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Abstract

Active inference is a state-of-the-art framework in neuroscience that offers a unified theory

of brain function. It is also proposed as a framework for planning in AI. Unfortunately, the

complex mathematics required to create new models — can impede application of active

inference in neuroscience and AI research. This paper addresses this problem by providing

a complete mathematical treatment of the active inference framework — in discrete time

and state spaces — and the derivation of the update equations for any new model. We

leverage the theoretical connection between active inference and variational message passing

as describe by John Winn and Christopher M. Bishop in 2005. Since, variational message

passing is a well-defined methodology for deriving Bayesian belief update equations, this

paper opens the door to advanced generative models for active inference. We show that

using a fully factorized variational distribution simplifies the expected free energy — that
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furnishes priors over policies — so that agents seek unambiguous states. Finally, we consider

future extensions that support deep tree searches for sequential policy optimisation — based

upon structure learning and belief propagation.

Keywords: Active Inference, Variational Message Passing, Free Energy Principle, Rein-

forcement Learning, Kullback Leibler Control

1. Introduction

The free energy principle aims to provide a unified theory of the brain based on Bayesian

probability theory (Friston, 2010; Buckley et al., 2017). It takes root in Helmholtz’s argu-

ment that observations are produced by hidden causes that must be inferred — and the

predictive coding formulation which argues that inference and learning emerges from the

reduction of the error between predicted and actual observations. Active inference extends

predictive coding to consider generative models of actions (Friston et al., 2016; Da Costa

et al., 2020a).

In brief, active inference is a probabilistic framework that describes how agents should

act in their environment. It starts with the definition of a generative (probabilistic) model

that encodes the agent’s beliefs about its environment. However, active inference does not

rely on one particular generative model, instead it refers to a class of generative models

that consider the impact of their actions in their environment. Active inference also relies

on learning and inference to estimate the most likely states of the world and values of the

model parameters. However, the concept behind active inference does not dependent on a

particular inference method, which means that both variational inference (Fox and Roberts,

2012) and Monte Carlo Markov chains (Fountas et al., 2020) can, in principle, be used.

Active inference has been successfully applied in neuroscience to explain a wide range of

brain phenomena such as habit formation (Friston et al., 2016), Bayesian surprise (Itti and

Baldi, 2009), curiosity (Schwartenbeck et al., 2018), and dopaminergic discharges (FitzGer-

ald et al., 2015). Active inference is also a form of planning as inference (Botvinick and

Toussaint, 2012) consistent with Occam’s Razor (Blumer et al., 1987) and can be seen as
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a generalisation of reinforcement learning (van Hasselt et al., 2015; Lample and Chaplot,

2016) and Kullback Leibler control (Rawlik et al., 2013). This framework has also been

used to ground active vision (Ognibene and Baldassare, 2015; Heins et al., 2020; Van de

Maele et al., 2021; Mirza et al., 2016, 2018) within a strong theoretical framework.

This paper focuses on active inference using variational (a.k.a approximate Bayesian)

inference and highlights its connection to variational message passing (Winn and Bishop,

2005). This ubiquitous message passing algorithm builds on the variational inference lit-

erature by leveraging the structure of the generative model to split the update equations

into messages. Those messages transmit information about the new observations and — by

summing those messages — it is possible to compute the posterior distribution over the pa-

rameters. The decomposition of the updates into messages formalises the modularity of the

method, while remaining biologically plausible (Friston et al., 2017b). Indeed, a key ques-

tion in machine learning and computational neuroscience is how to identify compositional

models — an issue that was identified early in the development of connectionism (Bowman

and Li, 2011; Fodor and Pylyshyn, 1988). The central requirement being that higher-order

representations (whether syntactic, semantic, perceptual, etc) can be constructed by “plug-

ging together” lower order representations, in such a way that the meanings of lower-order

representations do not change (e.g. the “Jane” in “Jane loves John” is the same “Jane”

as in “John loves Jane”). It may be that the structural modularity provided by message

passing implementations of Bayesian networks enable compositionality of representations.

According to modern trends, we use the formalism of Forney factor graphs (Forney, 2001)

to represent the updates as messages sent along the graph edges.

Forney factor graphs are graphical representations used to realise generative models.

They comprise of two kinds of round nodes that represent the observations and the latent

variables of the model. If the notion of observations can be understood as the data available

to the model, the notion of latent variables is a bit more abstract. As an example, let us

consider the MNIST dataset (LeCun and Cortes, 2010) composed of images of hand written

digits. In this example, the pixels are observations made by the model and latent variables
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could be any variables encoding the digit being represented, such as its orientation or size.

The last type of nodes — square nodes — represent the dependency between observed and

latent variables. In other words, how does the digit being represented generate the pixels?

The first goal of this paper is to provide the reader with a full intuition of the mathe-

matics underlying active inference and variational message passing. Then, this paper shows

how to derive the update equations for any new generative models. The hope is to facilitate

the development of new models that could, for example, play Atari games or model new

brain mechanisms. Finally, we use our new generative model to prove that the update

equations of active inference can be understood as variational message passing. This formal

proof complements previous work that frames active inference as belief propagation (Friston

et al., 2017b) and enables us to create an automatic and modular implementation of active

inference (van de Laar and de Vries, 2019a; Cox et al., 2019). This message passing formu-

lation has particular consequences for the expected free energy, which is effectively reduced

by the change, resulting in an agent that seeks certainty, without any concern for outcomes,

whether preferred or not. We argue that the resulting behaviour may have similarities to

repetitive actions (sometimes called stimming) that are common, for example, in autism

(Gabriels, 2005).

Section 2 describes the problem used to present the (classic) model widely used in the

active inference literature. Sections 3 and 4 introduce variational inference and Forney

factor graphs, respectively. Next, Section 5 presents active inference as a decision theory

based on the Bayesian view of probability, followed by Section 6 that introduces the notion

of variational message passing. Then, Section 7 formulates active inference as variational

message passing under a fully factorised approximate posterior (i.e. variational distribu-

tion), and explains the implications of this approximation for the expected free energy that

underwrites policy selection. Before starting the next section, readers new to the active

inference literature might want to read Appendix D, which uses Bayes theorem to present

the simplest generative model sufficient for active inference.
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2. Problem statement

Active inference crops up in many areas that require an agent to interact with its envi-

ronment. Throughout this paper, the explanations will be based on an agent named Bob,

whose goal is to solve the food problem presented in section 2.2. But before we investigate

this problem, let us have a look at how to simulate the interaction between Bob and his

environment.

2.1 Simulating active inference

Most living beings are able to sense their environment through sensory inputs, and process

this sensory information to act in the world. For example, carnivorous flowers use tiny

trigger hairs on their leaves to detect flies (sensing). When those hairs are stimulated,

the ion concentrations in the leaves increase (processing) resulting in an electrical current

that closes the leaf trapping the fly (acting). Similarly, humans gather sensory information

through their five senses (sensing), process this information to understand their environment

(processing), and finally, make use of this understanding to act with intelligence (acting).

Sensing, processing and acting correspond to the three steps of the Action-Perception

cycle. This cycle conveniently casts active inference as an infinite loop (van de Laar and

de Vries, 2019b). Each iteration begins by sampling the environment to obtain an obser-

vation, which is provided to the agent. Then, the observation is used to perform inference

(and learning) that produce a higher level of understanding, for example, an image might

be mapped to a representation of the objects that it contains. And finally, this representa-

tion is exploited when acting to prepare your diner, drive your kids to school or solve your

favourite maths problem.

2.2 The food problem

Speaking of which, this section is concerned with the food problem initially proposed by

Oleg Solopchuk (2018). This problem concerns an agent, named Bob, striving to survive.

To produce the energy needed by his body, Bob needs to ingest nutriments. During periods
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of starvation, Bob’s stomach produces an hormone called ghrelin. This hormone travels to

the brain through the blood and reaches a part of the brain, named the hippocampus. This

area has been shown to monitor the level of ghrelin in the blood (Kojima and Kangawa,

2005). At the moment ghrelin reaches the hippocampus, Bob’s brain can estimate the

content of his stomach. This information can then be exploited to choose between eating

and sleeping. However, the best action depends on the outcomes that Bob wants to witness

in the future. This paper assumes that mother nature has kindly set Bob’s preferences to

be biased towards the sensation of feeling fed (i.e. Bob enjoys observing low levels of ghrelin

in his blood), which is arguably a favourable traits under a Darwinism view of evolution.

Figure 1 summarises the food problem.
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Bob

Observation: fed vs hungry

Hidden state: full vs empty

Action: eat vs sleep

Figure 1: This figure illustrates the food problem, where the goal of our agent — Bob — is
to keep his stomach full. The first thing Bob needs to achieve his goal is to guess the state of
his stomach, which can either be full or empty. This guess is informed by the observations
he makes, when feeling hungry (high level of ghrelin) or fed (low level of ghrelin). Finally,
once Bob has reduced his uncertainty about his stomach state, he can engage in exploitative
behaviour by taking action in his environment, such as sleeping or eating.

3. Variational Inference

In Bayesian statistics, one assumes a prior distribution over latent (a.k.a hidden) variables

that represent the process generating the data. When collecting more data, new observations

bring information, allowing us to update our prior knowledge. The process of computing

the most likely values of the hidden variables is called inference. A simple inference method

is to use Bayes theorem to obtain the posterior probability distribution over the latent
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variable(s) of the model:

P (S|O)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P (O|S)

prior︷ ︸︸ ︷
P (S)

P (O)︸ ︷︷ ︸
evidence

=
P (O|S)P (S)∑
S P (O|S)P (S)

.

Since Bayes theorem is a corollary of the product rule of probability and no approxima-

tion is needed, it belongs to the field of exact inference. However, the computation of the

evidence requires the marginalisation over all hidden variables, which makes it intractable

for all but the simplest models.

To address this intractability, one can turn to approximate or sampling based methods.

Variational inference belongs to the former and relies on an assumption of independence. As

will be explained in Section 6.1, the idea behind variational inference is to use a distribution

Q(S) to approximate the true posterior P (S|O). This can be accomplished by minimising

the Kullback-Leibler (KL) divergence between some approximate and the true posterior:

DKL [Q(S)||P (S|O)] .

Minimising this KL divergence is impossible because the true posterior P (S|O) is un-

known. Fortunately however, it is equivalent to minimising the variational free energy F ,

known in machine learning as the negative evidence lower bound (ELBO). The variational

free energy is defined as the Kullback-Leibler divergence between the variational distribution

Q(S) and the generative model P (O,S):

F = DKL [Q(S)||P (O,S)] = −ELBO

= DKL [Q(S)||P (S|O)] + lnP (O).

The variational distribution Q(S) is used to approximate the true posterior P (S|O). In

addition to the introduction of this approximate posterior, the mean-field approximation
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makes the computation tractable by assuming that all latent variables are independent:

Q(S) =
∏
i

Qi(Si),

where Qi(Si) is the distribution over the i-th hidden state of the model and Q(S) is the

joint distribution over all latent variables. This assumption of independence constrains the

expressiveness of the variational distribution, but allows the derivation of update equations,

which can be evaluated efficiently.

At this point, an analogy might be useful to furnish an intuitive understanding of varia-

tional inference. Imagine you drop some coffee on a table, producing a stain with a complex

shape. To compute the area of the stain, it might be useful to first assume an elliptic shape

for the stain. However, since the stain is not actually elliptic, the solution will only be

an approximation. In this analogy, the stain is the true posterior, and the ellipse is the

approximate posterior.

This analogy should help with the understanding of Figure 2 that illustrates the kind

of results obtained by variational methods. As will be demonstrated in Section 6.2, it is

possible to prove (Fox and Roberts, 2012) that minimising the variational free energy F

with respect to Qk(Sk) can be performed by iterating one of the following update equations:

lnQk(Sk)← lnQ∗k(Sk) = 〈lnP (O,S)〉∼Qk (1)

⇔ Qk(Sk)← Q∗k(Sk) =
1

Z
exp〈lnP (O,S)〉∼Qk ,

where Q∗k(Sk) is the optimal posterior, Z is a normalisation constant and 〈•〉∼Qk is the

expectation over all factors but Qk. Importantly, it is the coupling of the above update

equations (i.e. one update per hidden variable Sk) that justifies the iteration of the updates

until convergence to the free energy minimum.
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Q(S)P (S|O)

S

Figure 2: This figure illustrates the kind of result obtained using variational inference. The
true posterior drawn in red has a complex shape and is approximated by the variational
distribution drawn in blue. The grey area depicts the error made when using the variational
distribution to approximate the true posterior.

4. Forney Factor Graphs

Typically, generative models are represented graphically using a graphical model (Koller and

Friedman, 2009) or Forney factor graph (Forney, 2001). This section focuses on the latter

representation introduced by David Forney in 2001, which uses three kinds of nodes. The

nodes representing hidden and observed variables are depicted by white and grey circles,

respectively. And factors are represented using white squares, which are linked to variable

nodes by arrows or lines. Arrows are used to connect factors to their target variable, while

lines link factors to their predictors. Figure 3 shows an example of a Forney factor graph

corresponding to the following generative model:

P (O,S) = PO(O|S)PS(S). (2)

Generally, factor graphs only describe the model’s structure — in terms of the variables

and their dependencies — but not the individual factors. For example, the definitions of

PO and PS are not given by Figure 3, and additional information is required, e.g. PS(S) =

N (S;µ, σ) specifies PS as a Gaussian distribution.

Initially, variables could only connect to a limited number of factors. However, a special

kind of factor, called an equality node, dissolves this limitation. Purists tend to represent
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all equality nodes, while others make them implicit by allowing the variables to connect to

an arbitrary number of factors. For sake of clarity, this paper keeps equality nodes implicit.

Finally, factors — along with hidden and observed variables — are sometimes called

constraint, state and symbol, respectively. As explained by Yedidia (2011), those two

terminologies refer to two views on Forney factor graphs, where factors encode probabilities

and constraints encode costs. Infinite costs represent hard constraints, while finite costs

encode soft constraints. Here, hard constraints define which configurations of the state

space are forbidden (i.e. has a probability of zero) and soft constraints encode preferences

over the state configurations (i.e. the higher the cost the smaller the state probability). This

reveals an interesting link between Bayesian statistics and symbolic artificial intelligence,

and prompts the question of whether Bayesian statistics can be regarded as a generalisation

of symbolic artificial intelligence. For example, one could start by framing the problem of

constraint satisfaction, as an inference process on a Forney factor graph that encodes the

problem constraints.

PS

S

PO

O

Line

Arrow

Hidden variable

Factor

Observed variable

Figure 3: This figure illustrates the Forney factor graph corresponding to the following
generative model: P (O,S) = PO(O|S)PS(S). The hidden state is represented by a white
circle with the variable’s name at the centre, and the observed variable is depicted similarly
but with a grey background. The factors of the generative model are represented by squares
with a white background and the factor’s name at the centre. Finally, arrows connect the
factors to their target variable and lines link each factor to its predictor variables.
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5. Active Inference

So far, we have discussed variational inference and Forney factor graphs. We now present

the intuition behind the various equations that comprise the active inference framework.

We will be working with the food problem that was introduced in Section 2.

5.1 Generative model

We begin by presenting the generative model introduced by Friston et al. (2013). Instead

of presenting the full generative model at once, the next subsections build this model pro-

gressively. This should help the reader to understand both the model and its corresponding

Forney factor graph.

