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Abstract

Background: Catastrophic forgetting is the notorious vulnerability of neural networks

to the changes in the data distribution during learning. This phenomenon has long been

considered a major obstacle for using learning agents in realistic continual learning

settings. A large body of continual learning research assumes that task boundaries are

known during training. However, only a few works consider scenarios in which task
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boundaries are unknown or not well defined — task agnostic scenarios. The optimal

Bayesian solution for this requires an intractable online Bayes update to the weights

posterior.

Contributions: We aim to approximate the online Bayes update as accurately as possible.

To do so, we derive novel fixed-point equations for the online variational Bayes optimiza-

tion problem, for multivariate Gaussian parametric distributions. By iterating the poste-

rior through these fixed-point equations, we obtain an algorithm (FOO-VB) for continual

learning which can handle non-stationary data distribution using a fixed architecture and

without using external memory (i.e. without access to previous data). We demonstrate

that our method (FOO-VB) outperforms existing methods in task agnostic scenarios.

FOO-VB Pytorch implementation is available at https://github.com/chenzeno/FOO-VB.

1 Introduction

Continual learning (CL) is the ability of an algorithm to learn from non-stationary

data while reusing past knowledge and exploiting it to better adapt to a changing

environment. A major challenge in continual learning is to overcome catastrophic

forgetting (McCloskey and Cohen, 1989). Catastrophic forgetting is the tendency of

neural networks to rapidly lose previously learned knowledge when the input distribution

is changed abruptly, e.g. when changing a task or a source.

Neural networks are commonly used machine learning models for solving a variety

of tasks. They are notorious for being vulnerable to changes in the data during learning.

Various methods for preventing catastrophic forgetting in neural networks have been

2

https://github.com/chenzeno/FOO-VB


suggested in the literature. Most of these methods assume relaxed conditions, in which

the tasks arrive sequentially, and the data distribution changes only upon task-switches

(i.e. piecewise stationary). Therefore, they are inapplicable in many realistic task agnos-

tic applications, in which the tasks boundaries are unknown, or when such boundaries

are not well-defined (e.g., the data distribution continuously changes in a non-stationary

manner). For example, in image classification tasks in real-world scenarios, input images

may exhibit several gradual changes through time, such as the zoom, illumination, or the

angle of objects in the image. In this paper, we aim to reduce catastrophic forgetting in

such difficult and relevant task agnostic cases.

It is long known that estimating the underlying posterior distribution can help mitigate

catastrophic forgetting in neural networks (McCloskey and Cohen, 1989). Lately, it

was found (Kirkpatrick et al., 2017) that one can use the posterior to find confidence

levels for weights, which in turn can be used to affect the weight plasticity. That is to

say, weights with a lower confidence value may be changed more in subsequent tasks

(i.e., since they are ”less important” for previous tasks). This allows a natural transition

between learned tasks while reducing the ill effect of catastrophic forgetting. Later,

Nguyen et al. (2017) also used variational Bayes to prevent catastrophic forgetting when

the tasks arrive sequentially. In these works, each time a task switches, a new prior (or a

regularization term) is added, which restricts the change of weights with high confidence

(i.e., since they are ”important” for previous tasks). However, in task agnostic scenarios

this approach cannot be used, since the task boundary is unknown, or does not exist.

To prevent catastrophic forgetting in task agnostic scenarios, we propose using the

online version of variational Bayes, which updates the approximate posterior using only
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the current data sample without any knowledge on task switches. For the method to be

effective, we aim to approximate the Bayes update as accurately as possible. Therefore,

we derive novel fixed point equations for the online variational Bayes optimization

problem under Gaussian parametric distributions (with either full, matrix variate, or

diagonal covariance). Based on our theoretical results, for each Gaussian distribution,

we propose the Fixed-point Operator for Online Variational Bayes (FOO-VB) algorithm.

Our experiments demonstrate a significant improvement over existing algorithms in task

agnostic continual learning scenarios.

2 Related Work

Bayesian neural networks Bayesian inference for neural networks has been a subject

of interest over many years. As exact Bayesian inference is intractable (for any realistic

network size), much research has focused on approximation techniques. Most modern

techniques stem from previous seminal works that used either a Laplace approxima-

tion (MacKay, 1992), variational methods (Hinton and Camp, 1993), or Monte Carlo

methods (Neal, 1994). In recent years, many methods for approximating the posterior

distribution have been suggested, falling into one of these categories. Those methods

include assumed density filtering (Soudry et al., 2014; Hernández-Lobato and Adams,

2015), approximate power Expectation Propagation (Hernández-Lobato et al., 2016),

Stochastic Langevin Gradient Descent (Welling and Teh, 2011; Balan et al., 2015),

incremental moment matching (Lee et al., 2017), and variational Bayes (Graves, 2011;

Blundell et al., 2015).
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In this work, we focus on a variational Bayes approach. Practical variational Bayes

for modern neural networks was first introduced by Graves (2011), where a paramet-

ric distribution was used to approximate the posterior distribution by minimizing the

variational free energy. Calculating the variational free energy is intractable for general

neural networks. Thus, Graves (2011) estimated the gradients using a biased Monte

Carlo method, and used stochastic gradient descent (SGD) to perform minimization. In

a later work, Blundell et al. (2015) used a re-parameterization trick to yield an unbiased

estimator for the gradients. Variational Bayes methods were also used extensively on

various probabilistic models including recurrent neural networks (Graves, 2011), auto-

encoders (Kingma and Welling, 2013), and fully connected networks (Blundell et al.,

2015). Martens and Grosse (2015); Zhang et al. (2017); Khan et al. (2018) suggested

using the connection between natural gradient descent (Amari, 1998) and variational

inference to perform natural gradient optimization in deep neural networks.

