling, 1936): Linear CCA model that learns linear projections of the
two views that are maximally correlated.

• PCCA (Bach and Jordan, 2005): Probabilistic variant of linear CCA.

• DCCA (Andrew et al., 2013): DeepCCA, nonlinear CCA extension with DNN.

• MVAE (Ngiam et al., 2011): Multi-View AutoEncoders, an CCA variant that
discovers the dependency among the data via multi-view reconstruction.

• Bi-VCCA (Wang et al., 2016): Bi-deep Variational CCA, a representative gener-
ative nonlinear CCA model restricted with Gaussian prior.

• ACCA_NoCV: An variant of ACCA which is designed without the encoding of
the complementary view XY . This is used to verify the efficiency of the holistic
encoding scheme in ACCA.

• ACCA(G); ACCA implemented with the standard Gaussian prior.

• ACCA(GM): ACCA implemented with the exact Gaussian mixture prior.

Since ACCA handles posterior distributions implicitly, its latent space can be more
expressive to reveal the correspondences of the multiple views, compared with other
baselines that can only directly handle simple Gaussian priors. (An additional sampling
procedure is requested for these methods to handle other complex distributions.) Conse-
quently, higher nonlinear dependency is expected to achieve in ACCA, especially when
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Table 3: The dependency (higher is better) of latent embeddings. The best are in bold.

Metric Datasets CCA PCCA DCCA MVAE Bi-VCCA ACCA_NoCV ACCA (G) ACCA (GM)

nHSIC

(linear kernel)

toy 0.0010 0.1037 0.5353 0.1428 0.1035 0. 8563 0.7296 0.9595

MNIST_LR 0.4210 0.3777 0.6699 0.2500 0.4612 0.5233 0.5423 0.6823

MNIST_Noisy 0.0817 0.1037 0.1460 0.4089 0.1912 0.3343 0.3285 0.4133

XRMB 0.0574 0.0416 0.2970 0.2637 0.1046 0.1244 0.2903 0.3482

Maps - - 0.3465 0.4423 0.1993 0.7324 0.5157 0.7043

nHSIC

(RBF kernel)

toy 0.0029 0.2037 0.7685 0.2358 0.2543 0.8737 0.5870 0.8764

MNIST_LR 0.4416 0.3568 0.6877 0.1499 0.3804 0.5799 0.6318 0.7387

MNIST_Noisy 0.0948 0.0993 0.1605 0.4133 0.2076 0.2697 0.3099 0.4326

XRMB 0.0534 0.03184 0.3180 0.0224 0.0846 0.1456 0.2502 0.2989

Maps - - 0.5905 0.5624 0.3956 0.8171 0.6285 0.8658

given the exact prior of the multi-view dataset. Table 3 reports the dependency captured
in the common latent space of each method. The results are revealing in several ways:

1). Both CCA and PCCA achieve low nHSIC value on the toy dataset, due to their
insufficiency in capturing nonlinear dependency.

2). DCCA achieves higher HSIC scores compared with other baselines due to its
objective, which directly targets at higher linear correlations. However, its result
is still inferior to all of our methods.

3). The results of MVAE and Bi-VCCA are unsatisfactory. The results of MVAE are
not good, because it lacks the inference mechanism to qualify the encodings. Bi-
VCCA gets inferior results mainly because of the inconsistent encoding problem
caused by the inferior alignment criterion.

4). Our ACCA model all achieve good performance here. This indicates that the
consistent encoding imposed by the adversarial distribution matching benefits the
models’ ability to capture nonlinear dependency.

5). ACCA (GM) archives the best result in both settings. This verifies that ACCA
benefits from the ability to handle implicit distributions.