5.1.1 The D vector

As we shall see shortly, the full generative model represents the world as a sequence of

hidden states, and those states generate the observations made by the agent. For the sake

of organisation, those states are arranged chronologically using the index τ that runs from

the initial state (S0) to the state of the last time step (ST ). This section focuses on the

initial state, whose distribution is a categorical, defined as follows:

PS0(S0|D) = Cat(S0;D), (3)

where D is a vector containing the parameters of the categorical distribution. In addition

to the categorical distribution, the model assumes a Dirichlet prior over the parameters D,

leading to:

PD(D) = Dir(D; d). (4)

In this context, the parameters d of the Dirichlet distribution are called hyperparameters,

because they control the distribution of the parameters D. Figure 4 summarises this part
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of the model by presenting an example of the vector D, and the Forney factor graph

corresponding to the two distributions constituting Bob’s generative model.

PD

D

PS0

S0

D =

sta
tes

0.2

0.8

P (S0 = empty)

P (S0 = full)

Figure 4: This figure illustrates the vector D that defines Bob’s beliefs about the initial
hidden state, and the Forney factor graph corresponding to (3) and (4). Since the probability
of S0 being full is higher than the probability of it being empty, Bob thinks that at the
beginning of each trial, his stomach is more likely to be full than empty.

5.1.2 The A matrix

We have already mentioned that the probability of an observation (a.k.a outcome), such

as feeling hungry, depends on the value of the hidden state, i.e. whether Bob’ stomach is

full or empty. This dependency is represented by a conditional distribution, such that the

likelihood of an observation — given a particular value of the hidden states — is defined

by a categorical distribution, as follows:

POτ (Oτ |Sτ = j,A) = Cat(Oτ ;A•j),

where the j-th column of A, denoted A•j , contains the parameters of the categorical distri-

bution encoding the probability of the outcomes given that Sτ = j. Additionally, we can

re-write the above equation more concisely by letting Sτ be a one hot vector, whose j-th

element is equal to one, such that:

POτ (Oτ |Sτ ,A) = Cat(Oτ ;ASτ ),
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where because Sτ is a one hot vector, the multiplication of A and Sτ selects the j-th column

of A. Similarly to the treatment of the vector D, a prior over the columns of A is used. To

ensure the conjugacy between the distributions of the model, a Dirichlet prior is used for

each column. The probability of the overall matrix is then given by the following product

of Dirichlet:

PA(A) =
∏
i

Dir(A•i; a•i),

where a is a matrix containing the parameters of the Dirichlet distributions, i.e., each column

of a contains the parameters of one Dirichlet distribution. Note that because each column

of the matrix A is a categorical distribution, then the conjugate prior of each column is

a Dirichlet distribution. Assuming independence of the columns of A, the conjugate prior

of the entire matrix A is a product of Dirichlet distributions. Importantly, the prior over

A is not a Dirichlet distribution whose parameters are obtained by concatenation of the

columns of A. Indeed, if we sample from such a (concatenated) prior, then the elements

of the entire matrix will sum up to one but the columns would not. This is problematic

because each column of A is supposed to be a categorical distribution that sum up to one.

We conclude this section with Figure 5 that illustrates the likely matrix A, along with the

resulting version of the generative model for Bob’s problem.
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PA A PO0

O0

S0

PS0

D

PD

0.9

0.1

0.2

0.8

P (Oτ = hungry|Sτ = full)

P (Oτ = fed|Sτ = full)

P (Oτ = hungry|Sτ = empty)

P (Oτ = fed|Sτ = empty)

A =

o
u

tco
m

es

states

Figure 5: This figure illustrates the matrix A that defines how the hidden states generate
the observations. In our example with Bob, this matrix defines the probability of Bob
feeling hungry or fed while his stomach is full or empty. Furthermore, the new version of
the generative model is shown on the right.

5.1.3 The B matrices

Now that the reader is familiar with the definition of the likelihood matrixA, we focus on the

temporal transitions between any pair of successive states. Those transitions are modelled

similarly to the matrix A that concerns the generation of observations from hidden states.

However here, we are concerned with the transition matrices that maps from states at one

point on time to the next. Crucially, there are as many of these matrices as the number

of allowable actions on the state in question. This follows from the idea that each action

has the potential to modify Bob’s stomach differently: for example, eating is more likely

to change Bob’s stomach from empty to full than sleeping. Accordingly, the transition

between two consecutive hidden states is defined by a set of matrices, called the transition

or B matrices, such that:

PSτ+1(Sτ+1|Sτ = i, π = j,B) = Cat(Sτ+1;B[U jτ ]•i)

=∆ Cat(Sτ+1;B[U ]•i), (5)
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where =∆ means equal by definition, U =∆ U jτ is the action predicted at time step τ by the

j-th policy, and B[U ] is the matrix corresponding to the action U . Furthermore, active

inference defines policies as action sequences (cf. next section). By replacing the index i by

a one hot vector as in the previous section, Equation 5 can be re-written as:

PSτ+1(Sτ+1|Sτ , π,B) = Cat(Sτ+1;B[U ]Sτ ).

A Dirichlet prior is assumed for each column of the transition matrices B, leading to

the following prior:

PB(B) =
∏
i,j

Dir(B[i]•j ; b[i]•j),

where b are the parameters of the Dirichlet distributions, i and j iterate over all possi-

ble actions and states, respectively. Finally, Figures 6 and 7 conclude this subsection by

illustrating the matrices B, and the updated version of the generative model.

0.1

0.9

0.2

0.8

P (Sτ+1 = empty|Sτ = empty)

P (Sτ+1 = full|Sτ = empty)

B[eating] =

states

states

0.9

0.1

0.8

0.2

P (Sτ+1 = empty|Sτ = full)

P (Sτ+1 = full|Sτ = full)

B[sleeping] =

sta
tes

states

Figure 6: This figure illustrates the matrices B that define the transition between any
two consecutive hidden states. In the context of the food problem, those matrices encode
the probability of transitioning from a full or empty stomach at time τ to a full or empty
stomach at time τ + 1.
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S0

PS0

... PSt St ... PST ST

PO0

O0

POt

Ot

A

PA

D

PD

B

PB

π

Pπ

Figure 7: This figure shows the next version of the generative model, where the transition
between hidden states is specified by a set of B matrices and the policies π. At this point,
it should be emphasized that the generation of outcomes through the matrix A stops after
the current time step t. This follows naturally from the idea that we cannot observe future
outcomes. Finally, the factor Pπ has not been defined yet: it will be the subject of the next
section.

5.1.4 The prior over policies

We now consider the prior over the policy that was left undefined in Figure 7. But what do

we exactly mean by policies? In active inference, a policy is a sequence of actions over time,

i.e. {Ut, ..., UT−1}. As a consequence, even if the agent expects the environment to be in

the same state at two different time steps, picking two different actions at those time steps

is still possible. Therefore, an active inference agent can perform an epistemic action as

long as there is some uncertainty to be reduced and then switch to exploitative behaviours.

Note that this definition of policy is in opposition to most of the model-free reinforcement

learning literature, where a policy is a mapping from states to actions. In particular, states

in the context of model-free reinforcement learning are observed and therefore are closer to

the notion of observations in active inference. Technically, active inference takes us out of

the world of fixed state-action policies (where the same action is taken from each state) into

the world of sequential policy optimisation, where different actions can be taken from the

same state — crucially, in a way that depends upon (Bayesian) beliefs about hidden states.
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The last ingredient required to obtain the prior over the policies is a notion of policy

quality. In active inference, good policies are the ones that minimise the expected free

energy; that is, the free energy expected in the future, which is defined as follows:

G(π) ≈
T∑

τ=t+1

[
DKL[

expected outcomes︷ ︸︸ ︷
Q(Oτ |π) ||

prior preferences︷ ︸︸ ︷
P (Oτ ) ]︸ ︷︷ ︸

risk

+ EQ(Sτ |π)[H[P (Oτ |Sτ )]]︸ ︷︷ ︸
ambiguity

]
, (6)

where H[·] is the Shannon entropy, G is a vector containing as many elements as the number

of policies, and the i-th element of G represents the quality of the i-th policy. The reader

interested in the derivation of the expected free energy is referred to Appendix C. We should

mention here that Q(Oτ |π) and Q(Sτ |π) are computed based on the result of the inference

process of the previous action-perception cycle. Therefore, G can be regarded as a model

parameter and is not represented as a random variable in the Forney factor graph. The

definition and justification of the expected free energy are provided in Appendix C and a

recent paper by Millidge et al. (2020). Also, the expected free energy arises naturally in

mathematical treatments of the free energy principle, when considering self-organisation at

non-equilibrium steady-state (Friston, 2019; Parr et al., 2020). At this point, we should

take a moment to understand the intuition behind the expected free energy.

Let us begin with the second term of Equation 6. For each value of the hidden state,

P (Oτ |Sτ = i) is a categorical distribution whose parameters correspond to the i-th column

of A. This distribution defines the probability of future outcomes. Thus, the closer this

distribution is to a uniform distribution, the more uncertain we are about future outcomes.

This uncertainty is measured by the Shannon entropy, and the average of this quantity over

all possible values of Sτ is called the ambiguity. Therefore, the ambiguity quantifies the

degree to which a particular observation disambiguates among its hidden or latent causes.

Next, we need to encode Bob’s preferences over future outcomes, which are called prior

preferences. Formally, those preferences are defined as a categorical distribution whose

parameters are stored in the vector C. Figure 8 illustrates this vector. It should be noted

that those preferences define the goodness of future outcomes, and we shall come back
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to this when discussing the link between active inference and reinforcement learning, cf.

Appendix A.

C =

0.2

0.8

P (Oτ = hungry)

P (Oτ = fed)

Figure 8: This figure illustrates the vector C that defines Bob’s prior preferences over future
outcomes. This vector corresponds to the case where Bob prefers to feel fed rather than
hungry, and the intensity of those preferences can be changed by tweaking the probabilities
of the vector C. For example, C = (0, 1) corresponds to an extreme preference towards
feeling fed.

To conclude, we need to consider the predicted or expected outcomes. One way to

predict future outcomes would be to compute the marginal distribution over Oτ using for

example the sum product algorithm (Kschischang et al., 2001). However, this might be

computationally expensive, so we will proceed with the following formula:

Q(Oτ |π) =
∑
i

P (Oτ |Sτ = i, A)Q(Sτ = i|π) = Asπτ ,

where as will be discussed in Section 5.2, Q(Sτ |π) =∆ Cat(Sτ ; sπτ ). This equation can be

understood as a form of marginalization, where the approximate posterior Q(Sτ |π) is our

most informed belief about the hidden states. Finally, the KL divergence between the

expected outcomes and the prior preference is called risk (cf. Appendix A for additional

details). The risk part of expected free energy is simply the divergence between the expected

outcomes and the preferred outcomes. It is this part of expected free energy that underwrites

policies that lead to preferred outcomes under uncertainty. Minimising expected free energy
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therefore minimises risk (i.e., the divergence between anticipated and preferred outcomes)

and ambiguity (i.e., the conditional uncertainty about outcomes, given the causes). The

resulting prior over the policies is defined as:

Pπ(π|γ) = σ(−γG),

where σ(·) is the softmax function,G is the expected free energy, γ determines the sensitivity

of policy selection to the expected free energy of each policy, and the negative sign gives

high probability to policies minimising expected free energy. Importantly, the prior over

policies is an empirical prior because the expected free energy depends on the observations,

which means that it must be re-evaluated each time a new observation is made by the

agent. In other words, the prior over the policies is a Boltzmann distribution with γ being

the inverse temperature. Taking this view, small values for γ means a high temperature

and less precise prior beliefs about which policy should — or is — being pursued. Figure

9 shows an example of this distribution and Figure 10 illustrates the current generative

model.

π1 = { U1
t : eat, U1

t+1 : eat }

π2 = { U2
t : eat, U2

t+1 : sleep }

π3 = { U3
t : sleep, U3

t+1 : eat }

π4 = { U4
t : sleep, U4

t+1 : sleep }

policies

P (π|γ)

π1 π2 π3 π4
0

0.125

0.25

0.375

0.5

Figure 9: A distribution over the policies that gives high probability to policies fulfilling
Bob’s preferences in the future. For example, the first policy where Bob is constantly
eating has high probability, while the fourth policy where Bob is constantly sleeping has
low probability. This is congruent with the notion that eating is more likely to make Bob
feel fed than hungry, and similarly, sleeping is more likely to make Bob feel hungry than
fed.
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S0

PS0

... PSt St ... PST ST

PO0

O0

POt

Ot

A

PA

D

PD

B

PB

π

Pπ

γ

Pγ

Figure 10: This figure illustrates the Forney factor graph of the entire generative model
of the sort presented by Friston et al. (2016). Section 5.1.1 described how the probability
of the initial states is defined by the vector D, and as discussed in Section 5.1.2, the
matrix A defines the probability of the observations given the hidden states. Section 5.1.3
explained that the B matrices define the transition between any successive pair of hidden
states. This transition depends on the action performed by the agent, i.e. on the policy π.
Furthermore, the prior over the policies has been chosen in Section 5.1.4, such that policies
minimising the expected free energy are more probable. Finally, we see in section 5.1.5 that
the precision parameter γ (which modulates the stochasticity of the agent behaviour) is
distributed according to a gamma distribution.

5.1.5 The prior over the precision parameter

We now turn to the last part of the generative model, i.e. the prior over the precision param-

eter γ. Importantly, this precision parameter has been associated with the neuromodulator

dopamine through what is called the “precision hypothesis” (FitzGerald et al., 2015). This

association of dopamine and the precision parameter claims to unify two perspectives on

the role of dopamine. The first frames dopamine as an error signal on predicted reward

(Schultz et al., 1997) and uses the framework of TD-learning. The second, called the in-

centive salience hypothesis, frames dopamine as “associating salience and attractiveness to

visual, auditory, tactile, or olfactory stimuli” (Berridge, 2007).
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But, let us come back to the prior over the precision parameters γ. In neurobiological

treatments, this prior usually takes the form of a gamma distribution with a rate parameter

β and a shape parameter fixed to one:

Pγ(γ) = Γ(γ; 1, β).

The graph on the right of Figure 11 illustrates two variations of this prior for β = 1 and

β = 2. Also, we should mention that a more flexible prior can be obtained by removing the

constraint on the shape parameter (Friston et al., 2015), and the left hand side of Figure 11

illustrates this extension. However, in most artificial intelligence applications (that are not

concerned with biological implementation or dopamine), γ is usually assumed to be one.

Mainly, this design choice is made for the sake of simplicity, even if in practice forcing γ to

be one reduces the model flexibility, i.e. γ can no longer be learnt.

Γ(γ; 2, 0.5)

Γ(γ; 2, 1)

0 2 4 6
γ

Γ(γ; 1, 1)

Γ(γ; 1, 2)

0 2 4 6
γ

Figure 11: This figure illustrates four gamma distributions where the values of the parame-
ters have been changed. The graph on the right shows the kind of prior the model believes
in by forcing the shape parameter to equal one.