Fixed-point equations for the variation Bayes In this work, we derive a novel fixed-

point equation for the online variational Bayes optimization problem under Gaussian

parametric distributions (with either full, matrix variate, or diagonal covariance) in

the case of Bayesian neural networks. Fixed point equation for the variational Bayes

optimization problem has been used in the cases of linear models (Knowles and Minka,

2011; Cseke et al., 2013) and Gaussian processes (Opper and Archambeau, 2009). Those

derivations can not be used in the case of Bayesian neural networks. For instance, in the

case of Gaussian processes, the negative log-likelihood of a single data point is a function

of only one random variable (the parameter of the kernel function). So, the non-diagonal
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elements of the posterior precision matrix are equal to those of the prior precision matrix,

resulting in a closed-form solution to the posterior distribution. However, in the case of

Bayesian neural networks, the negative log-likelihood of a single data point is a function

of a random vector (the parameters vector). Another related work is Kurle et al. (2019),

which suggested an algorithm for online inference for non-stationary streaming data.

Kurle et al. (2019) derived the first-order necessary conditions for the online variational

Bayes optimization problem in the case of Bayesian neural networks and multivariate

Gaussian distribution. Kurle et al. (2019) used the first-order necessary conditions

alongside a running memory to sequentially update the posterior parameters — but only

in the case of a diagonal Gaussian distribution. However, as we will show here, using

non-diagonal covariance can significantly improve performance.

Continual learning Approaches for continual learning can be generally divided into

four main categories: (1) Architectural approaches; (2) Rehearsal approaches; (3)

Regularization approaches, and (4) Bayesian approaches.

Architectural approaches alter the network architecture to adapt to new tasks (e.g.

Rusu et al. (2016); Nagabandi et al. (2018)). Rehearsal approaches use external memory1

to allow re-training on stored examples from previous tasks (e.g. Shin et al. (2017)).

Regularization approaches use some penalty on deviations from previous task weights.

Bayesian approaches use Bayes’ rule with the previous task posterior as the current prior.

Each approach has pros and cons. For example, architectural approaches may result in

extremely large architectures after multiple task switches. Rehearsal approaches may

1Rehearsal approaches may include GANs, which can be properly used as memory.
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be problematic due to memory limitations or data availability (e.g. data from previous

tasks may not be stored with the model due to privacy or proprietary reasons). For

an extensive review of continual learning methods see Parisi et al. (2018). Our paper,

however, focuses on regularization and Bayesian approaches where the architecture is

fixed, and no external memory is used to retrain on data from previous tasks.

In regularization approaches, a regularization term is added to the loss function. Elas-

tic weight consolidation (EWC) proposed by Kirkpatrick et al. (2017), slows changes in

parameters that are important to the previous tasks by penalizing the difference between

the previous task’s optimal parameters and the current parameters. The importance

of each parameter is measured using the diagonal of the Fisher information matrix.

Synaptic Intelligence (SI) proposed by Zenke et al. (2017) also uses a penalty term,

however, the importance is measured by the path length of updates on the previous task.

Chaudhry et al. (2018) propose an online generalization of EWC and SI to achieve better

performance. Progress & compress proposed by Schwarz et al. (2018) uses a network

with two components (a knowledge base and an active column) with EWC for continual

learning in reinforcement learning. Memory Aware Synapses (MAS) (Aljundi et al.,

2018) also uses a penalty term, but measures weight importance by the sensitivity of the

output function. Learning without Forgetting (LwF) proposed by Li and Hoiem (2017)

uses knowledge distillation to enforce the network outputs of the new task to be similar

to the network outputs of previous tasks.

The Bayesian approaches provide a solution to continual learning in the form of

Bayes’ rule. As data arrive sequentially, the posterior distribution of the parameters for

the previous task is used as a prior for the new task. Variational Continual Learning
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(VCL) proposed by Nguyen et al. (2017) uses online variational inference combined

with the standard variational Bayes approach, Bayes By Backprop (BBB) by Blundell

et al. (2015). They reduce catastrophic forgetting by replacing the prior on each task

switch. In the BBB approach, a mean-field approximation is applied, assuming weights

are independent of each other (i.e. the covariance matrix is diagonal). Ritter et al.

(2018) suggests using Bayesian online learning with a Kronecker factored Laplace

approximation to attain a non-diagonal method for reducing catastrophic forgetting. This

allows the algorithm to exploit interactions between weights within the same layer.

Task-agnostic continual learning Most of the aforementioned methods, assume re-

laxed conditions, where tasks arrive sequentially, and the data distribution changes only

on task switches. Few previous works deal with task agnostic scenarios (when task

boundaries are unknown or not defined), however, they all use the rehearsal approach

(Rao et al., 2019; Aljundi et al., 2019; Achille et al., 2018). We present an algorithm

for task agnostic continual learning scenarios using a fixed architecture and without

using external memory. Our work is orthogonal to those rehearsal approaches, and can

potentially be combined with them.