5.2 Correlation Analysis
We further conduct correlation analysis on four commonly used multi-view datasets to
testify the alignment achieved with each method. Higher correlations are expected with
latent embeddings that preserve better data correspondence. Details about the datasets
are presented in Table 2 and Table 9. For XRMB, we follow the setting of DCCA,
(Wang et al., 2016) — we divide the data set into 5-folds, and report the average nHSIC
scores for comparison. For ACCA (GM), we adopt the same prior as the Toy dataset,
i.e. 13, as a simple arbitrary selection of non-Gaussian prior. The results are presented
in Table 3. We can see that
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1). DCCAachieves higher correlation comparedwith the baselines that do not support
data generation, i.e. CCAandPCCA.This is because it adopts nonlinearmapping,
thus enable it to exploit nonlinear correlations in the input for alignment.

2). The correlation achieved with MVAE is inferior to DCCA in most of the settings.
This is because, MVAE seeks for embeddings that result in better view reconstruc-
tion. However, DCCA directly targets at the embeddings that achieve maximum
linear correlation, which is generally coherent with the evaluation.

3). Our methods, ACCA_NoCV andACCA, outperforms Bi-VCCA in all the settings.
Our results are comparable and even better than DCCA in some of the settings.
This indicates that our consistent encoding design can benefit the consistency
preserved in the latent space. Since ACCA can facilitate data generation compared
with DCCA, the comparison between ACCA and DCCA, MVAE indicates that
ACCA can balance the data correspondence and reconstruction quality. The
argument is collaboratively supported by the data generation result in Section 5.4.

4). Among our three ACCA variants, the ACCA (GM) archives the best result almost
all of the settings. This observation indicates that the preserved latent correspon-
dence can be enhanced by incorporating a more expressive latent space with more
flexible priors. It also verifies the superiority of our ACCA for directly handle
flexible prior without extra sampling procedure. (Section 4.2).

In addition to the quantitative correlation analysis, we further conduct t-SNE visu-
alization to demonstrate the quality of obtained embeddings. Specifically, in Fig. 5,
we compare the embeddings of the two individual views obtained with DCCA, MVAE,
BI-VCCA, and ACCA(G). It is clear that for the two vanilla CCA models, DCCA and
MVAE, embeddings of each view fail to preserve distinguishable clustering structure.
This observation can be explained with our analysis that they lack the inference mech-
anism to qualify the obtained embeddings. For Bi-VCCA, the embedding of view X
presents great clustering structure. But the embeddings of viewY is disorderly scattered
in the common latent space. This implies that the instances do not prohibit desired
correspondence in the latent space, meaning that the two views are not well aligned with
Bi-VCCA. The observation also implies that the left part of MNIST data potentially
preserves more label information than the right views. For our ACCA, embeddings of
both of the two views present good clustering structure. This indicates that the two
views are better aligned with the proposed ACCA.

5.3 Alignment verification
We conduct alignment verification evaluate the instance-level correspondence achieved
in the common latent space of ACCA. Specifically, we project the paired testing data
of the MNIST_LR dataset to a two-dimensional latent space with Gaussian prior. We
define misalignment degree as the metric for the alignment performance. We take the
origin point O as the reference and adopt angular difference to measure the distance
of the paired embeddings, i.e. φ(zx, zy) = ∠zxOzy. The misalignment degree of the
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Figure 5: t-SNE visualization of the embeddings of X[left] and Y [right] for
MNIST_LR, obtained with DCCA, MVAE, Bi-VCCA and ACCA, respectively.
The color represents label information.

multi-view is given by

δ =
1
N

∑
{x,y}

ψ(zx, zy)
Ψ

, (14)

where N denotes the number of data pairs and Ψ is the maximum angle among the
paired embeddings (Fig. 6(d)). We compare ACCA with DCCA, MVAE, Bi-VCCA and
ACCA_NoCV here, since they are baselines that have encodings for both the two views.

The results are presented in Fig. 6. We have the following observations.

1). For DCCA, the latent embeddings of two views are clearly scattered apart, indi-
cating inferior instance correspondence in the latent space.

2). The regions for the paired embeddings of Bi-VCCA are even not overlapped, and
the misalignment degree of Bi-VCCA is δ = 2.3182, which is much higher than
the others. This indicates that Bi-VCCA severely suffers from the misaligned
encoding problem.