5.1.6 The entire generative model

Throughout this section, we have assembled incrementally the generative model usually

used in active inference, whose Forney factor graph is represented in Figure 10. The last

step is to write down the equations that constitute its formal definition:
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P (O0:t, S0:T , π,A,B,D, γ) = P (π|γ)P (γ)P (A)P (B)P (S0|D)P (D)

t∏
τ=0

P (Oτ |Sτ ,A)
T∏
τ=1

P (Sτ |Sτ−1,B, π), (7)

where:

P (π|γ) = σ(−γG) P (γ) = Γ(γ; 1, β)
∏
i

P (A) =
∏
i

Dir(A•i; a•i) P (B) =
∏
i,j

Dir(B[i]•j ; b[i]•j)

P (S0|D) = Cat(S0;D) P (D) = Dir(D; d)
∏
i

P (Oτ |Sτ ,A) = Cat(Oτ ;ASτ ) P (Sτ |Sτ−1,B, π) = Cat(Sτ ;B[U ]Sτ−1)
∏
i

Note that to keep the notation uncluttered, we have dropped the subscripts such that

PS0(S0|D) becomes P (S0|D), PA(A) becomes P (A) and so forth. Table 1 provides a

complete description of the notation used to define the generative model.
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Notation Meaning

T The time horizon

t The current time steps

τ An iterator over time step

O0:t The sequence of observations between time step 0 and t

S0:T The sequence of hidden states between time step 0 and T

π The policies

Umτ =∆ U The action or control state predicted by the m-th policy at time step τ

A
The matrix defining the likelihood mapping from the hidden states to the
observations

A•i The i-th column of the matrix A

B
The set of transition matrices defining the mappings between any two consecutive
hidden states

B[U ]•i The i-th column of the transition matrix B[U ] corresponding to action U

D The prior over the initial hidden states

a, b, d The parameters of the prior over A, B and D

a•i The i-th column of the matrix a

b[U ]•i The i-th column of the matrix b[U ] corresponding to action U

γ The precision parameter related to neuromodulators such as dopamine

σ(x) The softmax function

G The expected free energy

Γ(γ;α, β) Gamma distribution with shape and inverse scale parameters α and β

Cat(S0;D) Categorical distribution over S0 with parameter D

Dir(D; d) Dirichlet distribution

Table 1: Generative Model notation

5.2 Variational Distribution

We now turn to the definition of the variational distribution, which is used to approximate

the true posterior during variational inference (a.k.a approximate Bayesian inference), i.e.

Q(x) ≈ P (x|o) where x and o denote the hidden variables and the observations, respec-

tively. Let us first recall that variational inference leverages independence between latent
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variables in what is known as a mean-field approximation. A structured approximation,

often made in the active inference literature1 to simplify computations is that all latent

variables are independent except for the hidden states and the policy. This leads to the

following variational distribution:

Q(S0:T , π,A,B,D, γ) = Qπ(π)QA(A)QB(B)QD(D)Qγ(γ)

T∏
τ=0

QSτ (Sτ |π), (8)

where:

QSτ (Sτ |π) = Cat(Sτ ; sπτ ) Qπ(π) = Cat(π;π)

Qγ(γ) = Γ(γ; 1,β) QD(D) = Dir(D;d)

QA(A) =
∏
i

Dir(A•i;a•i) QB(B) =
∏
i,j

Dir(B[i]•j ; b[i]•j)

Once again, for the sake of compactness, the subscript will be dropped, e.g. QSτ (Sτ |π)

will be replaced by Q(Sτ |π). Table 2 summarises the notation used to define this variational

distribution. It is much easier to understand this distribution by comparing it to the

definition of the generative model in Equation 7. Indeed, the distributions over A, B

and D remain Dirichlet distributions, and the distributions over γ and Sτ remain gamma

and categorical distributions, respectively. Only the distribution over π changes from a

Boltzmann to a categorical distribution. However, both the Boltzmann and the categorical

are discrete distributions.

1. An instance where this general assumption is not made can be found in (Parr et al., Dec 2019).

25



Champion et al.

Notation Meaning

sπτ The parameters of the posterior over Sτ for each policy, i.e. a vector

s •τ The parameters of the posterior over Sτ for all policies, i.e. a matrix

π The parameters of the posterior over π, i.e. a vector

a, b, d
The parameters of the posterior over A, B and D, i.e. a matrix,
a set of matrices and a vector, respectively

β The (inverse temperature) parameter of the posterior over γ

Table 2: Variational distribution notation

5.3 Variational Free Energy

Above, we have unpacked the generative model and variational distribution used in active

inference. This section combines those two concepts to form the second cornerstone of the

active inference framework, i.e. the variational free energy. Section 6.1 will explain how

the following equation can be derived from the Kullback-Leibler divergence between the

variational distribution and the true posterior. However, this section explains the intuition

behind the variational free energy, which is defined as follows:

F = EQ[lnQ(S0:T , π,A,B,D, γ)− lnP (O0:t, S0:T , π,A,B,D, γ)]

= DKL [Q(x)||P (x|o)]︸ ︷︷ ︸
relative entropy

− lnP (o)︸ ︷︷ ︸
log evidence

, (9)

where x = {S0:T , π,A,B,D, γ} refers to the model’s hidden variables, and o = {O0:t}

refers to the sequence of observations made by the agent. Equation 9 highlights some

important properties of the variational free energy. Indeed, the relative entropy (a.k.a KL

divergence) ensures that the variational distribution Q(x) tends to get closer to the true

posterior P (x|o), as the free energy is reduced. Furthermore, it shows that the variational

free energy is an upper bound on the negative log evidence, because the relative entropy

cannot be negative. Also, if the variational distribution is equal to the true posterior, then

the variational free energy is equal to the (-ve) log evidence. The variational free energy
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can also be re-arranged as:

F = DKL [Q(x)||P (x)]︸ ︷︷ ︸
complexity

−EQ(x)[lnP (o|x)]︸ ︷︷ ︸
accuracy

, (10)

showing the trade-off between complexity and accuracy. The complexity penalises the

divergence of the posterior Q(x) from the prior P (x). The accuracy scores how likely the

observations are given the generative model and current belief of the hidden states. Inter-

estingly, in opposition to the Akaike information criterion (AIC) and Bayesian information

criterion (BIC), the complexity does not depend on the number of parameters. Conse-

quently, a model with a lot of parameters, but that does not vary from the prior will have

zero complexity, and a model with a small number of parameters that moves away a lot

from the prior will have a large complexity. Taking this view, a model is complex whenever

the knowledge encoded by the prior fails to explain the observed data accurately. In other

words, complexity scores the degree of belief updating that moves posterior beliefs away

from prior beliefs to provide an accurate account of any observations.

Comparison of the expression for expected free energy and variational free energy re-

veals an intimate relationship. One can see that the risk is the expected complexity, while

ambiguity is expected inaccuracy. These expectations are under the posterior predictive

beliefs about outcomes in the future under the policy in question. This is why G is called

expected free energy.

5.4 Update equations

All the update equations presented below come from the minimisation of the variational

free energy. This section presents the intuition behind those updates using the notations

summarized in Table 3. Let us start with the optimal updates of A, B and D that are
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given by:

Q∗(D) = Dir(D;d) where d = d+ s0 (11)

Q∗(A) =
∏
i

Dir(A•i,a•i) where a = a+
t∑

τ=0

oτ ⊗ sτ (12)

Q∗(B) =
∏
u,i

Dir(B[u]•i, b[u]•i) where b[u] = b[u] +
∑

(k,τ)∈Ωu

skτ ⊗ skτ−1πk (13)

Looking at the above equations, these updates can be understood as counting the number

of times an event appears. For example, the update of A counts the number of times a

pair of states-observations have been observed. Taking this view, a is the pseudo count

of previously occurring states-observations pairs, and oτ ⊗ sτ takes into account the new

observations. Similarly, the update of the B and D matrices, respectively count how many

times the state transitions and initial states have been observed. Additionally, the updates

of the hidden states are:

Q∗(S0|π) = σ
(
D̄ + I(0 ≤ t)o0 · Ā+ sπ1 · B̄[Uπ0 ]

) T∑
i

(14)

Q∗(Sτ |π) = σ
(
B̄[Uπτ−1]sπτ−1 + I(τ ≤ t)oτ · Ā+ sπτ+1 · B̄[Uπτ ]

)
(15)

Q∗(ST |π) = σ
(
B̄[UπT−1]sπT−1︸ ︷︷ ︸

past or prior

+ I(T ≤ t)oT · Ā︸ ︷︷ ︸
likelihood

+ B̄[UπT−1]︸ ︷︷ ︸
future

) T∑
(16)

where t can be thought of as a global variable referring to the present time point, and I(•)

is an indicator function that equals one if the condition is true and zero otherwise. A closer

look at these updates reveals that the hidden states are updated by gathering information

from the past, the future, and the likelihood mapping. In Equation 14, the information

from the past is replaced by some information from the prior over the initial state, and in

Equation 16, the information from the future disappears because we have reached the limits

of the time horizon (i.e. τ == T ). Similarly, in Equations 15 and 16, the indicator function

ensures that there is no information from the likelihood mapping after the current time
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Notation Meaning

A⊗B = ABT , A ·B = ATB outer and inner products

Ja, bK all the natural numbers between a and b

Ωu =
{

(k, τ) : Ukτ−1 = u, τ ∈ J1, T K
} all (k, τ) such that the k-th policy predicts

action u at time τ − 1

sτ = s •τ · π the expected state at time τ

〈f(X)〉PX =∆ EPX [f(X)] is the expectation of f(X) over PX

ψ(x)
the digamma function used to compute
analytical solutions, e.g. for 〈lnDi〉QD .

D̄i = 〈lnDi〉QD = ψ(di)− ψ(
∑

i di) the expected logarithm of D

Āij = 〈lnAij〉QA = ψ(aij)− ψ(
∑

k akj) the expected logarithm of A

B̄[u]ij = 〈lnB[u]ij〉QB = ψ(b[u]ij)− ψ(
∑

k b[u]kj) the expected logarithm of B

Table 3: Update equations notation

step t because no observations are available. For additional information about the above

updates, the reader is referred to Sections 7.7 and 7.8 as well as Appendix G. Interestingly,

Parr and Friston (2018) proposed a model in which future observations are latent variables,

and in this case, information will be sent along the edges connecting future states and future

observations. Finally, the update of γ and π takes the following form:

Q∗(γ) = Γ
(
γ; 1, β +G · (π − π0)

)
Q∗(π) = σ

(
− 1

β
G−F

)

where π0 = σ(−γ ·G), σ(·) is the softmax function, and F is a vector whose π-th element

is defined as:

Fπ = sπ0 · (ln sπ0 − D̄) +
T∑
τ=1

sπτ · (ln sπτ − B̄[U ]sπτ−1)−
t∑

τ=0

oτ · Āsπτ .

Section 7 will derive update equations similar to those above that can be decomposed as a

sum of messages coming from the parent, children and co-parents of each node.
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5.5 Action selection

This section focuses on the various strategies available to pick the next action(s) that the

agent will then perform. In active inference, the action selection process is performed

after iteration of the update equations. Indeed, according to the Action-Perception cycle

presented in Section 2, the agent first minimises the variational free energy and then acts in

its environment. The first strategy entails summing the posterior evidence for the policies

predicting each action, and to execute the action with the highest sum of posterior evidence:

u∗t = arg max
u

|π|∑
m=1

δu,Umt Q(π = m),

where |π| is the number of policies, Umt is the action predicted at the current time step

by the policy π, and δu,Umt is an indicator function that equals one if u = Umt and zero

otherwise. Since the model knows the posterior over the policies (i.e. sequences of actions)

another strategy is to simply sample an entire policy (e.g. a sequence of actions) without

re-computing the posterior at each timestep, i.e. Bob selects a policy, closes his eyes and

performs the sequence of actions entailed by that multi-step policy. In the case of single-

step policies, this is equivalent to the first strategy. This leads to a trade-off between

computational time and quality of the actions selected. Indeed, the more actions selected

at once, the less computational time required, but the less informed those actions will be.

Another strategy used in planning is called a Monte Carlo tree search (Browne et al.,

2012). The most well-known example of Monte Carlo tree search is probably the victory

of AlphaGo against Lee Sedol — the go world champion — in 2016 (Silver et al., 2016).

Interestingly, this method has been used recently with an active inference agent (Fountas

et al., 2020). The simplest version of this algorithm starts with an empty tree, i.e. a single

node representing the current state. Then, the root node is expanded such that the states

that are reachable from the current state become its children. Those children are linked

to the root node by edges representing the actions leading to those states. Afterwards,

simulations of the environment are run to evaluate how good those new child states are. In
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the context of reinforcement learning, the goodness of the states corresponds to whether or

not rewarding terminal states are reached during the simulations. Similarly, in the context

of active inference, the expected free energy scores the goodness of outcomes. Finally, the

reward or EFE is back-propagated upward in the tree. Iterating this four-steps process (i.e.

selection, expansion, simulation and backpropagation) furnishes a posterior over the best

action to perform next.

6. Variational Message Passing

In the previous sections, our focus was on explaining the intuition behind active inference.

The current section is more technical. We begin with the KL divergence between the varia-

tional distribution Q(x) and the true posterior P (x|o), which underwrites the minimisation

of the variational free energy. Then, we derive two update equations well known from

the Bayesian statistics community. The first explains how the approximate posterior can be

computed using variational inference. And the second reveals that the optimal posterior can

be thought of as a sum of messages. Finally, the message based equation is specialised for

the class of exponential conjugate models that we use to describe the method of Winn and

Bishop (2005) as a five-step process. During this section, we will be using a few properties

that are summarised in Appendix B.

6.1 Justification of the Variational Free Energy

As mentioned in Section 3, the computation of the true posterior — using Bayes theorem

quickly becomes intractable as the number of hidden states increases. The variational free

energy (VFE), or equivalently, the negative evidence lower bound (-ELBO), aims to solve

this intractability problem by approximating the true posterior with another distribution:

the variational distribution. To justify the use of the variational free energy, let us first note

that the following expression can be obtained from the product rule:

P (x|o) =
P (o, x)

P (o)
. (17)
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Since the KL divergence measures the distance between two distributions, we can min-

imise the KL divergence between the variational distribution and the true posterior. And

this will keep the variational distribution close to the true posterior. Starting with this KL

divergence, and substituting Equation 17 within it, we obtain:

DKL [Q(x)||P (x|o)] = DKL [Q(x)||P (x, o)] + EQ(x)[lnP (o)]

= DKL [Q(x)||P (x, o)]︸ ︷︷ ︸
VFE = -ELBO

+ lnP (o)︸ ︷︷ ︸
log evidence

,

where the expectation over the log evidence can be dropped due to the lack of a depen-

dence of lnP (o) on Q(x). Because the log evidence does not depend on the latent variables,

it can be safely ignored during the minimisation process. In other words, minimising the

variational free energy is equivalent to minimising the KL divergence between the varia-

tional distribution and the true posterior, and ensuring that the variational distribution is

a good approximation of the true posterior.

6.2 Variational Inference Updates

As we have just noted, variational methods rely on the minimisation of the variational free

energy, or equivalently, the maximisation of an evidence lower bound. So, let us start with

the former:

DKL [Q(x)||P (o, x)] = EQ(x)[lnQ(x)− lnP (x, o)].

Using the mean-field assumption Q(x) =
∏
iQi(xi), the log property, and the linearity

of expectation. The above equation can be rewritten as:

DKL [Q(x)||P (o, x)] = EQ(x)[lnQk(xk)] + EQ(x)[ln
∏
j 6=k

Qj(xj)]− EQ(x)[lnP (x, o)].