3 General Theoretical Background

Bayesian inference (Gelman et al., 2013; Bishop et al., 1995) requires a joint probability

distribution over the target set D and the model parameters θ given the input set X. This

distribution can be written as

p (D,θ|X) = p (D|θ,X) p (θ|X) , (1)
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where X =

[
x1 x2 · · · xN

]>
is the input set, D =

[
y1 y2 · · · yN

]>
is the

target set, and θ is the model parameters vector. p (D|θ,X) is the likelihood function of

the target set D, and p (θ|X) is the prior distribution of the model parameters θ. The

posterior distribution of the model parameters can be calculated using Bayes’ rule

p (θ|D,X) =
p (D|θ,X) p (θ|X)

p (D|X)
, (2)

where p (D|X) is calculated using the sum rule. To simplify the notations we omit the

conditioning on X for the remainder of this paper.

We focus on the online version of Bayesian inference, in which the data arrive

sequentially, and we update the posterior distribution whenever new data arrive. In each

step, the previous posterior distribution is used as the new prior distribution. Therefore,

according to Bayes’ rule, the posterior distribution at time n is given by

p (θ|Dn) =
p (Dn|θ) p (θ|D1, · · · ,Dn−1)

p (Dn)
, (3)

Unfortunately, calculating the posterior distribution is intractable for most practical

probability models, and especially when using deep neural networks. Therefore, we will

use variational methods to approximate the true posterior.

Variational Bayes In variational Bayes (Graves, 2011), a parametric distribution

q (θ|φ) is used for approximating the true posterior distribution p (θ|D) by (indirectly)

minimizing the Kullback-Leibler (KL) divergence with the true posterior distribution

DKL (q (θ|φ) ||p (θ|D)) = Eθ∼q(θ|φ)

[
log

q (θ|φ)

p (θ|D)

]
. (4)

9



The optimal variational parameters (φ) are the solution of the following optimization

problem:

arg min
φ

∫
q (θ|φ) log

q (θ|φ)

p (θ|D)
dθ = arg min

φ

∫
q (θ|φ) log

q (θ|φ)

p (D|θ) p (θ)
dθ

= arg min
φ

Eθ∼q(θ|φ) [log (q (θ|φ))−log (p (θ))+L (θ)], (5)

where L (θ) = − log (p (D|θ)) is the log-likelihood cost function.2 The KL diver-

gence between the parametric distribution (approximate posterior) and the true posterior

distribution (4) is also known as the variational free energy.

In online variational Bayes (Broderick et al., 2013), one aims to find the posterior in

an online setting, where data arrive sequentially. Similar to Bayesian inference, we use

the previous approximated posterior as the new prior distribution, and the optimization

problem becomes:

argmin
φ

Eθ∼qn(θ|φ)[log (qn(θ|φ))−log (qn−1(θ))+Ln(θ)]. (6)

4 Proposed Theoretical Approach

We present a method to mitigate catastrophic forgetting in task agnostic continual

learning. We aim to approximate the intractable (exact) online Bayes update rule (3)

using the online variational Bayes optimization problem (6). Therefore, we use a new

prior for each mini-batch (as in online variational Bayes) instead of using one prior for all

the data (as in variational Bayes). When a Gaussian distribution is used as the parametric

distribution q (θ|φ), one can find the fixed-point equations for the online variational

2Note that we define a cumulative log-likelihood cost function over the data.
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Bayes optimization problem (6), i.e. the first-order necessary conditions. The fixed-point

equations define the relation between the prior parameters and the posterior parameters.

Using the fixed-point equations we derive algorithms for task agnostic continual learning

(see section 5).

In the subsections to come, we derive novel fixed-point equations for the online

variational Bayes (6) for multivariate Gaussian, Matrix variate Gaussian, and diagonal

Gaussian distributions.

4.1 Fixed-point equations for multivariate Gaussian

In this subsection we focus on our most general case, in which the parametric distribution

qn (θ|φ) and the prior distribution qn−1 (θ) are multivariate Gaussian. Namely,

qn (θ|φ) = N (θ|µ,Σ) , qn−1 (θ) = N (θ|m,V) . (7)

To find the fixed-point equations of the optimization problem in (6) in the case of a

Gaussian distribution, we define the following deterministic transformation:

θ = µ + Aε , (8)

where φ = (µ,Σ) , Σ = AA>, ε ∼ N (0, I).

Using the first-order necessary conditions on (6) for the optimal µ and A (see

Appendix 7 for details) we obtain the following equations

µ = m−VEε [∇Ln (θ)] , AA> + VEε

[
∇Ln (θ) ε>

]
A> −V = 0 . (9)

In Lemma 1, we characterize the full set of solutions of the above quadratic equation

(the proof can be found in Appendix 8).
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Lemma 1. Let T ∈ RN×N ,M ∈ RN×N ,M = M>,M � 0,X ∈ RN×N . The full set

of solutions of

XX> + MTX> −M = 0 (10)

is given by

X = DQ− 1

2
MT ,

where

B = M +
1

4
MTT>M, D = B1/2,

and Q ∈ RN×N is an orthogonal matrix such that DQT>M is a symmetric matrix.

In Corollary 1 we demonstrate that Σ has a set of multiple solutions.

Corollary 1. The full set of solutions for the optimal covariance matrix of the posterior

distribution is given by

Σ = V +
1

2
VEε

[
∇Ln (θ) ε>

]
Eε

[
∇Ln (θ) ε>

]>
V

− 1

2

(
DQEε

[
∇Ln (θ) ε>

]>
V + VEε

[
∇Ln (θ) ε>

]
Q>D>

)
(11)

where

D =

(
V +

1

4
VEε

[
∇Ln (θ) ε>

]
Eε

[
∇Ln (θ) ε>

]>
V

)1/2

(12)

and Q is an orthogonal matrix such that DQEε

[
∇Ln (θ) ε>

]>
V is a symmetric matrix.