3). ACCA and ACCA_NoCV, achieve superior alignment performance compared
with DCCA, MVAE and Bi-VCCA. This shows the effectiveness of the consistent
constraint on the marginalization for view alignment in ACCA.

4). The embeddings of ACCA are uniformly distributed in the latent space compared
with ACCA_NoCV. This indicates that the complementary view, XY provide
additional information for the holistic encoding.

5.4 Applications of cross-view generation
We design several cross-view generation tasks to reflect the superior multi-view align-
ment achieved in ACCA. We first apply ACCA to image recovery task to conduct
whole-image recovery, given the partial images as input for one of the views. We then
test ACCA with face alignment task to annotate facial landmarks given the face images.
Since MVAE and Bi-VCCA are the baseline models that can support cross-view gener-
ation, we compare these two methods. We do not compare ACCA_NoCV here since it
is a variant of our ACCA and will be comparable with the ACCA due to the consistent
encoding. We adopt Gaussian prior for ACCA here to conduct a fair comparison.
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Figure 6: Visualization of the embeddings obtained for the two views. Each row
represents the embeddings obtained with view X and view Y , respectively. (zx , zy)
denotes a pair of correspondent embedding. δ indicates the misalignment degree of
each method. Methods with a smaller value of δ are better.

Table 4: Pixel-level accuracy for image recovery with noisy inputs on the MNIST dataset.

Input
(halved image)

Methods
Gray color overlaid

1 quadrant 2 quadrants 3 quadrants

Left
MVAE 64.94 61.81 56.15

Bi-VCCA 73.14 69.29 63.05
ACCA 77.66 72.91 67.08

Right
MVAE 73.57 67.57 59.69

Bi-VCCA 75.66 69.72 65.52
ACCA 80.16 74.60 66.80

5.4.1 Image recovery

We testify the image recovery (Sohn et al., 2015) performance of ACCA on MNIST
handwritten digit dataset and CelebFaces Attributes dataset (CelebA) (Liu et al., 2015).
These two are both commonly used image generation datasets. The performance is
evaluated based on the quality of generated images, e.g. is the image blurred? Does the
image show apparent misalignment at the junctions in the middle?
Image recovery on handwritten digits: We train the models with original data, while
adding noise to the test data of MNIST dataset, to testify the robustness of the alignment
achieved with each model. We divide the test data in each view into four quadrants and
masked one, two or three quadrants of the input with grey color (Sohn et al., 2015) and
use the noisy images as the input for testing. The experimental result is evaluated from
both qualitative and quantitative aspects.

Qualitative analysis: Fig. 7 presents some of the recovered images (column 3-5)
obtained with one-quadrant input. This figure clearly illustrates that, given the noisy
input, the images generated with ACCA is more real and recognizable than that of
MVAE and Bi-VCCA.

1). The image generated with MVAE shows the worst quality. The images contain
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GT X MVAE ACCA Y MVAE ACCABi-VCCA Bi-VCCA

Figure 7: Generated samples given one quadrant noisy image as input. The first column
is the ground truth. The next three columns show the input for view X and the generated
image with Bi-VCCA and ACCA, respectively. The last three columns are that of Y .

much more noise compared with other methods. In many cases, the “digit” is hard
to identify, e.g. case (b). In addition, the generated image of MVAE shows clear
misalignment at the junctions of the halved images, e.g. case (a).

2). The images generated by Bi-VCCA are much more blurred and less recognizable
than that of ACCA, especially in case (a) and case (b).

3). ACCA can successfully recover the noisy half images, which are even confusing
for our human to recognize. For example, in case (b), the left-half image of digit
“5” looks similar to the digit “4”, ACCA succeeds in recovering the true digit.