Note that lnQk(xk) is a constant w.r.t all factors but Qk(xk), and ln
∏
j 6=kQj(xj) is

a constant w.r.t Qk(xk). Using the expectation of a constant, the above equation can be
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rewritten as:

DKL [Q(x)||P (o, x)] = EQk(xk)[lnQk(xk)] + E∼Qk(xk)[ln
∏
j 6=k

Qj(xj)]− EQ(x)[lnP (x, o)],

where E∼Qk(xk)[·] is the expectation over all factors but Qk(xk). If the goal is to minimise

the free energy w.r.t Qk(xk), the second term can be safely considered as a constant C.

Also, using the factorisation of the variational distribution, the third term can be rewritten

as EQk(xk)[E∼Qk(xk)[lnP (x, o)]], leading to:

DKL [Q(x)||P (o, x)] = EQk(xk)[lnQk(xk)]− EQk(xk)[E∼Qk(xk)[lnP (x, o)]] + C

= EQk(xk)

[
lnQk(xk)− E∼Qk(xk)[lnP (x, o)]

]
+ C

=∆ EQk(xk)

[
lnQk(xk)− lnQ∗k(xk)

]
+ C

= DKL [Qk(xk)||Q∗k(xk)] + C,

where =∆ means equal by definition, and lnQ∗k(xk) =∆ E∼Qk(xk)[lnP (x, o)]. The KL diver-

gence can not be negative which means that Qk(xk) = Q∗k(xk) minimises the free energy,

and for this reason Q∗k(xk) is called the optimal posterior.

6.3 Variational Message Passing Updates

Restarting with the definition of Q∗k(xk) and using the factorisation of the generative model,

we get:

lnQ∗k(xk) =∆ E∼Qk(xk)[lnP (x, o)]

= E∼Qk(xk)[ln
∏
i

P (Ni|pai)],

where Ni iterates over all nodes, i.e. all latent and observed variables, and pai are the

parents of Ni. The term in the above product can be classified into three groups: the terms

that do not depend on xk, the terms whose target variable (Ni) is xk and the terms whose
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predictors (pai) contains xk. Building on this observation, one can use the log property and

the linearity of expectation to isolate the terms that depend on xk:

lnQ∗k(xk) = 〈ln
∏
i

P (Ni|pai)〉∼Qk

= 〈lnP (xk|pak)〉∼Qk +
∑
cj∈chk

〈lnP (cj |xk, cpkj)〉∼Qk + C, (18)

where 〈·〉∼Qk is just another notation for E∼Qk(xk)[·], and the constant C comes from the

terms of the product that do not depend on xk. Equation 18 is the variational message

passing equation that tells us how to compute the optimal posterior of any hidden state xk

based on its Markov blanket, i.e. xk’s parents pak, children chk and co-parents cpkj . For

readers unfamiliar with the notion of Markov blankets, Figure 12 provides a visual depiction

of the underlying notion.

A

D C

E

F G

B

Markov blanket of A

Parent of A

Co-parent of A

Child of A

Figure 12: This figure illustrates the Markov blanket of node A, which is drawn in grey
surrounded by a dashed line. The nodes F and G are the parents of A and the nodes C
and D are the children of A. The node E is the co-parent of A with respect to D and the
node B is the co-parent of A with respect to C.
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6.4 Conjugate exponential model

The variational message passing algorithm can be derived for the class of conjugate expo-

nential models (Winn and Bishop, 2005). Those models have a likelihood function and a

prior in the exponential family. Furthermore, the prior and the likelihood are conjugate,

meaning that the posterior will have the same form as the prior. We follows the steps in

Winn and Bishop, while referring the interested reader to (Winn and Bishop, 2005) for

more details. The derivations in equations 19-23 are clarified in the example in Figure 13.

Returning to our goal of computing the posterior over xk (cf. Equation 18), we assume

that P (xk|pak) and P (cj |xk, cpkj) are in the exponential family, i.e.

lnP (xk|pak) = µk(pak) · uk(xk) + hk(xk) + zk(pak) (19)

lnP (cj |xk, cpkj) = µj(xk, cpkj) · uj(cj) + hj(cj) + zj(xk, cpkj) (20)

where µk(pak), uk(xk), hk(xk) and zk(pak) are the parameters, the sufficient statistics, the

underlying measure and the log partition, respectively. For a specific example, Equation 25

shows the Dirichlet distribution written in the form of the exponential family. The first step

of the Winn and Bishop method takes advantage of the conjugacy constraint to re-arrange

Equation 20 as a function of uk(xk) that appears in Equation 19:

lnP (cj |xk, cpkj) = µj→k(cj , cpkj) · uk(xk) + λ(cj , cpkj), (21)

where µj→k(cj , cpkj) and λ(cj , cpkj) emerge from the re-arrangement. For a specific example

of this first step, the reader is referred to the derivation from (26) to (27), Figure 13 also

provides an example of µj→k(cj , cpkj). The second step substitutes Equations 21 and 19
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within the variational message passing equation leading to:

lnQ∗k(xk) = 〈µk(pak) · uk(xk) + hk(xk) + zk(pak)〉∼Qk

+
∑
cj∈chk

〈µj→k(cj , cpkj) · uk(xk) + λ(cj , cpkj)〉∼Qk + Const.

The third step relies on taking the exponential of both sides, using the linearity of

expectation and factorising by uk(xk) to obtain:

Q∗k(xk) = exp

{[
〈µk(pak)〉∼Qk +

∑
cj∈chk

〈µj→k(cj , cpkj)〉∼Qk
]
· uk(xk) + hk(xk) + Const

}
,

(22)

where the above constant just absorbed zk(pak) and λ(cj , cpkj), which does not depend

on xk. At this point, we already see that the prior (19) and the approximate posterior

(22) have the same functional form, i.e., only their parameters differ. The fourth step

re-parameterizes µk(pak) and µj→k(cj , cpkj) in terms of the expectation of the sufficient

statistics of the children, parents and the co-parents:

Q∗k(xk) = exp

{
µ∗k · uk(xk) + hk(xk) + Const

}

µ∗k = µ̃k({〈ui(i)〉Qi}i∈pak) +
∑
cj∈chk

µ̃j→k(〈uj(cj)〉Qj , {〈ul(l)〉Ql}l∈cpkj ), (23)

where µ̃k is a re-parameterization of µk(pak) in terms of the expectation of the sufficient

statistic of the parents of xk, and similarly µ̃j→k is a re-parameterization of µj→k. The

exact form of µ̃k and µj→k vary from distribution to distribution. An example of those

re-parameterizations is visible from Equation 28 to 29.

To understand the intuition behind (23), let us consider the following example: given

the Forney factor graph illustrated in Figure 13, we wish to compute the posterior of Y .
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Then, the only parent of Y is Z, the only child of Y is X and the only co-parent of Y

with respect to X is W . Therefore, applying equation 23 to our example leads to the

equation presented in Figure 13 whose components can be interpreted as messages. Indeed,

each variable (i.e. X, Z and W ) sends the expectation of their sufficient statistic (i.e. a

message) to the square node in the direction of Y (i.e. either PX or PY ). Those messages

are then combined using a function (i.e. either µ̃Y or µ̃X→Y ) whose output (i.e. another

set of messages) are summed to obtain the optimal parameters µ∗Y . The computation of

the optimal parameters (23) can then be understood as a message passing procedure.

YPYZPZ PX W PW

X

m1 m2 m3 m4

m5

µ∗Y = µ̃Y (〈uZ(Z)〉QZ ) + µ̃X→Y (〈uX(X)〉QX , 〈uW (W )〉QW )

m1

m2 m3

m4m5

Figure 13: This figure illustrates the computation of the optimal posterior parameters for
the variable Y as a message passing procedure, which requires the transmission of messages
from the parent (m2) and child (m3) factors. Additionally, the message from the child
factor (m3) requires the computation of messages from the co-parent (m4) and child (m5)
variables. Also, the message from the parent (m2) factor requires the computation of a
message (m1) from the parent variable. Set notation and associated brackets {} have been
dropped, since there is only ever one parent or co-parent.

Returning to the Winn and Bishop (2005) method, the last step computes the (set of)

expectations associated with {〈uj(j)〉Qj}j∈paY , 〈uX(X)〉QX , and {〈uj(j)〉Qj}j∈cpYX . Be-

cause all nodes of the model are in the exponential family, the moment generating function

can be used to prove the following:

〈uN (N)〉QN = −∂z̃N (θN )

∂θN
, (24)
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where N is any node of the graphical model, θN are the natural parameters of the distri-

bution over N , and z̃Z(θN ) is a re-parameterisation of the log partition w.r.t the natural

parameters of the distribution over Z. Note that another way to compute those expectations

will be presented in Section 7.3.

7. The link between Active Inference and Variational Message Passing

The previous sections have presented the theory behind active inference and variational

message passing. This section focuses on the link between those two frameworks. First, we

slightly modify the generative model and the variational distribution. These modifications

concern a small part of the generative model and to ensure conjugacy between the random

variables of the model. Then, we derive new update equations based on the Winn and

Bishop method (Winn and Bishop, 2005). As we will see, those updates can be interpreted

as a passing of messages that highlight the connection between variational message passing

and belief updating in (planning as) active inference.

7.1 Generative model modifications

In order to perform variational message passing, we have made three modifications to the

generative model described by Equation 7. First, the prior over the precision parameter γ

is removed. Second, the softmax function forming the prior over the policies is transformed

into a categorical distribution with parameters α. This is a mild modification because

the softmax function is frequently used to represent a categorical distribution, e.g. neural

classifiers using a softmax function as output layer or similarly to the updates of Q(sτ )

and Q(π) presented in Section 5.4. Finally, we assume a Dirichlet distribution over the

parameters α. Figure 14 illustrates this new generative model where:

P (π|α) = Cat(π;α)

P (α) = Dir(α; θ).
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The conjugacy between the Dirichlet and categorical distributions enables us to derive

update equations that can be interpreted as messages. Recall that the prior over policies was

used to bias the policy selection towards the policies that minimise expected free energy.

This can be implemented in a straightfoward way — while preserving conjugacy — by

setting the parameters of the Dirichlet as follows:

θ = −→c −G,

where G is the expected free energy and −→c is a vector of constants whose elements satisfy

the following properties:

1. ∀i, j : −→c i = −→c j , i.e. all elements are equal;

2. ∀j : −→c j > maxiGi, i.e. all θj are strictly positive.

To better understand the influence of P (α) on the selection of policies, we imagine a

Dirichlet with K parameters as a distribution over a (K − 1)-simplex. Assuming that all θi

are greater than one, the point of this simplex with the highest probability, i.e. the mode

mα, has the following coordinates:

mα =

[
θ1−1(∑K
k=1 θk

)
−K

. . . θK−1(∑K
k=1 θk

)
−K

]
.

Studying a few special cases of the above equation sheds some light on how policy

selection is influenced by P (α). If the i-th numerator of the coordinates, i.e. θi − 1, equal

one and all others equal zero, then the mode mα is at the corner of the simplex corresponding

to the i-th axis. If all numerators are equal to one, then the mode is at the centre of the

simplex. Intuitively, this means that the bigger θi is relative to the other θj ∀j 6= i, the

closer mα is to the i-th corner of the simplex. Additionally, the closer mα is to the i-th

corner of the simplex, the more likely the i-th policy will be. Therefore, the bigger θi the

more likely the i-th policy. Finally, the only part of the numerators that is not a constant
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is Gi and the smaller Gi the bigger the i-th numerator. Thus, in accord with the active

inference literature, P (α) favours policies that minimise the expected free energy.

Another perspective on this parameterisation of priors over policies is to think of −→c as

pseudo-counts that ‘promote’ each policy according to how often it was previously pursued,

before adding (-ve) expected free energy. If these pseudo-counts are suitably small, adding

expected free energy will have a greater effect in the sense that expected free energy scores

the number of times each policy would be pursued. Quantitatively, this means that a

difference in the expected free energy between one policy and another can now be interpreted

in terms of Dirichlet parameters or pseudo-counts.

It could be argued that the Dirichlet parameterisation of the prior over policies is a

more natural parameterisation than the gamma distribution used to explain dopamine.

Furthermore, as noted above, in most applications, gamma is set to one. More importantly,

the precision parameter is only relevant for generative models where policies entail past

transitions. In look-ahead policies or tree search implementations of planning, policies only

concern future states. This means the precision of prior beliefs about policies relative to

posterior beliefs (based upon the evidence a particular policy is being pursued) becomes

irrelevant. In this case, the Dirichlet parameterisation above may be preferred.
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Figure 14: The new generative model obtained after replacing the gamma distribution by
a Dirichlet distribution.

7.2 Variational distribution modifications

The variational distribution presented in Section 5.2 is an example of a structured varia-

tional distribution, because factors such as Q(Sτ , π) = Q(Sτ |π)Q(π) model the (posterior)

dependency between Sτ and π. Performing inference with such a joint distribution falls

under the category of structured variational inference (Wiegerinck, 2000; Xing et al., 2012)

and will not be covered in this paper. Instead, we assume a fully factorised distribution

such that:

Q(S0:T , π,A,B,D, γ) = Q(π)Q(A)Q(B)Q(D)Q(γ)
T∏
τ=0

Q(Sτ ),

where Q(π) = Cat(π; α̃), Q(Sτ ) = Cat(Sτ ; D̃τ ) and all the other factors remain unchanged.

This is a rather severe mean-field approximation: although it allows for straightforward

application of variational message passing, removing the conditional dependencies of hidden

states in the future on action means the agent cannot individuate the consequences of action.

41



Champion et al.

Under this functional form the expected free energy reduces to:

G(π) =
T∑
τ=1

EQ(Sτ−1,B)

[
H[P (Sτ |Sτ−1,B, π)]

]
.

Namely, the expected conditional entropy of the hidden states. Also, we refer the interested

reader to Appendix H for a derivation of the above equation. Intuitively, this means that

good policies select actions that lead to unambiguous hidden states. This highlights a major

limitation of the mean-field approximation required by the variational message passing

proposed by (Winn and Bishop, 2005) in the context of active inference. In other words,

when removing key structure from the variational distribution, the factor over the hidden

states Q(Sτ |π) no longer depends on the policy π and most of the terms in the expected

free energy become constants w.r.t π. Figure 15 illustrates an alternative generative model,

implementing tree search as a form of structure learning, which is not impacted by this

issue because the future states in this model still depend upon the action undertaken by the

agent. We refer the reader to our companion paper (Champion et al., 2021) for details. A

related treatment that performs exact Bayesian inference by considering a slightly different

generative model can be found in (Friston et al., 2020).