Next, we characterize a single solution for the quadratic equation using the following

Lemma (the proof can be found in Appendix 9):

Lemma 2. In this Lemma we use the notations of Lemma 1. Let Q = SW> such that

S,W are the left and right singular matrices of the Singular Value Decomposition (SVD)

of D−1MT. Then Q is an orthogonal matrix and DQT>M is a symmetric matrix.
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Lemma 1 and 2 together reveal the fixed-point equations (we substitute M = V and

T = Eε

[
∇Ln (θ) ε>

]
)

µ = m−VEε [∇Ln (θ)] , A = DQ− 1

2
VEε

[
∇Ln (θ) ε>

]
. (13)

In case B is not invertible (or, more often, has a large condition number), the fixed-point

equations can be derived using Lemma 3, which can be found in Appendix 10.

4.2 Fixed-point equations for matrix variate Gaussian

We now focus on the case in which the parametric distribution qn (θ|φ) and the prior

distribution qn−1 (θ) are multivariate Gaussian whose covariance matrix is a Kronecker

product of two PD matrices (Gupta and Nagar, 2018). This type of distribution is also

known as Kronecker-factored Gaussian. Therefore:

qn (θ|φ) = N (θ|µ,Σ1 ⊗Σ2) , qn−1 (θ) = N (θ|m,V1 ⊗V2) , (14)

where V1,Σ1 ∈ Rd1×d1 (variance among-column) and V2,Σ2 ∈ Rd2×d2 (variance

among-row). To find the fixed-point equations of the optimization problem in (6) in the

case of a matrix variate Gaussian distribution, we define a deterministic transformation

θ = µ + (A⊗B) ε , (15)

where the distribution parameters are φ = (µ,Σ1,Σ2) and Σ1 = AA>,Σ2 = BB>, ε ∼

N (0, I).

We use the first-order necessary conditions for the optimal µ,A, and B (see Ap-
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pendix 11 for additional details)

µ = m− (V1 ⊗V2)Eε [∇Ln (θ)] (16)

Tr
(
V−12 Σ2

)
AA> + V1Eε

[
Ψ>BΦ

]
A> − pV1 = 0

Tr
(
V−11 Σ1

)
BB> + V2Eε

[
ΨAΦ>

]
B> − nV2 = 0 ,

where Ψ,Φ ∈ Rp×n such that vec(Ψ) = ∇Ln (θ) and vec(Φ) = ε. In Appendix 13 we

use Lemma 2 to derive the fixed-point equations for (16).

4.3 Fixed-point equations for diagonal Gaussian

Now consider a parametric distribution q (θ|φ) and a prior distribution that are both

Gaussian with a diagonal covariance matrix (i.e. mean-field approximation). Therefore

qn (θ|φ) =
∏
i

N
(
θi|µi, σ2

i

)
, qn−1 (θ) =

∏
i

N
(
θi|mi, v

2
i

)
. (17)

To derive the fixed-point equations of the optimization problem in (6), we once more

define a deterministic transformation

θi = µi + εiσi , (18)

where φ = (µ,σ) , εi ∼ N (0, 1).

We use the first-order necessary conditions for the optimal µi and σi

µi = mi − v2iEε
[
∂Ln (θ)

∂θi

]
, σ2

i + σiv
2
iEε

[
∂Ln (θ)

∂θi
εi

]
− v2i = 0 . (19)

Since this is a special case of (9) (where the covariance matrix is diagonal), one can use
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(13) to derive the following fixed-point equations:

µi = mi − v2iEε
[
∂Ln (θ)

∂θi

]
(20)

σi = vi

√
1+

(
1

2
viEε

[
∂Ln (θ)

∂θi
εi

])2

− 1

2
v2iEε

[
∂Ln (θ)

∂θi
εi

]
.

5 Proposed Algorithms

5.1 From theory to practice

The fixed-point equations we derived in section 4 to the optimization problem (6) are

only implicit solutions. Note for instance that the equations in (13) include the derivative

∇Ln (θ), which is a function of φ (the unknown posterior parameters). One possible

approach to find a solution for the fixed-point equations is to iterate them. In certain

simple linear models in offline variational Bayes, a similar approach can be proven

to converge (Sheth and Khardon, 2016). Here, since we are at an online setting, we

take a single explicit iteration of the fixed-point equation for each mini-batch, i.e. we

evaluate the derivative ∇Ln (θ) using the prior parameters. This is done during the

multiple passes through the data, as in Assumed Density Filter (ADF) (Soudry et al.,

2014; Hernández-Lobato and Adams, 2015).

The fixed-point equations iteration consists of an expectation term w.r.t. ε. We use

Monte Carlo samples to estimate those expectations.
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5.2 Algorithms

FOO-VB Using the relaxations above, we present the Fixed-point operator for online

variational Bayes (FOO-VB) algorithmic framework (Algorithm 1), including three

different specific variants: multivariate Gaussian, matrix variate Gaussian, and diagonal

Gaussian (Algorithms 2, 3, and 4; the last two variants can be found in Appendix 15).

Algorithm 1 describes the general framework in which we update the posterior

distribution as we iterate over the data. For each mini-batch we use K Monte Carlo

samples of the neural network weights using the current prior distribution φn−1 (steps 1

& 2), and then calculate the gradient w.r.t. these randomized weights (step 3). Lastly,

we update the posterior parameters using the estimations and the update rules derived in

section 4 (step 4).