Quantitative evidence: We compare the pixel-level accuracy with the root mean
square error (RMSE), i.e.1 − RMSE . The results in Table 4 show that our ACCA
consistently outperforms Bi-VCCA given the different level of masked input images.
It is interesting to note that the whole images generated with the left-half images tends
to be more realistic than that generated using the right-half. An probable reason is that
the right-half images contain more information than the left-half images. This finding
coincides with our discovery in Fig. 5.b. This imbalance of information between the
two views would drive the decoder of the less informative view to generate high-quality
images, while sacrifice the alignment with another view.
Image recovery on human faces: For the human face recovery on the CelebA dataset,
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Figure 8: The image generated with different methods on CelebA.

we halve the RGB images into top-half and bottom-half and design a CNN architecture
to handle this task. Details of the network design are reported in Table 9.

Qualitative analysis: Fig. 8 shows the image samples recovered for the CelebA
dataset. We have mainly two observations.

1). The samples generated by MVAE show clear misalignment at the junctions, es-
pecially when the images are with colored backgrounds. Some of the images are
too blurred to see the details, e.g. the samples circled with red.

2). The samples generated by Bi-VCCA are generally blurred than the other two. The
observation is quite obvious in the image generated with the top-half image, which
contains much fewer details than the bottom-half image.

3). The images generated by ACCA show better quality compared with the others,
considering both the clarity and the alignment of junctions.

Quantitative evidence: We quantitatively assets the quality of generated images with
the Frechet Inception Distance (FID) (Heusel et al., 2017) and estimate the sharpness of
the generated test images using the image gradients 2. The results are reported in Table 5.
It shows that for the image recovery with the top-half face images, the image generated
with ACCA is of much better quality than that of MVAE and Bi-VCCA. Bi-VCCA is the
worst in terms of both the two metrics. For the experiment with the bottom-half face
images, the FID score of our ACCA is slightly inferior than that of MVAE, however,
the generated images of ACCA are still shaper. Comparing the results of these two
experiments, we can see that the image recovery with the top-half image is better than

2We evaluate the sharpness of each test images using the gradients and average these values over the
1000 test images.
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Table 5: FID (smaller is better) and sharpness (larger is better) scores for the image recovery
on CelebA. The sharpness of the real images is 14.6722.

Input
(halved image)

Methods
Evaluation metrics
FID Sharpness

Top
MVAE 61.3360 8.9645

Bi-VCCA 78.0752 7.0069
ACCA 58.7983 11.9026

Bottom
MVAE 63.6921 8.5428

Bi-VCCA 84.7122 6.7574
ACCA 68.1467 8.7249

Figure 9: Comparison of Bi-VCCA [left] andACCA [right] on unconditional generation.
The images marked with red box present distinguishable details.

the other, because it presents lower FID and higher image sharpness. This observation
coincide with our qualitative evaluation shown in Fig. 8, where the images generated
with the bottom-half image (The left column), especially the top half generated images,
is commonly blurrier then that generated with the top-half image (The right column).
This phenomenon also agrees with our discovery in the hand written digit recovery task,
where the input view with more information obtains worse results.

Unconditional human face generation: To illustrate how ACCA benefits the image
generation quality, we further evaluate “unconditional generation” performance with the
trained models on the CelebA dataset. Specifically, we randomly sample a batch of z
from the prior distribution p(z) and adopt the two decoders to generate both views. The
results are presented in Fig. 9. It is clear that the images generated with ACCA are much
more realistic compared with Bi-VCCA, since facial boundaries of these images are
more clear. It is also remarkable that the generates images with more details, due to the
superior correspondence achieved between the input and the latent space. The images
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Figure 10: Sample images of CelebA for the face alignment experiment.

in red box present remarkable details, such as cap, hoodie, glasses and backgrounds.

5.4.2 Face alignment

Wefurther evaluate themulti-viewalignment performance ofACCAwith face-alignment
task (Kazemi and Sullivan, 2014) on CelebA (Liu et al., 2015). We train ACCA with
paired face and ground truth facial landmark annotations as input for the two views.
Then, the better the multiple views are aligned, the better facial landmark prediction, or
generation, results, can be achieved given the test face images.