Before we turn to the derivation of the messages, we highlight the differences between

active inference as presented in Section 5 and the current treatment. The former is an

example of structured variational inference (∗). In contrast, the work presented in this

section assumes a fully factorised variational distribution and will be strictly framed as a

message passing algorithm, i.e. variational message passing (∗). Figure 16 illustrates those

differences. Finally, in the remaining sections, we present the derivation of the messages for

D, A, π and α, and we refer the reader to Appendices F and G for the derivations of the

messages for B and Sτ , respectively.
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Figure 15: This figure illustrates an alternative new (expandable) generative model allowing
planning under active inference. In this model, the future is now a tree like generative model
whose branches correspond to the policies considered by the agent. Each edge connecting
two states in the future correspond to an action and the nodes in light grey represent
possible expansions of the current generative model.
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exact inference approximate inference

message based methods

direct methods

BPT

E

SVMP

SVI (∗)

VMP (×)

VI

Figure 16: This figure illustrates the differences between the framework presented in Section
5 that belongs to the field of structured variational inference (Bishop and Winn, 2003) de-
noted by (∗), and the work presented below that belongs to the field of variational message
passing (Winn and Bishop, 2005) denoted by (×). The other abbreviations BPT, E, VI
and SVMP correspond to belief propagation on tree graphical models (Kschischang et al.,
2001), the elimination algorithm (Cozman, 2000), variational inference (Blei et al., 2017)
and structured (or cluster) variational message passing (Lin et al., 2018), respectively. Im-
portantly, note that BPT is a specific kind of belief propagation which does not involve
generalized BP (Yedidia et al., 2000) or loopy belief propagation (Murphy et al., 2013).

7.3 Messages for D

This section applies the method of Winn and Bishop discussed in Section 6.4 to compute the

messages of D. Let us start with the definition of the Dirichlet and categorical distributions

written in the form of the exponential family:

lnP (D; d) =


d1 − 1

...

d|S| − 1


︸ ︷︷ ︸

µD(d)

·


lnD1

...

lnD|S|


︸ ︷︷ ︸
uD(D)

− lnB(d)︸ ︷︷ ︸
zD(d)

(25)

lnP (S0;D) =


lnD1

...

lnD|S|


︸ ︷︷ ︸
µS0(D)

·


[S0 = 1]

...

[S0 = |S|]


︸ ︷︷ ︸

uS0(S0)

(26)
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where B(d) is the Beta function and |S| is the number of values a hidden state can take. The

first step requires us to re-write Equation 26 as a function of uD(D), this is straightforward

because µS0(D) is just another name for uD(D). Using the fact that the inner product is

commutative:

lnP (S0;D) =


[S0 = 1]

...

[S0 = |S|]


︸ ︷︷ ︸
µS0→D(S0)

·


lnD1

...

lnD|S|


︸ ︷︷ ︸
uD(D)

. (27)

The second step aims to substitute Equations 25 and 27 within the variational message

passing equation (18), i.e.

lnQ∗(D) =
〈

d1 − 1

...

d|S| − 1


︸ ︷︷ ︸

µD(d)

·


lnD1

...

lnD|S|


︸ ︷︷ ︸
uD(D)

− lnB(d)︸ ︷︷ ︸
zD(d)

〉
+
〈


[S0 = 1]

...

[S0 = |S|]


︸ ︷︷ ︸
µS0→D(S0)

·


lnD1

...

lnD|S|


︸ ︷︷ ︸
uD(D)

〉
+ Const,

where 〈•〉 refers to 〈•〉∼QD
. Note that in the above equation, di are fixed parameters, therefore

there is not any posterior over d and the first expectation 〈·〉∼QD
can be removed. The third

step rests on taking the exponential of both sides, using the linearity of expectation and

factorising by uD(D) to obtain:

Q∗(D) = exp

{
d1 − 1 + 〈[S0 = 1]〉

...

d|S| − 1 + 〈[S0 = |S|]〉

 · uD(D) + Const

}
, (28)

where zD(d) have been absorbed into the constant term because it does not depend on

D. The fourth step is a re-parameterisation done by observing that 〈[S0 = i]〉 is the i-th

element of the expectation of the vector uS0(S0), i.e. 〈uS0(S0)〉i = 〈[S0 = i]〉:
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Q∗(D) = exp

{
d1 − 1 + 〈uS0(S0)〉1

...

d|S| − 1 + 〈uS0(S0)〉|S|


︸ ︷︷ ︸

µ̃D(...)+µ̃S0→D(...)

·uD(D) + Const

}
. (29)

The last step consists of computing the expectation of 〈uS0(S0)〉i for all i. This can

be achieved by realising that the probability of an indicator function for an event is the

probability of this event, i.e 〈uS0(S0)〉i = 〈[S0 = i]〉 = Q(S0 = i) = D̃0i. Substituting this

result in Equation 29, leads to the final result:

Q∗(D) = exp

{
d1 − 1 + D̃01

...

d|S| − 1 + D̃0|S|

 · uD(D) + Const

}
.

Indeed, the above equation is in fact a Dirichlet distribution in exponential family form,

and can be re-written into its usual form to obtain the final update equation:

Q∗(D) = Dir(D; d+ D̃0).

In the following sections, we provide derivations for the messages of A, B, π, α, and Sτ .

Those derivations are similar to the one presented above. We encourage technical readers

to go through those derivations because they constitute the main contribution of this paper.

However, a reader uninterested in the algebraic details of the proofs may want to jump to

Section 7.7.

7.4 Messages for A

In the previous section, we have shown how to compute the messages forD, which are based

on the conjugacy between a categorical P (S0|D) and a Dirichlet P (D; d) distributions. In
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this section, we dive into the derivation of the messages of A, which relies on the same

kind of conjugacy. We start with the definition of P (A; a), which is a product of Dirichlet

distributions. This product can be turned into a sum by taking the logarithm of both sides

and using the log property to obtain:

lnP (A; a) = ln
∏
i

P (A•i; a•i) =
∑
i

ln Dir(A•i; a•i)

=
∑
i


a1i − 1

...

a|O|i − 1

 ·


lnA1i

...

lnA|O|i

− lnB(a•i)

︸ ︷︷ ︸
Logarithm of Dirichlet

=


a11 − 1

...

a|O||S| − 1


︸ ︷︷ ︸

µA(a)

·


lnA11

...

lnA|O||S|


︸ ︷︷ ︸

uA(A)

−
∑
i

lnB(a•i)︸ ︷︷ ︸
zA(a)

, (30)

where |O| is the number of possible outcomes. Note that the vectors uA(A) and µA(a) step

through all the elements of the matrices A and a, respectively. Also, for each time step τ

up to the present time t, the random matrix A has one child Oτ (see Figure 14), and its

probability mass function P (Oτ |A, Sτ ) is a product of categorical distributions that can be

written as:

lnP (Oτ = k|A, Sτ = l) = lnAkl

=
∑
i,j

[Oτ = i][Sτ = j] lnAij

=


[Sτ = 1] lnA11

...

[Sτ = |S|] lnA|O||S|


︸ ︷︷ ︸

µOτ (A,Sτ )

·


[Oτ = 1]

...

[Oτ = |O|]


︸ ︷︷ ︸

uOτ (Oτ )

. (31)
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Finally, the re-parameterisation in the fourth step will require the probability mass

function of Sτ (see Figure 14), i.e. the co-parent of A with respect to Oτ , to be written in

the form of the exponential family as follows:

lnP (Sτ = k|B, Sτ−1 = l, π = m) = lnB[Umτ−1]kl

=
∑
i,j,k,u

[Sτ = i][Sτ−1 = j][π = k][Ukτ−1 = u] lnB[u]ij

= µSτ (B, Sτ−1, π) · uSτ (Sτ ), (32)

where:

µSτ (B, Sτ−1, π) =


∑

j,k,u[Sτ−1 = j][π = k][Ukτ−1 = u] lnB[u]1j

...∑
j,k,u[Sτ−1 = j][π = k][Ukτ−1 = u] lnB[u]|S|j

 ,

and:

uSτ (Sτ ) =


[Sτ = 1]

...

[Sτ = |S|]

 .

The first step requires us to re-write Equation 31 as a function of uA(A), this is done

by expanding the inner product and re-arranging:

lnP (Oτ |A, Sτ ) =


[Oτ = 1][Sτ = 1]

...

[Oτ = |O|][Sτ = |S|]


︸ ︷︷ ︸

µOτ→A(Oτ ,Sτ )

·


lnA11

...

lnA|O||S|


︸ ︷︷ ︸

uA(A)

. (33)
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The second step aims to substitute Equations 30 and 33 within the variational message

passing equation (18), i.e.

lnQ∗(A) =
〈

a11 − 1

...

a|O||S| − 1

 · uA(A)
〉

+
t∑

τ=0

〈


[Oτ = 1][Sτ = 1]

...

[Oτ = |O|][Sτ = |S|]

 · uA(A)
〉

+ Const,

where 〈•〉 refers to 〈•〉∼QA
. The third step builds on this equation by pulling the sum over

all time steps τ inside the vector, using the linearity of expectation, factorising uA(A), and

taking the exponential of both sides:

Q∗(A) = exp

{
a11 − 1 +

∑t
τ=0〈[Oτ = 1]〉〈[Sτ = 1]〉

...

a|O||S| − 1 +
∑t

τ=0〈[Oτ = |O|]〉〈[Sτ = |S|]〉

 · uA(A) + Const

}
,

where we used that aji are hyperparameters that are constant w.r.t the expectation 〈•〉∼QA
.

The fourth step consists of two re-parameterisations performed by observing that 〈[Oτ = j]〉

and 〈[Sτ = i]〉 are the expectations of the j-th and i-th elements of the vectors uOτ (Oτ ) and

uSτ (Sτ ), respectively (cf. Equation 31 and 32). Substituting those re-parameterisations in

the above equation leads to:

Q∗(A) = exp

{
a11 − 1 +

∑t
τ=0〈uOτ (Oτ )〉1〈uSτ (Sτ )〉1

...

aKN − 1 +
∑t

τ=0〈uOτ (Oτ )〉|O|〈uSτ (Sτ )〉|S|


︸ ︷︷ ︸

µ̃A(...)+
∑
τ µ̃Oτ→A(...)

·uA(A) + Const

}
. (34)

The last step consists of computing the expectation of 〈uOτ (Oτ )〉i and 〈uSτ (Sτ )〉j for

all i and j. Since, the probability of an indicator function for an event is the probability

of this event, we are searching for the probabilities of Oτ = j and Sτ = i. The probability

of Oτ = j is the j-th element of the vector oτ , which is a one hot vector containing the

observation from the environment at time τ . The posterior probability of Sτ is by definition
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Q(Sτ ) = D̃τ . Substituting the probabilities of Oτ = j and Sτ = i in Equation 34, leads to:

Q∗(A) = exp

{
a11 − 1 +

∑t
τ=0 oτ1D̃τ1

...

a|O||S| − 1 +
∑t

τ=0 oτ |O|D̃τ |S|

 · uA(A) + Const

}
(35)

=
∏
i

exp

{
a1i − 1 +

∑t
τ=0 oτ1D̃τi

...

a|O|i − 1 +
∑t

τ=0 oτ |O|D̃τi

 ·


lnA1i

...

lnA|O|i

+ Const

}
. (36)

Finally, one can recognise in Equation 36 the product of Dirichlet distributions written

into their exponential form, i.e.

Q∗(A) =
∏
i

Dir(A•i,a•i) where a = a+
∑
τ

oτ ⊗ D̃τ .

The origin of the outer product in the computation of the parameters can be understood

by considering P τ the outer product between oτ and sτ such that P τij = oτisτj . Then,

Equation 35 shows that: aij = aij +
∑

τ P
τ
ij ⇔ a = a+

∑
τ oτ ⊗ sτ .

7.5 Messages for π

We now turn to the messages for π. Note, that the definition of the P (Sτ |B, Sτ−1, π) and

P (π|α) are given by Equations 32 and 44, respectively. The first step requires us to re-write

Equation 32 as a function of uπ(π). Using the inner product definition and re-arranging we

obtain:

lnP (Sτ = k|B, Sτ−1 = l, π = m) =


∑

i,j,u[Sτ = i][U1
τ−1 = u][Sτ−1 = j] lnB[u]ij

...∑
i,j,u[Sτ = i][U

|π|
τ−1 = u][Sτ−1 = j] lnB[u]ij

 · uπ(π).

(37)
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The second step aims to substitute Equations 44 and 37 within the variational message

passing equation, i.e.

lnQ∗(π) =
〈


lnα1

...

lnα|π|

 · uπ(π)
〉

+

T∑
τ=1

〈

∑

i,j,u [Sτ = i][U1
τ−1 = u][Sτ−1 = j] lnB[u]ij

...∑
i,j,u [Sτ = i][U

|π|
τ−1 = u][Sτ−1 = j] lnB[u]ij

 · uπ(π)
〉

+ Const,

where 〈•〉 refers to 〈•〉∼Qπ . The third step relies on pulling the summation over all time steps

inside the vector, taking the exponential of both sides, using the linearity of expectation

and factorising by uπ(π) to obtain:

Q∗(π) ∝ exp

{
〈lnα1〉+

∑
τ,i,j,u [U1

τ−1 = u]〈[Sτ = i]〉〈[Sτ−1 = j]〉〈lnB[u]ij〉

...

〈lnα|π|〉+
∑

τ,i,j,u [U
|π|
τ−1 = u]〈[Sτ = i]〉〈[Sτ−1 = j]〉〈lnB[u]ij〉


︸ ︷︷ ︸

µ∗π

·uπ(π)

}
.

The fourth step is a re-parameterisation implemented by observing that 〈lnαk〉, 〈[Sτ =

i]〉, 〈[Sτ−1 = j]〉 and 〈lnB[u]ij〉 are elements of the vectors 〈uα(α)〉, 〈uSτ (Sτ )〉, 〈uSτ−1(Sτ−1)〉

and 〈uB(B)〉, respectively:

µ∗π =


〈uα(α)〉1 +

∑
τ,i,j,u [U1

τ−1 = u]〈uSτ (Sτ )〉i〈uSτ−1(Sτ−1)〉j〈uB(B)〉u,i,j

...

〈uα(α)〉|π| +
∑

τ,i,j,u [U
|π|
τ−1 = u]〈uSτ (Sτ )〉i〈uSτ−1(Sτ−1)〉j〈uB(B)〉u,i,j

 . (38)

The last step consists of computing the expectation of 〈uα(α)〉k, 〈uSτ (Sτ )〉i, 〈uSτ−1(Sτ−1)〉j

and 〈uB(B)〉u,i,j for all i, j, k and u:

� 〈uα(α)〉k = 〈lnαk〉 = ψ(α̃k)− ψ(
∑

l α̃l) =∆ ᾱk
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� 〈uSτ (Sτ )〉i = 〈[Sτ = i]〉 = D̃τi

� 〈uSτ−1(Sτ−1)〉j = 〈[Sτ−1 = j]〉 = D̃(τ−1)j

� 〈uB(B)〉u,i,j = 〈lnB[u]ij〉 = ψ(b[u]ij)− ψ(
∑

l b[u]lj) =∆ B̄[u]ij

Furthermore, the indicator function in the k-th row of Equation 38 filters out all elements

where u 6= Ukτ−1. Substituting those results in Equation 38, leads to the final result:

Q∗(π) ∝ exp

{
ᾱ1 +

∑
τ,i,j D̃τiD̃(τ−1)jB̄[U1

τ−1]ij

...

ᾱ|π| +
∑

τ,i,j D̃τiD̃(τ−1)jB̄[U
|π|
τ−1]ij

 · uπ(π)

}
.

Indeed, the above equation is a Categorical distribution in the exponential family form,

and can be re-written into its usual form as follows:

Q∗(π) = Cat(π;α∗) where α∗ = σ

(
ᾱ+

T∑
τ=1

Fτ

)
and Fτ =


〈D̃τ ⊗ D̃τ−1, B̄[U1

τ−1]〉F

...