Algorithm 1 Fixed-point operator for online variational Bayes (FOO-VB)

Initialize Prior parameters φ0, Number of iterations Nmax,

Number of Monte Carlo samples K

for n = 1, . . . , Nmax sample a mini-batch

for k = 1, . . . , K

Sample ε(k) ∼ N (0, I) {step 1}

θ(k) = TRANSFORM
(
ε(k), φn−1

)
{step 2}

g(k) = ∇Ln

(
θ(k)
)

{step 3}

end

φn ←− UPDATE
(
φn−1, ε

(1,...,K),g(1,...,K)
)

{step 4}
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The deterministic transformation (step 2) and the posterior update rule (step 4) differ

for each distribution. Algorithms 2, 3 and 4 described those steps for multivariate

Gaussian, matrix variate Gaussian, and diagonal Gaussian, respectively (Algorithms 3

and 4 can be found in Appendix 15).

Algorithm 2 Methods for the multivariate Gaussian version

TRANSFORM(ε, φ = (µ,A)) :

θ = µ + Aε

Σ = AA>

UPDATE
(
φn−1 = (µ,A) , ε(1..K),g(1..K)

)
:

Ē1 = 1
K

∑K
k=1 g(k)

Ē2 = 1
K

∑K
k=1 g(k)

(
ε(k)
)>

µ←− µ−AA>Ē1

A←− X s.t. XX> + AA>Ē2X
> −AA> = 0

(This matrix equation is solved using Lemma 2)

Feasibility and complexity As Deep Neural Networks (DNN) often contain millions

of parameters, it is infeasible to store the full covariance matrix between all parameters.

A very common relaxation is to assume this distribution is factored between the layers

(i.e. independent layers), so that the covariance matrix is a block diagonal matrix

between layers. Even with this relaxation, the multivariate Gaussian version of FOO-VB

is impractical due to memory limitations. For example, storing the matrix A for a fully
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connected layer with 400 inputs and 400 outputs will require ∼ 95GB (using 32-bit

floating point).

We avoid working with such extremely large covariance matrices, by factoring

them into a Kronecker product of two much smaller matrices (matrix variate Gaussian).

Alternatively, we employ a diagonal covariance matrix (diagonal Gaussian).

The matrix variate Gaussian approximation enables us to store and apply mathe-

matical operations on matrices of a practical size. For example, storing the matrices

A and B of the matrix variate version for a fully connected layer with 400 inputs and

400 outputs will require ∼ 1.2MB. In terms of runtime, this version requires four SVD

decompositions for each layer in addition to the K = 2500 Monte-Carlo (MC) samples

for each iteration. To reduce the runtime, one can parallelize the SVD (as in Berry and

Sameh (1989)) and the MC sampling.

The diagonal approximation is our lightest version, with a memory footprint of only

twice that of the regular network (to store the mean and variance of every weight). The

K = 10 MC samples are the only overhead over a standard SGD optimizer, and so the

runtime is linear w.r.t. the number of MC samples. See Appendix 17 for computational

complexity analysis.

5.3 Theoretical properties of diagonal FOO-VB

We present theoretical properties of FOO-VB. For simplicity, we focus on the Diagonal

Gaussian version. This version consists of a gradient descent algorithm for µ, and a

recursive update rule for σ. The learning rate of µi is proportional to the uncertainty in

the parameter θi according to the prior distribution. During the learning process, as more
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data is seen, the learning rate decreases for parameters with a high degree of certainty,

and increases for parameters with a high degree of uncertainty. Next, we establish this

intuitive idea more precisely.

It is easy to verify that the update rule for σ is a strictly monotonically decreasing

function of Eε
[
∂Ln(θ)
∂θi

εi

]
. Therefore

Eε

[
∂L (θ)

∂θi
εi

]
> 0 =⇒ σi (n) < σi (n− 1)

Eε

[
∂L (θ)

∂θi
εi

]
< 0 =⇒ σi (n) > σi (n− 1)

Eε

[
∂L (θ)

∂θi
εi

]
= 0 =⇒ σi (n) = σi (n− 1) . (21)

Next, using a Taylor expansion for the loss, we show that for small values of σ, the

quantityEε
[
∂Ln(θ)
∂θi

εi

]
is equal to

Eε

[(
∂Ln (µ)

∂θi
+
∑
j

∂2Ln (µ)

∂θi∂θj
εjσj +O

(
‖σ‖2

))
εi

]
=
∂2Ln (µ)

∂2θi
σi+O

(
‖σ‖2

)
,

where we used Eε [εi] = 0 and Eε [εiεj] = δij . Thus, in this case Eε
[
∂Ln(θ)
∂θi

εi

]
is a finite

difference approximation to the component-wise product of the diagonal of the Hessian

of the loss and the vector σ. Therefore, we expect the uncertainty (learning rate) to

decrease in areas with positive curvature (e.g., near local minima), or increase in areas

with high negative curvature (e.g., near maxima, or saddles). This seems like a “sensible”

behavior of the algorithm, since we wish to converge to local minima, but escape saddles.

This in contrast to many common optimization methods, which are either insensitive to

the sign of the curvature, or use it the wrong way (Dauphin et al., 2014).

In the case of a strongly convex loss, we prove a more rigorous statement in Appendix

14.

19



Theorem 1. Consider FOO-VB with a diagonal Gaussian distribution for θ. If Ln (θ)

is a strongly convex function with parameter mn > 0 and a continuously differentiable

function over Rn, then Eε
[
∂Ln(θ)
∂θi

εi

]
≥ mnσi > 0.