Since the landmarks annotations of the original CelebA dataset simply contains five
landmark-locations, this dataset maybe insufficient to testify the performance achieved
with these models that can handle more complicated applications (Regmi and Borji,
2018). Instead, we construct a more challenging dataset with 68 landmark locations
as the face annotation. Specifically, we extract the annotations with the state-of-the-
art facial landmark localization method Super-FAN (Bulat and Tzimiropoulos, 2018),
with the s3fd face detector 3. We drop the figures whose faces cannot be detected
and construct a dataset with 202,405 samples. Fig. 10 presents several samples of our
dataset. Details for the setting of the face alignment experiment is presented in Table 9.

Qualitative analysis: To verify the robustness of ACCA in achieving multi-view
alignment, we adopt the complete data samples for training, while adopting partial or
noisy images as input to evaluate the alignment performance of eachmodel. Specifically,
we randomly omit the input pixels with blocks of different sizes (50, 60, 70). Such setting
simulates the real face alignment scenarios with occlusive faces.

Fig. 11 demonstrates the face alignment results. It is clear that our proposed ACCA
outperforms the baselines under both the two settings, with human interpretable and
more clear facial landmark annotations. We can also observe that

1). Most of the generated results of MVAE are noisy and blurred under human
perceptions, which indicates thatMVAE is susceptible to noisy input. The problem
is even more obvious with larger size of occlusions. As shown in the right column
of the figure, most of the results of MVAE are not recognizable.

3https://github.com/1adrianb/face-alignment
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Figure 11: Performance of face alignment with different level of face occlusions.Left:
the results with 60x60 blocked inputs; Right: the results with 70x70 blocked inputs.

2). The results of Bi-VCCA is commonly blurred than MVAE and our ACCA. How-
ever, Bi-VCCA is more robust with noisy input than MVAE since its results are
more interpretable under the 70×70 blocked setting. This verified that latent dis-
tribution matching constraint benefits the robustness of the multi-view alignment.

3). Our proposed ACCA achieves clear and human interpretable facial landmark an-
notations under both the two settings. This indicates that the multi-view alignment
achieved with ACCA is the most robust among these three models. This verifies
that the consistent encoding achieved in ACCA contribute to better and more
robust alignment of the multiple views.

Quantitative evidence: We further analyse the results with two standard metrics for
image alignment, Peak Signal-to-Noise Ratio (PSNR) (Bulat and Tzimiropoulos, 2018)
and Structural Similarity (SSIM) (Zhang et al., 2018). Table 6 shows that our ACCA is
superior than the other two models with respect to both the two criteria.

5.4.3 Cross-view generation for high-dimensional data

To evaluate the capacity of our ACCA for cross-view generation, we further validate
its performance with high-resolution image inputs. We adopt the Google Maps dataset
(Maps) (Isola et al., 2017) here, which is one of the benchmark datasets for cross-view
synthesis applications (Regmi andBorji, 2018). To assure the quality of generated image,
we equipped skip-connection for the autoencoder structure, i.e. UNET (Ronneberger
et al., 2015), in each method. We adopt the least square GANs (Mao et al., 2017) as the
marginal matching constraint Eq. 5) for ACCA. The results are presented in Fig. 12. It
is clear that our ACCA outperforms the baselines regarding the generated image quality.
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Table 6: PSNR (smaller is better) and SSIM (the larger is better) of face-alignment with random
occlusions of different size. The best results are in bold.

Evaluation metrics Methods
Inputs (occluded face images)
50 x 50 60 x 60 70 x 70

PSNR
MVAE 63.0074 62.5455 62.1448

Bi-VCCA 63.0289 62.6468 62.3351
ACCA 62.2924 62.4175 62.0975

SSIM
MVAE 0.9982 0.9978 0.9975

Bi-VCCA 0.9981 0.9979 0.9976
ACCA 0.9984 0.9979 0.9981

GT Inputs MVAE Bi-VCCA ACCA GT Inputs MVAE Bi-VCCA ACCA

Figure 12: Comparison of cross-view generation results on the Maps dataset.