〈D̃τ ⊗ D̃τ−1, B̄[U
|π|
τ−1]〉F

 ,

where it should be stressed that 〈•, •〉F is not an expectation but the Frobenius product, i.e.

a generalisation of the inner product to matrices.

7.6 Messages for α

In this section, we focus on the messages for α, whose derivation is identical to the messages

of D. To see this, note that P (D) was a Dirichlet with parameters d. Furthermore, the only

child of D was S0 whose prior and posterior were categorical distributions with parameters

D and D̃. Similarly, note that P (α) is a Dirichlet with parameters θ. Furthermore, the

only child of α is π whose prior and posterior are categorical distributions with parameters

α and α̃. From this observation, we directly obtain the following result:

Q∗(α) = Dir(α; θ + α̃).

52



Active Inference and Variational Message Passing

7.7 Summary of messages

Next, we focus on explaining the intuition behind the resulting equations. The first point

is the coloration of the equations in orange and purple. The orange colour corresponds

to messages from the parent factors, which correspond to messages of type m2 in Figure

13. This means that each orange message is a function of the expectation of the sufficient

statistic of the parent variables, i.e. a function of messages of type m1. Similarly, the

purple colour corresponds to messages from the child factors, which correspond to messages

of type m3 in Figure 13. Once again, this means that each purple message is a function of

the sufficient statistics of the co-parent and child variables, i.e. a function of messages of

type m4 and m5, respectively. Let’s see how these play out in our newly derived equations.

Messages for α:

Q∗(α) = Dir(α; θ + α̃)

Recall that µα = θ is an m2 message (orange colour). However, α does not have any

parent variables thus µα is a constant, i.e. a function of zero m1 messages. Furthermore,

we know that α has only one child variable (π) and no co-parent variables. Therefore,

µπ→α(α̃) = α̃ is the only m3 message (purple colour) for α, where α̃ = 〈uπ(π)〉Qπ is an m5

message.

Messages for D:

Q∗(D) = Dir(D; d+ D̃0)

Similarly for the messages of α, µD = d and µS0→D(D̃0) = D̃0, where D̃0 should be

thought of as a message from a child variable (m5 message).
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Figure 17: This figure illustrates the passing of messages required to update the posterior
over A. The messages of type m2, m3, m4 and m5 come from the parent factors, child
factors, co-parent variables and child variables, respectively.

Messages for A:

Q∗(A) =
∏
i

Dir(A•i,a•i) where a = a+
∑
τ

oτ ⊗ D̃τ

Following the same reasoning, µA = a is an m2 message and because A does not have

any parent variables then µA is a constant. Also, A has one child variable (Oτ ) for each

time step τ ∈ J0, tK and one co-parent variable (Sτ ) for each of them, which implies that

there are t + 1 m3 messages for A, i.e. µOτ→A(oτ , D̃τ ) = oτ ⊗ D̃τ ∀τ ∈ J0, tK. Because

the Oτ are observed, we know that the m5 messages transmitted by this node will be the

observation made at time τ (oτ ). Additionally, the m4 message from the hidden variables

Sτ are the expectation of their sufficient statistics, i.e. 〈uSτ (Sτ )〉QSτ = D̃τ . This confirms

the idea that µOτ→A is a function of the sufficient statistics of the child and co-parent

variables. Figure 17 concludes this paragraph with a visual representation of the messages

for A.
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Messages for B:

Q∗(B) =
∏
u,i

Dir(B[u]•i, b[u]•i) where b[u] = b[u] +
∑

(k,τ)∈Ωu

α̃kD̃τ ⊗ D̃τ−1

Sticking with this reasoning, µB = b is an m2 message and because B does not have any

parent variables then µB is a constant equal to b. Also, B has one child variable (Sτ ) for

each time step τ ∈ J1, T K and all policies ∀π ∈ J1, |π|K, along with two co-parent variables

(Sτ−1 and π) for each of those child variables. This implies that there are T × |π| m3

messages for B, i.e. µSτ→SB
(α̃k, D̃τ , D̃τ−1) = α̃kD̃τ ⊗ D̃τ−1, ∀τ ∈ J1, T K, ∀π ∈ J1, |π|K

where D̃τ is an m5 message and α̃k along with D̃τ−1 are m4 messages.

Messages for π:

Q∗(π) = Cat(π;α∗) where α∗ = σ

(
ᾱ+

T∑
τ=1

Fτ

)
and Fτ =


〈D̃τ ⊗ D̃τ−1, B̄[U1

τ−1]〉F

...

〈D̃τ ⊗ D̃τ−1, B̄[U
|π|
τ−1]〉F


If we keep applying the same reasoning, we see that µπ(ᾱ) = ᾱ is an m2 message, which

is a function of the sufficient statistics of the parent variable α (m1 message). Moreover,

π has one child variable (Sτ ) for each time step τ ∈ J1, T K, and for each of those child

variables, π has two co-parent variables (Sτ−1 and B). Therefore, µSτ→π = Fτ ∀τ ∈ J1, T K

correspond to T m3 messages. Those messages are function of two m4 messages (D̃τ−1 and

B̄) and one m5 message (D̃τ ).

Messages for Sτ :

Q∗(Sτ ) = Cat(Sτ ;σ(µ∗Sτ ))

µ∗Sτ = [τ = 0]D̄ + [τ 6= 0]
∑
k

α̃kB̄[Ukτ−1]D̃τ−1 + [τ ≤ t]oτ · Ā+ [τ 6= T ]
∑
k

α̃kD̃τ+1 · B̄[Ukτ ]
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To understand the above equation, we can consider two cases: τ = 0 and τ 6= 0. In the

first case, S0 only has one parent variable (D), and µS0(D̄) = D̄ where D̄ = 〈uD(D)〉QD

is a message from a parent variable (m1 message). In the second case, Sτ has three parent

variables (Sτ−1, B and π), and µSτ (D̃τ−1, B̄, α̃) =
∑

k α̃kB̄[Ukτ ]D̃τ−1 where D̃τ−1, B̄ and

α̃ are also m1 messages. Let us now think about the child variable(s) of Sτ . If τ ≤ t, then

Sτ has a child variable from the likelihood mapping and µOτ→Sτ (oτ , Ā) = oτ · Ā, where oτ

is a message from the child variable (m5 message) and Ā is a message from the co-parent

variable (m4 message). Additionally, if τ 6= T , then Sτ receives a message from the future

µSτ+1→Sτ (α̃k, D̃τ+1, B̄) =
∑

k α̃kD̃τ+1 · B̄[Ukτ ], where α̃k and B̄ are m4 messages and D̃τ+1

is a m5 message. Figure 18 concludes this section with an illustration the message passing

procedure for S0.
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Figure 18: This figure illustrates the passing of messages required to update the posterior
over S0. The messages of type m1, m2, m3, m4 and m5 come from the parent variables,
parent factors, child factors, co-parent variables and child variables, respectively.

7.8 Messages vs update equations

In this section, we present a side by side comparison of the messages obtained using vari-

ational message passing and the update equations that underwrite belief updating in the

active inference literature. Throughout this section, the messages will always be presented

first, followed by the equivalent update equations. Let us start with the random variable

D:

Q∗(D) = Dir(D; d+ D̃0)

Q∗(D) = Dir(D; d+ s0)
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These two equations only differ in terms of labels, i.e. s0 and D̃0 conceptually represent

the same quantity. Similarly, the updates of A are recovered up to a change of label:

Q∗(A) =
∏
i

Dir(A•i,a•i) where a = a+
t∑

τ=0

oτ ⊗ D̃τ

Q∗(A) =
∏
i

Dir(A•i,a•i) where a = a+
t∑

τ=0

oτ ⊗ sτ

The update of B slightly differs from the messages obtained from variational message pass-

ing, which follows from the fact that we modified the variational distribution:

Q∗(B) =
∏
u,i

Dir(B[u]•i, b[u]•i) where b[u] = b[u] +
∑

(k,τ)∈Ωu

α̃kD̃τ ⊗ D̃τ−1

Q∗(B) =
∏
u,i

Dir(B[u]•i, b[u]•i) where b[u] = b[u] +
∑

(k,τ)∈Ωu

πks
k
τ ⊗ skτ−1

The only conceptual difference here is that skτ depended upon the policy, while D̃ does not.

Concerning Sτ , we have re-arranged the update equation to highlight the similarity with

the messages:

Q∗(Sτ ) = Cat(Sτ ;σ(µ∗Sτ ))

µ∗Sτ = [τ = 0]D̄ + [τ 6= 0]
∑
k

α̃kB̄[Ukτ−1]D̃τ−1 + [τ ≤ t]oτ · Ā+ [τ 6= T ]
∑
k

α̃kD̃τ+1 · B̄[Ukτ ]

µ∗Sτ = [τ = 0]D̄ + [τ 6= 0] B̄[Uπτ−1]sπτ−1 + [τ ≤ t]oτ · Ā+ [τ 6= T ] sπτ+1 · B̄[Uπτ ]

There are two main differences here. First, as for B, skτ is replaced by D̃, which does not

depend on the policies. Second, the past and future messages have an average over the

policies, while the updates do not. Unsurprisingly, since we replaced γ by α and changed
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the type of distributions, the updates are quite different:

Q∗(α) = Dir
(
α; θ + α̃

)
Q∗(γ) = Γ

(
γ; 1, β +G · (π − π0)

)

We conclude this section with the messages and updates of π, which are formally distinct.

These differences come from the fact that we moved G from P (π|γ) to P (α) and turned

P (π|γ) into a categorical distribution P (π|α):

Q∗(π) = Cat(π;α∗)

α∗ = σ

(
ᾱ +

T∑
τ=1

Fτ

)
and Fτ =


〈D̃τ ⊗ D̃τ−1, B̄[U1

τ−1]〉F

...

〈D̃τ ⊗ D̃τ−1, B̄[U
|π|
τ−1]〉F


α∗ = σ

(
− 1

β
G+

T∑
τ=1

Fτ

)
and Fτ = sπτ · B̄[U ]sπτ−1

However, the general form of the updates remains unchanged with information coming

from the parent through ᾱ and − 1
βG, and from each child through the summation over

time steps.

8. Conclusion

The increasing use of active inference in neuroscience has cast many brain processes as

Bayesian inference, the update equations of which can be thought of as a message passing

procedure. The first goal of this paper was to present a complete overview of the active

inference framework in discrete time and state space (Section 5) as well as a formal intro-

duction to the variational message passing literature (Section 6). Then, we simplified the

generative model and the variational distribution usually adopted in the active inference to
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derive a new set of update equations using the method of Winn and Bishop (2005) — and

highlight the connection between active inference and variational message passing (Section

7).

We hope that the first few sections of this paper could be useful as an introduction

to variational inference, Forney factor graphs, active inference or/and variational message

passing. Section 7 might also be of interest to researchers searching for a clear link be-

tween active inference and variational message passing or researchers seeking to derive the

update equations of new generative models. Section 7 explains why a fully factorised varia-

tional distribution simplifies the expected free energy in a way that precludes risk sensitive

behaviour but preserves ambiguity avoidance. Finally, we note that this issue does not

confound generative models implementing tree search.

One might ask why previous formulations of belief updating or message passing in active

inference have not exploited the simplifications considered in the current paper. For exam-

ple, using a Dirichlet distribution to parameterise Bayesian beliefs over policies — or a fully

factorised variational distribution that would simplify message passing. One answer is that

much of the legacy literature in active inference is concerned with neuronal process theories

and biological implementation. For example, the only reason a Gibbs form was used for

the distribution over policies was to link the implicit temperature or sensitivity parameter

to dopaminergic discharges. Similarly, the minimisation of variational free energy — using

a gradient descent to implement structured variational message passing — was motivated

by the need to cast belief updating in terms of differential equations that could be plausi-

bly associated with neuronal dynamics (and accompanying electrophysiological responses to

observations). However, if one frees oneself from the constraints of biological implementa-

tion, the repertoire of established schemes in machine learning and Bayesian statistics can,

in principle, be leveraged to reproduce kinds of choice behaviour active inference is trying

to explain and emulate. This paper has highlighted the putative usefulness of variational

message passing under a rationalisation of generative models.
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It is interesting to consider whether the simplified expected free-energy — resulting

from our message passing formulation of active inference — can be linked in any sense to

human behaviour, whether normative or pathological. In particular, the free-energy we have

obtained reflects a very specific functional impoverishment. The full factorisation that is

necessary for vanilla message passing precludes the ability to conditionalize the variational

posterior on policies. This suggests a particular deficit in the ability to plan, and a blindness

to future possibilities, the uncertainty associated with those possibilities and their potential

to satisfy preferences. As a result, the agent’s objective becomes to seek out unambiguous

cues, with no concern for outcome.

In fact, humans do exhibit patterns of behaviour that — due to their repetitiveness —

seem to reflect a desire for high predictability. Additionally, some of these patterns do not

seem obviously connected to rewarding or punishing outcomes. For example, those with

autism can exhibit very stereotyped repetitive behaviour: hand flapping, hand clapping,

rocking, etc (Gabriels, 2005), which is often described as stimming (Sundar Rajagopalan

et al., 2013). These repetitive and ritualistic behaviours (Lam, 2007) suggest an objective

to avoid exploration and the associated uncertainty.

This work naturally leads to future directions of research. For example, one could

implement the new generative model proposed in this paper and compare its performance

with the model presented in Section 5. Furthermore, additional research needs to be done to

connect the original update equations of active inference to the cluster variational message

passing literature. Much work has already been done on structured variational message

passing; particularly relation to marginal message passing — and its advantages over related

approaches based upon Bethe free energy (Yedidia, 2005; Parr et al., Dec 2019). Another

interesting direction of research would be to design new generative models that can tackle

more complex tasks, such as playing Atari games, human-machine interaction using natural

language and automatic structure learning. Partial answers to these directions of research

have already been provided with the use of deep active inference (Fountas et al., 2020;

Ueltzhöffer, 2018; Tschantz et al., 2020), deep temporal models (Friston et al., 2018; Heins
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et al., 2020) and Bayesian model reduction (Friston et al., 2018; Friston et al., 2017a;

Wauthier et al., 2020). Nevertheless, we anticipate that additional work will pursue these

avenues of research. Finally, one could also compare the update schemes under VMP to

belief propagation (Yedidia, 2011) or marginal message passing (Parr et al., Dec 2019).
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Appendix A: Active Inference, KL Control and Reinforcement Learning.

This appendix focuses on the relationship between Active Inference, KL Control and Rein-

forcement Learning (cf. Da Costa et al. (2020b) and Levine (2018) for more details). Let

us restart with the expected free energy given by Equation 6:

G(π) ≈
T∑

τ=t+1

DKL[

expected outcomes︷ ︸︸ ︷
Q(Oτ |π) ||

prior preferences︷ ︸︸ ︷
P (Oτ ) ]︸ ︷︷ ︸

expected risk

+ EQ(Sτ |π)[H[P (Oτ |Sτ )]]︸ ︷︷ ︸
expected ambiguity

.

If the expected ambiguity is equal to zero, then the expected free energy reduces to

the expected risk, which is the cost function minimised in the KL control literature. This

highlights that active inference generalises KL control (Rawlik et al., 2013) by taking into

account the ambiguity of the mapping between the hidden states and the observations.