Corollary 2. If Ln (θ) is strongly convex (concave) for all n ∈ N, then the sequence

{σi(n)}∞n=1 is strictly monotonically decreasing (increasing).

Furthermore, one can generalize these results and show that if a restriction of Ln (θ)

to an axis θi is strongly convex (concave) for all n ∈ N, then {σi(n)}∞n=1 is monotonic

decreasing (increasing).

Therefore, in the case of a strongly convex loss function, σi = 0 in any stable point

of (20), which means that we collapse to point estimation similar to SGD. However, for

neural networks, σi does not generally converge to zero. In this case, the stable point

σi = 0 is generally not unique, since Eε
[
∂L(θ)
∂θi

εi

]
implicitly depends on σi.

In Appendix 18 we show the histogram of STD (standard deviation) values on

MNIST when training for 5000 epochs and demonstrate FOO-VB do not collapse to

point estimation.

FOO-VB in continual learning In the case of over-parameterized models and contin-

ual learning, only a part of the weights is essential for each task. We hypothesize that

if a weight θi is important to the current task, this implies that near the minimum, the

function Li = L(θ)|(θ)i=θi is locally convex. Corollary 2 suggests that in this case σi

would be small. In contrast, the loss will have a flat curvature in the direction of weights

which are not important to the task. Therefore, these unimportant weights may have a

large uncertainty σi. Since FOO-VB in the Diagonal Gaussian version introduces the
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linkage between the learning rate and the uncertainty (STD), the training trajectories

in the next task would be restricted along the less important weights leading to a good

performance on the new task, while retaining the performance on the current task. The

use of FOO-VB to continual learning exploits the inherent features of the algorithm, and

it does not need any explicit information on tasks — it is completely unaware of the

notion of tasks. We show empirical evidence for our hypothesis in subsection 6.1

6 Applications and Experiments

Inapplicability of other CL algorithms In task-agnostic scenarios, previous optimization-

based methods for continual learning are generally inapplicable, as they rely on taking

some actions (e.g., changing parameters in the loss function) on task switch, which is

undefined in those scenarios. Nevertheless, one possible adaptation is to take the core

action at every iteration instead of at every task switch. Doing so is impractical for

many algorithms due to the computational complexity, but for a fair comparison we

have succeeded to run both Online EWC (Chaudhry et al., 2018) and MAS (Aljundi

et al., 2018) with such an adaptation. As for rehearsal approach, it is orthogonal to

our approach and can be combined. However, we focus on the challenging real-world

scenario in which we do not have access to any data from previous tasks. Thus, in our

experiments we do not compare to rehearsal algorithms.

We experiment on a task agnostic variations of the Permuted MNIST benchmark for

continual learning. The Permuted MNIST benchmark is a set of tasks constructed by a

random permutation of MNIST pixels. Each task has a different permutation of pixels
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from the previous one. For all the experiments shown below, we conducted an extensive

hyper-parameter search to find the best results for each algorithm. See additional details

in Appendix 16.

6.1 Discrete task-agnostic Permuted MNIST

We evaluate the algorithms on a task-agnostic scenario where the task boundaries are

unknown. To do so, we use the Permuted MNIST benchmark for continual learning,

but without informing the algorithms on task switches. The network architecture is two

hidden layers of width 100 (see additional details in Appendix 16). In Figure 1, we

show the average test accuracy over all seen tasks as a function of the number of tasks.

Designed for task agnostic scenarios, our algorithms surpass all other task agnostic

algorithms. The matrix variate Gaussian version of FOO-VB experiences only ∼ 2%

degradation in the average accuracy after 10 tasks. The diagonal Gaussian version of

FOO-VB attains a good balance between high accuracy (∼ 88% after 10 tasks) and low

computational complexity.

The average test accuracy over all tasks at the end of training implies a good balance

between remembering previous tasks while adapting to new tasks. On the other hand, in

Figure 2 we show the test accuracy of the first task as a function of the number of seen

tasks, which shows how well the algorithm remembers. The matrix variate Gaussian

version of FOO-VB is being able to remember the first task almost perfectly (i.e. like the

oracle), and the overall performance is limited only by the test accuracy of the current

task. The diagonal Gaussian version of FOO-VB exhibits the next best performance,

compared to other algorithms.
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Figure 1: Discrete task-agnostic Permuted MNIST: The average test accuracy on all

seen tasks as a function of the number of tasks. The hyper-parameters of all algorithms

were tuned to maximize the average accuracy over all 10 tasks (therefore some of the

algorithms have a relatively low accuracy for the first task). Offline (oracle) is a joint (i.e.

not continual) training on all tasks.

We use the discrete task-agnostic Permuted MNIST experiment to examine our hy-

pothesis of how the diagonal version of FOO-VB works in continual learning (subsection

5.3). Figure 3 shows the histogram of STD values at the end of the training process of

each task. The results show that after the first task, a large portion of the weights have

STD values close to the initial value 0.047, while a small fraction of them have a much

lower value. As training progresses, more weights are assigned with STD values much

lower than the initial value. These results support our hypothesis in subsection 5.3 that

only a small part of the weights is essential for each task, and as training progresses

more wights have low STD values.
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Figure 2: Test accuracy on the first task for discrete task-agnostic permuted MNIST.

Oracle is the accuracy of training on task #1 only (i.e. not continual).