We also analysed the quality of obtained embeddings with t-SNE visualization.
Specifically, we cluster the embeddings of the aerial photo [ViewX] with k-means (Mac-
Queen et al., 1967)(n_clusters=3) and do t-SNE visualization to analyse if the results
present human interpretable properties. We mark the centroids of each cluster and pro-
hibit the Top-3 data samples that are nearest to each centroid. The results are presented
in Fig. 13. The comparison is analysed in two aspects:

1). The clusters of our ACCA are compact and present clear boundaries, while that of
MVAE and BI-VCCA both show overlap between the clusters (marked with circles
of red dash lines.) The comparison is quite obvious with regards to Bi-VCCA.
This indicates that the embedding of our ACCA preserves more discriminative
information compared with Bi-VCCA.

2). The clustering results of our ACCA represents human interpretable properties.
According to Fig. 13.(c), the three clusters presents distinct properties: among
the test images, a large proportion of them are blocks (points in blue color),
and small proportion are seas or vegetation (points in purple color), the rest are
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Figure 13: Comparison of K-means clustering results on the embeddings of the Maps
dataset. The centroids are marked with grey spots. The blue triangles represent the
Top-3 data points nearest to each centroid, with the order represented in the annotations.
For example, 1_1 is the data point nearest to the centroid within the first cluster.
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Input(x) pix2pix ACCA Input(y) pix2pix ACCA

Figure 14: Comparison of pix2pix and ACCA on the Maps dataset.

hybrid zones that contain highways, railways, etc. (points in red color). This
discovery coincides with the data statistics of the original dataset. The clustering
results of MVAE embeddings are not interpretable compared with our ACCA,
since the samples nearest to the centroids are not distinguishable and there is no
interpretable patterns presented for the Top-3 data samples for each cluster. The
clusters centroids obtained with BI-VCCA is interpretable to some extent, since
the data samples nearest to the centroids present unique properties. However, the
clustering result of the data sample “(2-3)” circled with red is not understandable.

Consequently, on the Google Maps dataset, our ACCA outperforms the baselines
regarding the alignment of the multiple views. The obtained latent embeddings are also
informative about the multi-view data.

To collaboratively support the superior alignment and generation performance of
ACCA, we further compare the result with pix2pix — the state-of-the-art GAN-based
cross-view generation baseline. The comparison is shown in Fig. 14.We can see that the
image quality of our ACCA is comparable and even better than that of pix2pix. This
indicates that our ACCA posses good alignment and generation ability.

5.5 Alignment and discriminative property of the representation
Multi-view representation learning is an important scenario of CCA. In this section,
we conduct classification tasks to verify that the alignment achieved in ACCA does not
greatly influence the discriminative property of the learned representations.

We follow the setting in Table 2 and perform classification on the three labelled
datasets, MNIST_LR, MNIST_noisy and XRMB. We train linear SVM classifiers with
the concatenation of obtained embeddings, and then evaluate its accuracy on the pro-
jected test set, i.e. [ZXTe, ZYTe]. For iteratively optimized nonlinear CCA models, we
selected the embeddings obtained from the last 5 epochs for evaluation. We compare
ACCA with Gaussian prior, namely ACCA(G), here for a fair comparison. PCCA is not
evaluated regarding classification since it should be comparable with the linear CCA.
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Table 7: The classification accuracy and standard derivation (both in %) with the
obtained latent embeddings. The best results are in bold.

Datasets CCA DCCA MVAE Bi-VCCA ACCA (G)

MNIST_LR 50.65 73.67±0.15 84.44±0.76 74.32±0.19 85.81±0.71
MNIST_Noisy 75.48 91.60±0.36 90.78±1.12 85.81±0.44 86.93±1.46

XRMB 32.04 62.14±0.52 58.57±0.30 56.58±0.35 60.37±0.40

Table 7 presents the classification results. It is obvious that our ACCA achieves
comparable and even better classification performance among the CCA variants with
the generative mechanism. The results of ACCA excels Bi-VCCA in all the settings and
is comparable withMVAE in most of the settings. This reveals that our ACCA preserves
considerable discriminative property of the embeddings while achieving superior align-
ment of the multiple views. Our ACCA is inferior to DCCA regarding the classification
tasks. This is because, instead of targeting alignment for discriminative representation
learning as in DCCA, our model focuses on reconstruction for data generation. For
MNIST-LR dataset, ACCA outperforms DCCA to a large extent. This indicates that
reconstruction can benefit discriminative representation learning in certain scenarios.
The finding also coincides with the outstanding performance of MVAE, here.