Active inference therefore selects policies leading to unambiguous states. Furthermore, the

expected risk can be re-written as follows:

expected risk = DKL[Q(Oτ |π)||P (Oτ )] = EQ(Oτ |π)[lnQ(Oτ |π)]︸ ︷︷ ︸
negative entropy

− EQ(Oτ |π)[P (Oτ )]︸ ︷︷ ︸
expected rewards

.

If the negative entropy is zero, then the expected free energy reduces to the negative

expected prior preference. Those preferences encode the notion of good outcomes, or equiv-

alently, the notion of rewarding observations. This highlights why active inference can be

thought of as a generalisation of reinforcement learning (Mnih et al., 2013). Another view

on the expected free energy is:

G(τ, π) =

(-ve) epistemic value︷ ︸︸ ︷
EQ̃[lnQ(Sτ |π)− lnP (Sτ |Oτ , π)]−

extrinsic value︷ ︸︸ ︷
EQ̃[lnP (Oτ |π)], (39)

where Q̃ = P (Oτ |Sτ )Q(Sτ ). The extrinsic value is another term for expected prior prefer-

ences, which is equivalent to expected rewards in reinforcement learning. It is worth looking

in more detail at the negative epistemic value (-EV), which differentiates the learning ob-
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jectives of reinforcement learning and active inference:

−EV = −
epistemic value︷ ︸︸ ︷

−EQ̃[lnQ(Sτ |π)− lnP (Sτ |Oτ , π)]

⇔ EV = EQ̃[lnP (Sτ |Oτ , π)− lnQ(Sτ |π)]︸ ︷︷ ︸
mutual information between Sτ and Oτ

.

Thus, the epistemic value is approximately equal to the mutual information between Sτ

and Oτ . The mutual information encodes the expected information gain over one variable

by knowing the value of another. Therefore, the epistemic value tells us how knowing future

observations reduces our uncertainty over future hidden states. The following should help

to see that the epistemic value is approximately equal to the mutual information between

Sτ and Oτ :

I(S;O) = DKL [ P (Sτ , Oτ )||P (Sτ )P (Oτ )]

= EP (Sτ ,Oτ )[lnP (Sτ |Oτ ) + lnP (Oτ )− lnP (Sτ )− lnP (Oτ )]

= EP (Sτ ,Oτ )[lnP (Sτ |Oτ )− lnP (Sτ )].

Intuitively, the more an observation tells us about future states, the more valuable this

observation is. The negative epistemic value from equation 39 directly reflects this intuition,

and favours the policies with high mutual information. More importantly, equation 39 allows

the agent to compare the information gain and the reward on the same scale, i.e. using

nats from information theory. This creates a sense in which an active inference agent deals

optimally with the trade-off between exploration and exploitation.

Appendix B: Useful Properties.

This appendix quickly reviews the properties used throughout this paper.

Product rule: P (X,Y ) = P (X|Y )P (Y ),

where X and Y are random variables.
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Linearity of expectation: EP (Y )[aY + b] = aEP (Y )[Y ] + b,

where a and b are constants, and Y is a random variable.

Expectation of a constant: EP (Y )[a] = a,

where a is a constant, and Y is a random variable

Log property: ln(ab) = ln(a) + ln(b),

where a and b are real numbers

Exponential product property: exp(a+ b) = exp(a) exp(b),

where a and b are real numbers

Exponential power property: exp(ab) = exp(a)b,

where a and b are real numbers

Appendix C: Definition and Justification of the Expected Free Energy.

In this appendix, we focus on the definition of the expected free energy and the justification

of Equation 6. Another good resource on the subject is the “expected free energy” appendix

of Smith et al. (2021). For the sake of simplicity, we assume the following generative model

and variational distribution:

P (O0:T , S0:T ,B|π) = P (B)P (S0)

T∏
τ=1

P (Sτ |Sτ−1,B, π)

T∏
τ=0

P (Oτ |Sτ )

Q(S0:T ,B|π) = Q(B)
T∏
τ=0

Q(Sτ |π).

Furthermore, we let X = {B, S0:T } denote the set of hidden variables of the model.

Note that in this appendix, we restrict ourself to the hidden variables X but new variables

such as A and D can be added without changing the idea of the following derivation.

Initially, the expected free energy was defined as the variational free energy conditioned on

the policy, i.e.

G(π) = DKL [Q(X|π)||P (O0:t, X|π)] .
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However, the above definition does not take into account that observations will be made

in the future. To make up for this, the expected free energy can be extended as follows:

G(π) = EQ̃
[
DKL [Q(X|π)||P (O0:T , X|π)]

]
where Q̃ =∆ Q̃(Ot+1:T |π). (40)

Since the future observations (Ot+1:T ) have not been made yet, we need to predict what

they could look like. This prediction relies on a predictive distribution Q̃(Ot+1:T |π) that

encodes our best guess about future outcomes, and is generally defined as follows:

Q̃(Ot+1:T |π) =∆
T∏

τ=t+1

Q̃(Oτ |π),

where Q̃(Oτ |π) =∆
∑
Sτ

Q̃(Oτ , Sτ |π) and Q̃(Oτ , Sτ |π) =∆ P (Oτ |Sτ )Q(Sτ |π).

Note that the definition of Q̃(Ot+1:T |π) assumes independence between time steps and

Q̃(Oτ |π) is obtained by marginalisation of Q̃(Oτ , Sτ |π). By recalling the definition of the

generative model as well as the definition of the variational distribution, we obtain the

following from Equation 40:

G(π) = EQ̃
[
DKL [Q(S0:T ,B|π)||P (O0:T , S0:T ,B|π)]

]
= DKL [Q(B)||P (B)] +DKL [Q(S0|π)||P (S0)]

∑
+

t∑
τ=1

EQ(Sτ−1,B|π)

[
DKL [Q(Sτ |π)||P (Sτ |Sτ−1,B, π)]

]
+

t∑
τ=0

EQ(Sτ |π)

[
H[P (Oτ |Sτ )]

]
+

T∑
τ=t+1

EQ(Sτ−1,B|π)

[
DKL [Q(Sτ |π)||P (Sτ |Sτ−1,B, π)]

]
+ EQ(Sτ |π)

[
H[P (Oτ |Sτ )]

]
.

It must now be mentioned that the policy does not have much of an impact on the

past and current hidden states (S0:t). The terms relying on those states are then removed
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from the expected free energy to avoid unnecessary computational costs. Additionally,

the divergence between Q(B) and P (B) does not depend on the policy and can be safely

ignored, leading to:

G(π) =
T∑

τ=t+1

G(π, τ) (41)

where:

G(π, τ) =∆ EQ(Sτ−1,B|π)

[
DKL [Q(Sτ |π)||P (Sτ |Sτ−1,B, π)]

]
+ EQ(Sτ |π)

[
H[P (Oτ |Sτ )]

]
.

We now focus on G(π, τ) to bridge the gap between Equations 6 and 41. First, we merge

the two terms of the above equation together:

G(π, τ) =∆ EP (Oτ |Sτ )Q(Sτ ,Sτ−1,B|π)

[
lnQ(Sτ |π)− lnP (Oτ , Sτ |Sτ−1,B, π)

]
.

Then, we break the second term within the expectation using the product rule. Addi-

tionally, we realise that the following equation can be obtained from the product rule:

P (Oτ |Sτ−1,B, π) =
P (Oτ , Sτ−1,B, π)

P (Sτ−1,B, π)
=
P (Sτ−1,B, π|Oτ )

P (Sτ−1,B, π)
P (Oτ ) ≈ P (Oτ ),

where we assumed that the fraction is equal to one. Doing this assumption means that

the observation Oτ brings us very little information, i.e. the posterior is close to the prior.

Using the above result we get:

G(π, τ) = E
[

lnQ(Sτ |π)− lnP (Sτ |Oτ , Sτ−1,B, π)− lnP (Oτ |Sτ−1,B, π)
]

≈ E
[

lnQ(Sτ |π)− lnP (Sτ |Oτ , Sτ−1,B, π)− lnP (Oτ )
]
,
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where the expectation is still over P (Oτ |Sτ )Q(Sτ , Sτ−1,B|π). Then, we uses Bayes theorem

on the second term, the fact that (Oτ ⊥⊥ Sτ−1,B, π)|Sτ and the log properties to get:

G(π, τ) = E
[

lnQ(Sτ |π)− lnP (Sτ |Oτ , Sτ−1,B, π)− lnP (Oτ )
]

= E
[

lnQ(Sτ |π)− ln
P (Oτ |Sτ , Sτ−1,B, π)P (Sτ |Sτ−1,B, π)

P (Oτ |Sτ−1,B, π)
− lnP (Oτ )

]
≈ E

[
lnQ(Sτ |π)− ln

P (Oτ |Sτ )Q(Sτ |π)

Q(Oτ |π)
− lnP (Oτ )

]
= E

[
lnQ(Oτ |π)− lnP (Oτ )− lnP (Oτ |Sτ )

]
,

where we assumed that P (Sτ |Sτ−1,B, π) ≈ Q(Sτ |π) and P (Oτ |Sτ−1,B, π) ≈ Q(Oτ |π).

The first assumption can be supported by the variational free energy (VFE) decomposition

in term of accuracy and complexity. Indeed, the VFE penalises the divergence between

Q(Sτ |π) and P (Sτ |Sτ−1,B, π). The second assumption can be supported as follows:

P (Oτ |Sτ−1,B, π) =
∑
Sτ

P (Oτ , Sτ |Sτ−1,B, π)

≈
∑
Sτ

Q(Oτ , Sτ |π)

= Q(Oτ |π).

Assuming that the posterior P (Oτ , Sτ |Sτ−1,B, π) can be approximated by Q(Oτ , Sτ |π).

The last step relies on the linearity of expectation and the expectation of a constant, leading

to the final result:

G(π, τ) = DKL [Q(Oτ |π)||P (Oτ )] + EQ(Sτ |π)

[
H[P (Oτ |Sτ )]

]
.

Appendix D: The simplest generative model.

This appendix provides the reader with the smallest generative model that can be considered

as an active inference agent and aims to solve the k-armed bandit problem. As shown in

Figure 19, this problem is composed of k slot machines or equivalently k actions that the
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agent can perform. Each machine has a different probability of producing a reward and

the agent must chose the action to perform to maximize the rewards obtained. The agent

only observes either a reward or a punishment after the execution of an action. Additional

information related to the usage of active inference in the context of the multi-arms bandit

(MAB) task can be found in (Markovic et al., 2021) where active inference was compared to

other major algorithms for solving MABs such as UCB sampling and Thompson sampling.

U

O
O = 1 O = 2

U = 1 U = 2 U = 3

Actions

Outcomes

Figure 19: This figure illustrates the 3-armed bandit problem and the generative model
used by the agent. Three slot machines are available to the agent and each machine has a
different probability of producing a reward. Additionally, there are two possible outcomes
when pulling a lever, the agent either wins plenty of money or gets nothing. The generative
model is composed of two nodes representing the possible outcomes and actions. Finally,
the agent’s goal is to maximize the rewards obtained, by picking the best strategy.

To solve the bandit problem using active inference, the first step is to create the gen-

erative model that encodes the agent’s beliefs of the environment. Two random variables

are used for this purpose, O represents the possible outcomes and U the available actions.

Furthermore, P (O|U) determines how the observation depends on the action performed by

the agent, and P (U) encodes any prior preference over the available actions. More precisely,

P (O|U) and P (U) are categorical distributions defined as follows:

P (O = i|U = j) = Aij and P (U = j) = aj ,
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where Aij defines the probability of the i-th outcome given that the j-th action is performed,

and aj encodes the prior over the j-th action. Note that even if the active inference frame-

work provides a way to learn the matrix A, this section assumes that it is given to the

agent. The next step is to pick an inference method to compute the posterior over the

hidden state U . This section keeps things simple and uses Bayes theorem:

P (U = j|O = 1) =
P (O = 1|U = j)P (U = j)

P (O = 1)
=

P (O = 1|U = j)P (U = j)∑
k P (O = 1|U = k)P (U = k)

=
A1jaj∑
k A1kak

,

where the definition of the generative model has been used in the last step and we condi-

tioned on O = 1 to infer the action that is more likely to be rewarding. At this point, it

is possible to act in our environment either by sampling the next action to perform from

the posterior P (U |O = 1) or by picking the action with the highest posterior probability.

Additionally, the posterior can be reused as an empirical prior for the next time step as

follows:

P (U = j)← P (U = j|O = 1) =
A1jaj∑
k A1kak

.

This simple example does not capture the entire theoretical power of the active inference

framework. Nevertheless, it illustrates four important concepts related to the design and

use of an active inference agent, namely, the design of a generative model, the inference

of the latent variable(s), the action selection process, and the use of the posterior as an

empirical prior.

Appendix E: Possible future research.

In this appendix, we propose future research directions aiming to understand the relation-

ship between P (π|γ) and P (π|α). The first direction relies on the following link between

Dirichlet and gamma distributions. If we let X1,...,Xk be mutually independent random

variables, each having a gamma distribution with parameters θi for i = 1, ..., k and if we

define Yi = Xi
X1+...+Xk

for i = 1, ..., k, then (Y1, ..., Yk) ∼ Dir(θ1, ..., θk). This naturally
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leads to the hypothesis that the new generative model might be a generalisation of the old

generative model when all θi are equal.

Another interesting fact that could be studied in more detail comes from studying the

variance of the Dirichlet distribution. Recall that the variance of the random variable Yi is

given by:

Var[Yi] =
θ̃i(1− θ̃i)
θ0 + 1

,

where θ̃i = θi
θ0

and θ0 =
∑k

j=1 θj . If we stick to our definition of θ, i.e. θj = c −Gj with

c = −→c j ∀j, then we can study how the variance of Yj behaves as c goes to infinity. Let us

begin with:

lim
c→+∞

θ̃i = lim
c→+∞

θi∑k
j=1 θj

= lim
c→+∞

c−Gi∑k
j=1 c−Gj

= lim
c→+∞

c−Gi

kc−
∑k

j=1Gj

= lim
c→+∞

c

kc
=

1

k
,

where we note that Gi and
∑k

j=1Gj become negligible as c→ +∞. Returning to the limit

of the variance:

lim
c→+∞

Var[Yi] = lim
c→+∞

θ̃(1− θ̃)
θ0 + 1

= lim
c→+∞

θ̃(1− θ̃)(∑k
j=1 c−Gj

)
+ 1

= 0,

where we used the fact that θ̃i tends towards 1
k (i.e. a constant w.r.t c) and therefore

the variance is only influenced by the c in the denominator, which tends towards +∞.

Additionally, from the definition of the mode of the Dirichlet, we see that as c → +∞

then the mode of the distribution tends towards the centre of the simplex because the Gi

becomes negligible, i.e.

lim
c→+∞

mα =

[
1
k . . . 1

k

]
.

Combining the behaviour of the variance and the mode as c → +∞, we see that as c

increases the prior becomes more and more compact around the centre of the simplex. In

other words, the policy selection becomes more and more stochastic as c increases. This is

not without recalling the role of γ as highlighted previously in the caption of Figure 10.
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Appendix F: Messages for B.