6.2 Continuous task-agnostic Permuted MNIST

We consider the case where the transition between tasks occurs gradually over time, so

the algorithm gets a mixture of samples from two 3 different tasks during the transition

(Figure 4) so the task boundaries are undefined. In all task-agnostic scenarios, the

algorithm does not have any knowledge of the distribution over the tasks.

The network architecture is two hidden layers of width 200 (see additional details in

Appendix 16). The output heads are shared among all tasks, task duration is 9380× T

iterations, where T = 10 is the number of Tasks (corresponds to 20 epochs per task), and

the algorithms are unaware to the number of tasks nor when the tasks are being switched.

3The most challenging scenario is when mixing two different tasks. As we add more

tasks, we are getting closer to offline (non CL) training.
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Figure 3: The histogram of STD values at the end of the training process of each task.

As training progresses, more weights are assigned with STD values lower than the initial

value. The initial STD value is 0.047. Best seen in color.

The average test accuracy over all tasks for different numbers of tasks is presented in

Figure 5. As can be seen, the matrix variate Gaussian version of FOO-VB experiences

less than 1% degradation in the average accuracy after 10 tasks. Similarly to the discrete

task-agnostic experiment (subsection 6.1), the diagonal Gaussian version of FOO-VB

maintains a good balance between high accuracy (∼ 94% after 10 tasks) and low

computational complexity.

6.3 Task-aware continual learning on vision datasets

We provide additional evaluation of FOO-VB using the experiment of vision datasets

conducted in Ritter et al. (2018). This experiment is done in the task-aware scenario, and

uses more complex datasets (such as CIFAR10 and SVHN) and architecture (LeNet).
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Figure 4: Distribution of samples from each task, as a function of iteration. The tasks

are not changed abruptly but gradually – i.e. task boundaries are undefined. Here, the

number of samples from each task in each batch is a random variable drawn from this

distribution, which changes with time (iterations).

Thus, we use for this experiment the diagonal version of FOO-VB. The algorithms which

FOO-VB is compared with are using the information on task-switch. Nevertheless,

FOO-VB results are on par. See Appendix 19 for the full details.

Conclusion

In this work we aim to reduce catastrophic forgetting, in task agnostic scenarios (where

task boundaries are unknown or not defined), using fixed architecture and without the

use of external memory (i.e. without access to previous data, which can be restricted, e.g.

due to privacy issues). This can allow deep neural networks to better adapt to new tasks

without explicitly instructed to do so, enabling them to learn in real-world continual

learning settings.
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Figure 5: Continuous task-agnostic Permuted MNIST: The average test accuracy on

all seen tasks as a function of the number of tasks. Tasks are changing gradually over

time as showed in Figure 4. Offline (oracle) is a joint (not continual) training on all tasks.

Our method, FOO-VB, outperforms other continual learning methods in task agnostic

scenarios. It relies on solid theoretical foundations, being derived from novel fixed-point

equations of the online variational Bayes optimization problem. We derive two practical

versions of the algorithm, to enable a trade-off between computational complexity vs.

performance.

There are many possible extensions and use cases for FOO-VB which were not

explored in this work. One possible extension is to incorporate FOO-VB in the framework

of Meta-Learning (Finn et al., 2017) to address more challenging scenarios. Another

direction is to use FOO-VB to improve GAN stability (Thanh-Tung and Tran, 2018).

During the training process, the Discriminator exhibit catastrophic forgetting, since the
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Generator output distribution changes gradually. FOO-VB fit this scenario naturally since

it has no well defined task boundaries. Indeed, some of thus extensions were consider in

He et al. (2019) using the diagonal version of FOO-VB (published in our preliminary

pre-print (Zeno et al., 2019)). Last, but not least, FOO-VB could be potentially useful in

reinforcement learning, which often includes non-stationary environments.
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Appendix

7 Derivation of (9)

In this section, we provide additional details on the derivation of (9). The objective

function is

f (µ,Σ) =
1

2

[
log

det (V)

det (Σ)
−N + Tr

(
V−1Σ

)
+ (m− µ)>V−1 (m− µ)

]
+ Eθ [Ln (θ)] .

(22)

To solve the optimization problem in (6) in the case of Gaussian approximation, we use

the deterministic transformation (8). To calculate the first derivative of the objective
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function we use the following identities:

Eθ [Ln (θ)] = Eε [Ln (θ)] (23)

∂Eε [Ln (θ)]

∂Ai,j
= Eε

[
∂Ln (θ)

∂θi
εj

]
(24)

∂ Tr (V−1Σ)

∂Ai,j
= 2

∑
n

V −1i,n An,j (25)

∂ log | det (A)|
∂Ai,j

= A−>i,j . (26)

We use the first-order necessary conditions for the optimal µ:

−V−1 (m− µ) + Eε [∇Ln (θ)] = 0 . (27)

And so we obtained (9).

Next, we use the first-order necessary conditions for the optimal A:

−
(
A−>

)
i,j

+
∑
n

V −1i,n An,j + Eε

[
∂Ln (θ)

∂θi
εj

]
= 0 . (28)

And in matrix form we obtain:

−A−> + V−1A + Eε

[
∇Ln (θ) ε>

]
= 0 . (29)

And so we obtained (9).

8 Proof of Lemma 1

The following proof is based on Poloni (2018).