5.6 ACCA vs CCA variants with view-specific information
In this section, we compare ACCA with CCA variants that additionally exploits view-
specific information, to further demonstrate its alignment capacity. This is also a
preliminary study on the influence of private information to multi-view alignment and
generation. We choose Bi-VCCA-private as a representative baseline to compare here.

• BI-VCCA-private (Wang et al., 2016): An extension ofBi-VCCA that additionally
extracts view-specific (private) variables for each view. (Figure 2 in the paper)

We evaluate the alignment in BI-VCCA-private regards to both correlation analysis
and conditional/unconditional data generation. We compare our model with simple
Gaussian prior, i.e. ACCA (G), here. We adopt the same settings, i.e. network settings
and evaluation metrics, as previous experiments for consistency. For BI-VCCA-private,
the dimension of private variables are set as dHx = dHy = 30 for all the datasets. The
network of the private encoders are set as the same as its principle encoders in Table 2.

The results of correlation analysis are presented in Table 8. It is clear that our ACCA
excels Bi-VCCA-private and Bi-VCCA, in all the settings. This indicates that it is the
KL-divergence constraint, i.e. DKL(q(z |∗) ‖ p(z)), that mainly hinder thesemodels from
achieving instance-levelmulti-view alignment (Figure 1.(b)). OurACCAovercomes this
limitation with the marginalized matching constraint, i.e. DJS(

∫
q(z |∗)p(∗)d∗ ‖ p(z)),

and thus preserves better correspondence for paired inputs. The results of Bi-VCCA-
private are slightly better than that of Bi-VCCA, indicating that the private variables can
help to enhance multi-view alignment to some extent.
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Table 8: The dependency (higher is better) of latent embeddings. The best are in bold.

Metrics Methods
Datasets

MNIST_LR MNIST_Noisy XRMB

nHSIC
(linear kernel)

BI-VCCA-private 0.2818 0.2235 0.1227
Bi-VCCA 0.4612 0.1912 0.1046

ACCA (G) (ours) 0.5423 0.3285 0.2903

nHSIC
(RBF kernel)

BI-VCCA-private 0.2853 0.2386 0.0893
Bi-VCCA 0.3804 0.2076 0.0846

ACCA (G) (ours) 0.6318 0.3099 0.2502

Figure 15: Comparison of Bi-VCCA-private and ACCA regarding the face recovery.
The results of Bi-VCCA-private is commonly blurred than our ACCA.

The comparison regarding cross-view generation and unconditional data generation
are presented in Figure 15 and Figure 16, respectively. The results show that our ACCA
outperforms the others in terms of both image sharpness and recognisable object details.
In cross-view generation, the images generated with our ACCA are much clear and
sharper than Bi-VCCA-private. In addition, although Bi-VCCA-private generates faces
with more details compared with Bi-VCCA, e.g. beards and glasses (Figure 16), these
details are not as clear and recognisable as that of our ACCA. These generation results
coincide with our finding in correlation analysis— Bi-VCCA-private achieves inferior
multi-view alignment comparedwithACCA.The inferior alignment inBi-VCCA-private
consequently downgrades its performance in cross-view data generation.

Furthermore, it is interesting to notice that, for Bi-VCCA-private, the image quality
generated with different views are of slight difference, compared with the baselines
that only the extract shared information (Figure 8). This indicates that incorporating
view-specific variables also contributes to a balanced cross-view generation capacity
from different views, when the multiple input views contain an imbalanced amount of
information. (In Section 5.4.1, we find that the imbalance of information between the
two input views can influence the image generation quality)

31



Figure 16: Analysis on the face-recovery results of Bi-VCCA-private. [Left]: The un-
conditional generation results of Bi-VCCA-private. It is inferior to our ACCA, although
superior to Bi-VCCA (Figure 9) [Right]: For Bi-VCCA-private, the image quality gen-
erated with different views are of slight difference. This indicates that incorporating
private variables contributes to a balanced capacity for data generation from each view.