In this appendix, we provide the derivation of the messages for B, which relies on the

conjugacy between a categorical and a Dirichlet distribution. Let us start with the definition

of P (B; b), which is a product of Dirichlet distributions that can be written in the following

form:

lnP (B; b) = ln
∏
i,u

P (B[u]•i; b[u]•i) =
∑
i,u

ln Dir(B[u]•i; b[u]•i)

=
∑
i,u


b[u]1i − 1

...

b[u]|S|i − 1

 ·


lnB[u]1i

...

lnB[u]|S|i

− lnB(b[u]•i)

︸ ︷︷ ︸
Logartithm of Dirichlet

=


b[1]11 − 1

...

b[|U |]|S||S| − 1


︸ ︷︷ ︸

µB(b)

·


lnB[1]11

...

lnB[|U |]|S||S|


︸ ︷︷ ︸

uB(B)

−
∑
i,u

lnB(b[u]•i)︸ ︷︷ ︸
zB(b)

, (42)

where |U | is the number of possible actions. Let Ja, bK denotes all the natural numbers

between a and b (inclusive). The random matrix B[u] has one child Sτ for each time

step τ ∈ J1, T K where action u has been predicted by the m-th policy, and its probability

mass function is given by Equation 32. Similarly, the probability mass function of Sτ−1 is

obtained from Equation 32 by decreasing all indexes τ by one. The first step requires us to

re-write Equation 32 as a function of uB(B). This can be done by using the definition of
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the dot product and re-arranging to obtain:

lnP (Sτ = k|B, Sτ−1 = l, π = m) =


∑

k[π = k][Ukτ−1 = 1][Sτ−1 = 1][Sτ = 1]

...∑
k[π = k][Ukτ−1 = |U |][Sτ−1 = |S|][Sτ = |S|]


︸ ︷︷ ︸

µSτ→B(Sτ ,Sτ−1,π)

·uB(B).

(43)

The second step aims to substitute Equations 42 and 43 within the variational message

passing equation (18), i.e.

lnQ∗(B) =
〈


b[1]11 − 1

...

b[|U |]|S||S| − 1

 · uB(B)
〉

+
T∑
τ=1

〈


∑
k[π = k][Ukτ−1 = 1][Sτ−1 = 1][Sτ = 1]

...∑
k[π = k][Ukτ−1 = |U |][Sτ−1 = |S|][Sτ = |S|]

 · uB(B)
〉

+ Const,

where 〈•〉 refers to 〈•〉∼QB
. Note that in the above Equation, b[u]ij are hyper parameters

that can therefore be considered as constants with respect to the expectation 〈•〉∼QB
. The

third step builds on this insight, by pulling the summation over time steps inside the vector,

factorising by uB(B), using the linearity of expectation and by taking the exponential of

both sides to obtain:

Q∗(B) ∝ exp{µ∗B · uB(B)}

µ∗B =


b[1]11 − 1 +

∑
k,τ 〈[π = k][Ukτ−1 = 1][Sτ−1 = 1][Sτ = 1]〉

...

b[|U |]|S||S| − 1 +
∑

k,τ 〈[π = k][Ukτ−1 = |U |][Sτ−1 = |S|][Sτ = |S|]〉

 .
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By looking at Equations 32, one can see that 〈[Sτ = i]〉 and 〈[Sτ−1 = j]〉 are the i-th

and j-th elements of the vector 〈uSτ (Sτ )〉 and 〈uSτ−1(Sτ − 1)〉, respectively. Furthermore,

because P (π) is a categorical distribution it can be expressed as:

P (π|α) =


lnα1

...

lnα|π|


︸ ︷︷ ︸
µπ(α)

·


[π = 1]

...

[π = |π|]


︸ ︷︷ ︸

uπ(π)

, (44)

where |π| is the number of policies. The above equation highlights that 〈[π = k]〉 is the

k-th element of 〈uπ(π)〉. Using those three insights, we proceed with the following re-

parameterization (i.e. the fourth step):

µ∗B =


b[1]11 − 1 +

∑
k,τ [Ukτ−1 = 1]〈uπ(π)〉k〈uSτ (Sτ )〉1〈uSτ−1(Sτ − 1)〉1

...

b[|U |]|S||S| − 1 +
∑

k,τ [Ukτ−1 = |U |]〈uπ(π)〉k〈uSτ (Sτ )〉|S|〈uSτ−1(Sτ − 1)〉|S|

 , (45)

where we focused on the optimal parameters because the rest remains unchanged. The last

step consists of computing the expectation of 〈uSτ−1(Sτ − 1)〉i, 〈uSτ (Sτ )〉j , and 〈uπ(π)〉k

for all i, j and k:

� 〈uSτ−1(Sτ − 1)〉i = 〈[Sτ − 1 = i]〉 = D̃(τ−1)i

� 〈uSτ (Sτ )〉j = 〈[Sτ = j]〉 = D̃τj

� 〈uπ(π)〉k = 〈[π = k]〉 = α̃k

One last thing we need to look at is the interaction between the summation and the

indicator function in the i-th line of Equation 45. Indeed, the sum iterates over all time

steps τ and all policies k, but the indicator function filters out all elements where the k-th

policy does not predict the i-th action at time τ − 1. Building on this insight, we can now
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substitute the above results in Equation 45:

Q∗(B) ∝ exp

{
b[1]11 − 1 +

∑
(k,τ)∈Ω1

α̃kD̃τ1D̃(τ−1)1

...

b[|U |]|S||S| − 1 +
∑

(k,τ)∈Ω|U|
α̃kD̃τ |S|D̃(τ−1)|S|

 · uB(B)

}
.

Finally, one can recognise in the above equation the logarithm of a product of Dirichlet

distributions written into their exponential form, i.e.

Q∗(B) =
∏
u,i

Dir(B[u]•i, b[u]•i) where b[u] = b[u] +
∑

(k,τ)∈Ωu

α̃kD̃τ ⊗ D̃τ−1.

Appendix G: Messages for Sτ .

This appendix shows how to derive the messages for Sτ for all time steps. We will use

Equations 26 and 32 that describe P (S0|D) and P (Sτ |Sτ−1,B, π) as a function of uSτ (Sτ ).

The first step requires us to re-arrange Equation 31 and P (Sτ+1|Sτ ,B, π) as a functions of

uSτ (Sτ ), where P (Sτ+1|Sτ ,B, π) is obtained by adding one to all instances of τ in Equation

32. Those two re-arrangements lead to the following results:

lnP (Oτ = k|A, Sτ = l) =


∑

i[Oτ = i] lnAi1

...∑
i[Oτ = i] lnAi|S|

 ·


[Sτ = 1]

...

[Sτ = |S|]


︸ ︷︷ ︸

uSτ (Sτ )

(46)

lnP (Sτ+1 = k|B, Sτ = l, π = m) =


∑

j,k,u[π = k][Ukτ = u][Sτ+1 = j] lnB[u]1j

...∑
j,k,u[π = k][Ukτ = u][Sτ+1 = j] lnB[u]|S|j

 · uSτ (Sτ ).

(47)
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For the second step, we need to substitute Equations 26, 32, 46 and 47 into the vari-

ational message passing equation. If τ = 0, the parent message will come from the prior

(i.e. Equation 26) otherwise from the past (i.e. Equation 32). Also, for all time steps such

that τ ≤ t there is a message from the likelihood mapping (i.e. Equation 46) and for all

time steps except τ = T there is a message from the future (i.e. Equation 47). Putting

everything together we obtain:

lnQ∗(Sτ ) =
〈

[τ = 0]


lnD1

...

lnD|S|

 · uSτ (Sτ )
〉

+
〈

[τ 6= 0]


∑

j,k,u [π = k][Ukτ−1 = u][Sτ−1 = j] lnB[u]1j

...∑
j,k,u [π = k][Ukτ−1 = u][Sτ−1 = j] lnB[u]|S|j

 · uSτ (Sτ )
〉

+
〈

[τ ≤ t]


∑

i [Oτ = i] lnAi1

...∑
i [Oτ = i] lnAi|S|

 · uSτ (Sτ )
〉

+
〈

[τ 6= T ]


∑

j,k,u [π = k][Ukτ = u][Sτ+1 = j] lnB[u]1j

...∑
j,k,u [π = k][Ukτ = u][Sτ+1 = j] lnB[u]|S|j

 · uSτ (Sτ )
〉

+ Const.

The third step requires us to factorise by uSτ (Sτ ), use the linearity of expectation and

take the exponential of both sides:

Q∗(Sτ ) ∝ exp

{[
[τ = 0]µ∗1 + [τ 6= 0]µ∗2 + [τ ≤ t]µ∗3 + [τ 6= T ]µ∗4

]
· uSτ (Sτ )

}
, (48)
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where:

µ∗1 =


〈lnD1〉

...

〈lnD|S|〉



µ∗2 =


∑

j,k,u [Ukτ−1 = u]〈[π = k]〉〈[Sτ−1 = j]〉〈lnB[u]1j〉

...∑
j,k,u [Ukτ−1 = u]〈[π = k]〉〈[Sτ−1 = j]〉〈lnB[u]|S|j〉



µ∗3 =


∑

i [Oτ = i]〈lnAi1〉

...∑
i [Oτ = i]〈lnAi|S|〉



µ∗4 =


∑

j,k,u [Ukτ = u]〈[π = k]〉〈[Sτ+1 = j]〉〈lnB[u]1j〉

...∑
j,k,u [Ukτ = u]〈[π = k]〉〈[Sτ+1 = j]〉〈lnB[u]|S|j〉

 .

The fourth step is the re-parameterization relying on the fact that 〈lnDi〉, 〈[π = j]〉,

〈[Sτ−1 = k]〉, 〈lnB[l]mn〉, 〈lnAop〉 and 〈[Sτ+1 = q]〉 are elements of 〈uD(D)〉, 〈uπ(π)〉,

〈uSτ−1(Sτ−1)〉, 〈uB(B)〉, 〈uA(A)〉 and 〈uSτ+1(Sτ+1)〉, respectively. Focusing on the µ∗i be-

cause the rest remains unchanged, the result of the the re-parameterisation is:

µ∗1 =


〈uD(D)〉1

...

〈uD(D)〉|S|


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µ∗2 =


∑

j,k,u [Ukτ−1 = u]〈uπ(π)〉k〈uSτ−1(Sτ−1)〉j〈uB(B)〉u1j

...∑
j,k,u [Ukτ−1 = u]〈uπ(π)〉k〈uSτ−1(Sτ−1)〉j〈uB(B)〉u|S|j〉



µ∗3 =


∑

i [Oτ = i]〈uA(A)〉i1

...∑
i [Oτ = i]〈uA(A)〉i|S|



µ∗4 =


∑

j,k,u [Ukτ = u]〈uπ(π)〉k〈uSτ+1(Sτ+1)〉j〈uB(B)〉u1j

...∑
j,k,u [Ukτ = u]〈uπ(π)〉k〈uSτ+1(Sτ+1)〉j〈uB(B)〉u|S|j

 .

Finally, the last step consists of computing the expectations of all sufficient statistics as

follows:

� 〈uD(D)〉i = 〈lnDi〉 = ψ(di)− ψ(
∑

r dr) =∆ D̄i

� 〈uπ(π)〉j = 〈[π = j]〉 = α̃j

� 〈uSτ−1(Sτ−1)〉k = 〈[Sτ−1 = k]〉 = D̃(τ−1)k

� 〈uB(B)〉lmn = 〈lnB[l]mn〉 = ψ(b[l]mn)− ψ(
∑

r b[l]rn) =∆ B̄[l]mn

� 〈uA(A)〉op = 〈lnAop〉 = ψ(aop)− ψ(
∑

r arp) =∆ Āop

� 〈uSτ+1(Sτ+1)〉q = 〈[Sτ+1 = q]〉 = D̃(τ+1)q

Substituting those expectations into the equations for the µ∗i leads to the following

results: µ∗1 = D̄, µ∗2 =
∑

k α̃kB̄[Ukτ ]D̃τ−1, µ∗3 = oτ · Ā and µ∗4 =
∑

k α̃kD̃τ+1 · B̄[Ukτ ].

Where oτ is a one hot vector containing the observation made by the agent and we used the

fact that the indicator function [Ukτ = u] filters out elements from the sum where u 6= Ukτ .
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The final result is obtained by substituting the values of the µ∗i ’s in Equation 48 to obtain

the following categorical distribution:

Q∗(Sτ ) ∝ exp
{
µ∗Sτ · uSτ (Sτ )

}

µ∗Sτ = [τ = 0]D̄ + [τ 6= 0]
∑
k

α̃kB̄[Ukτ−1]D̃τ−1 + [τ ≤ t]oτ · Ā+ [τ 6= T ]
∑
k

α̃kB̄[Ukτ ]D̃τ+1.

Appendix H: Derivation of the new expected free energy.

In this appendix, we derive the expected free energy of our new model. First, we restate

the factorisation of the generative model and the variational distribution:

P (O0:t, S0:T , π,A,B,D, α) = P (π|α)P (α)P (A)P (B)P (S0|D)P (D)

t∏
τ=0

P (Oτ |Sτ ,A)

T∏
τ=1

P (Sτ |Sτ−1,B, π) (49)

Q(S0:T , π,A,B,D, α) = Q(π)Q(A)Q(B)Q(D)Q(α)
T∏
τ=0

Q(Sτ ). (50)

Remembering from Appendix C that the expected free energy is defined as:

G(π) = EQ̃
[
DKL [Q(X|π)||P (O0:T , X|π)]

]
, (51)

where the latent variables are X = {S0:T ,A,B,D, α}, Q̃ = Q̃(Ot+1:T ) =∆
∏T
τ=t+1 Q̃(Oτ )

and Q̃(Oτ ) =∆
∑

Sτ
Q̃(Oτ , Sτ ). Now we substitute Equation 49 and 50 into Equation 51 and
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simplify by removing the terms that are constant w.r.t the policy π:

G(π) = EQ̃
[
DKL [Q(S0:T ,A,B,D, α|π)||P (O0:T , S0:T ,A,B,D, α|π)]

]∑
= DKL [Q(A)||P (A)] +DKL [Q(B)||P (B)] +DKL [Q(D)||P (D)]

∑
+DKL [Q(α)||P (α)] + EQ(D)

[
DKL [Q(S0)||P (S0|D)]

]∑
+

T∑
τ=1

EQ(Sτ−1,B)

[
DKL [Q(Sτ )||P (Sτ |Sτ−1,B, π)]

]
−

T∑
τ=0

EQ(Sτ ,A)Q̃(Ot+1:T )

[
lnP (Oτ |Sτ ,A)

]
=

T∑
τ=1

EQ(Sτ−1,B)

[
DKL [Q(Sτ )||P (Sτ |Sτ−1,B, π)]

]
+ C

T∑
τ=0

=
T∑
τ=1

EQ(Sτ ,Sτ−1,B)

[
lnQ(Sτ )− lnP (Sτ |Sτ−1,B, π)

]
+ C

T∑
τ=0

=
T∑
τ=1

EQ(Sτ−1,B)

[
−EQ(Sτ )

[
lnP (Sτ |Sτ−1,B, π)

]︸ ︷︷ ︸
H[•]

]
+ C

T∑
τ=0

=

T∑
τ=1

EQ(Sτ−1,B)

[
H
[
P (Sτ |Sτ−1,B, π)

]]
+ C

T∑
τ=0

,

where H[•] refer to −EQ(Sτ )

[
lnP (Sτ |Sτ−1,B, π)

]
in the last equation.
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