6 Conclusion
In this paper, we present a systematic analysis of instance-level multi-view alignment
with CCA. Based on the marginalization principle of Bayesian inference, We propose
to study multi-view alignment via consistent latent encoding and present ACCA which
facilitate superior alignment of the multiple views that benefits the performance of vari-
ous of multi-view analysis and cross-view analysis tasks. Matching multiple encodings,
ACCA can also be adopted to other tasks, such as image captioning and translation.
Furthermore, owing to the flexible architecture design of our ACCA, it can be easily
extended to multi-view task of n views, with (n + 1) encoders and (n) decoders.

In this work, we mainly exploit our ACCA with pre-defined priors. For future
work, we will explore more powerful inference techniques for ACCA to further boost
its alignment performance. For example, normalizing flows (Rezende and Mohamed],
2015) is a data-driven method, that provides an efficient tool to learn a data-dependent
prior for complex datasets. It can be employed into ACCA to boost multi-view alignment
by providing a more expressive latent space, i.e. with a complex data-dependent prior,
and better preservation of instance-level correspondence, i.e. with invertible mappings.

Our analysis based on the CMI and the consistent encoding also provides insights
for a flexible design of other CCA models. In the future, we will conduct more in-depth
analysis onmulti-view alignmentwithCMI and propose other variants ofCCAwith other
alignment criteria, e.g. MMD distance, Wasserstein distances(Arjovsky et al., 2017).
It is also interesting to notice that input with different-level of details can influence the
result of cross-view generation. This research direction is also worth further study.
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Table 9: Details of the cross-view generation datasets.

Dataset Statistics
Dimension

of z

Architecture
(Conv all with batch normalization before LReLU)

Parameters

CelebA
(Liu et al., 2015)

Image Resolution:
64 × 64

Image recovery
# Tr= 201,599
# Te= 1,000

Face alignment
# Tr= 201,599
# Te= 1,000

d = 100

Encoders:
Conv: 64×5×5 (stride 2),
Conv: 128×5×5 (stride 2),
Conv: 256×5×5 (stride 2),
Conv: 512×5×5 (stride 2);

dense: 100.
Decoders (Image recovery):

dense: 8192, relu;
deConv: 256×5×5 (stride 2),
deConv: 128×5×5 (stride 2),
deConv: 64×5×5 (stride 2),
deConv: 3×2×5, (stride1×2);

Tanh.
Decoders(Face alignment):

dense: 8192, relu;
deConv: 256×5×5 (stride 2),
deConv: 128×5×5 (stride 2),
deConv: 64×5×5 (stride 2),
deConv: 3×2×5 (stride 2);

Tanh.

Discriminator: D̂:
dense: 128→64→1,

sigmoid.

Epoch = 10;
Batchsize = 64;
lr= 0.0002;
Beta1 = 0.05;

Google Maps dataset
(Maps)

(Isola et al., 2017)

Image Resolution:
256 × 256

Cross-view generation
# Tr= 1,096
# Te= 1,098

d = 100

Encoders:
Conv: 64×5×5 (stride 2),
Conv: 128×5×5 (stride 2),
Conv: 256×5×5 (stride 2),
Conv: 256×5×5 (stride 2),
Conv: 512×5×5 (stride 2);

dense: 100.
Decoders (with skip-connection):

dense: 32768,relu;
deConv: 256×5×5 (stride 2),
deConv: 256×5×5 (stride 2),
deConv: 128×5×5 (stride 2),
deConv: 64×5×5 (stride 2),
deConv: 3×2×5, (stride 2);

Tanh.

Discriminator: D̂:
dense: 128→64→1,

tanh.

Epoch = 15;
Batchsize = 16;
lr= 0.0002;
Beta1 = 0.5;
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