Proof. Let

X = DQ− 1

2
MT , (30)
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such that

B = M +
1

4
MTT>M (31)

D = B1/2 . (32)

If we compare (10) with its transpose we obtain

MTX> = XT>M , (33)

so we can rewrite (10) as follows,

XX> +
1

2
MTX> +

1

2
XT>M−M = 0 . (34)

Next, we can factor (34) as follows,

(
X +

1

2
MT

)(
X +

1

2
T>M

)>
= M +

1

4
MTT>M . (35)

Since the matrix B = M + 1
4
MTT>M is positive definite (PD)

D−1
(

X +
1

2
MT

)(
X +

1

2
T>M

)
D−1 = IN , (36)

the equality holds if and only if Q = D−1
(
X + 1

2
MT

)
is an orthogonal matrix. In

addition, the matrix

XT>M =

(
DQ− 1

2
MT

)
T>M = DQT>M− 1

2
MTT>M (37)

is symmetric if and only if DQT>M is symmetric.

9 Proof of Lemma 2

The following proof is based on Poloni (2018).
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Proof. Let

Q = SW> (38)

such that S,W are the left and right singular matrices of the Singular Value Decomposi-

tion (SVD) of D−1MT. Then

Q>Q = WS>SW> = I (39)

and

DQT>M = DSW>T>M = DSW>T>MD−>D> (40)

(a)
= DSW>WΛS>D> = DSΛS>D> (41)

where (a) is because S,W are the left and right singular matrices of the SVD of D−1MT

meaning, D−1MT = SΛW> and Λ is a diagonal matrix. Therefore Q is an orthogonal

matrix and DQT>M is a symmetric matrix.

10 Lemma 3

In this section, we derive a solution for (10) in the case where B is not invertible (or,

more often, has a large condition number).

Lemma 3. In this Lemma we use the notations of Lemma 1. Let Q = UZ> such that

U,Z are the left singular matrices of the Generalized Singular Value Decomposition

(GSVD) of
(
D>,T>M

)
, respectively. Then Q is an orthogonal matrix and DQT>M

is a symmetric matrix.

The following proof is based on Poloni (2018).
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Proof. Let

Q = SW> (42)

such that U,Z are the left singular matrices of the Generalized Singular Value Decom-

position (GSVD) of
(
D>,T>M

)
, respectively. Then

Q>Q = ZU>UZ> = I (43)

and

DQT>M = DUZ>T>M
(a)
= WΛ1U

>UZ>ZΛ2W
> (44)

= WΛ1Λ2W
> (45)

where (a) is because is because U,Z are the left singular matrices of the GSVD of(
D>,T>M

)
meaning, D> = UΛ1W

>,T>M = ZΛ2W
> and Λ1,Λ2 are diagonal

matrices. Therefore Q is an orthogonal matrix and DQT>M is a symmetric matrix.

11 Derivation of (16)

In this section, we provide additional details on the derivation of (16). The objective

function is

f (µ,Σ) =
1

2

[
log

det (V1)
p det (V2)

n

det (Σ1)
p det (Σ2)

n − np+ Tr
(
(V1 ⊗V2)

−1 (Σ1 ⊗Σ2)
)

(46)

+ (m− µ)> (V1 ⊗V2)
−1 (m− µ)

]

+ Eθ [Ln (θ)] . (47)

To solve the optimization problem in (6) in the case of Kronecker-factored approximation,

we use the deterministic transformation (15). To calculate the first derivative of the
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objective function we use the following identities (see Appendix 12 for additional

details):

∂Eε [Ln (θ)]

∂Ai,j
= Eε

[
p∑
`=1

p∑
k=1

∂Ln (θ)

∂θ`+(i−1)p
B`,kεk+(j−1)p

]
(48)

∂Eε [Ln (θ)]

∂Bi,j

= Eε

[
n∑
`=1

n∑
k=1

∂Ln (θ)

∂θi+(`−1)n
A`,kεj+(k−1)n

]
(49)

Tr
(
(V1 ⊗V2)

−1 (Σ1 ⊗Σ2)
)

= Tr
(
V−11 Σ1

)
Tr
(
V−12 Σ2

)
. (50)

We use the first-order necessary conditions for the optimal µ:

− (V1 ⊗V2)
−1 (m− µ) + Eε [∇Ln (θ)] = 0 . (51)

And so we obtained (16). We use the first-order necessary conditions for the optimal A:

−p
(
A−>

)
i,j

+Tr
(
V−12 Σ2

)∑
k

(V1)
−1
i,kAk,j+Eε

[
p∑
`=1

p∑
k=1

∂Ln (θ)

∂θ`+(i−1)p
B`,kεk+(j−1)p

]
= 0 .

(52)

And in matrix form we obtain:

−pA−> + Tr
(
V−12 Σ2

)
V−11 A + Eε

[
Ψ>BΦ

]
= 0 . (53)

where Ψ,Φ ∈ Rp×n such that vec(Ψ) = ∇Ln (θ) and vec(Φ) = ε. And so we obtained

(16).

We use the first-order necessary conditions for the optimal B:

−n
(
B−>

)
i,j

+Tr
(
V−11 Σ1

)∑
k

(V2)
−1
i,kBk,j+Eε

[
n∑
`=1

n∑
k=1

∂Ln (θ)

∂θi+(`−1)n
A`,kεj+(k−1)n

]
= 0 .

(54)

And in matrix form we obtain:

−nB−> + Tr
(
V−11 Σ1

)
V−12 B + Eε

[
Ψ>AΦ

]
= 0 . (55)

And so we obtained (16).
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12 Technical results for Appendix 11

In this section, we prove the technical results used in Appendix 11.

Let ∆
(n)
i,j ∈ Rn×n such that

(∆
(n)
i,j )n,m = δn,iδm,j.

We then have

∂Eε [Ln (θ)]

∂Ai,j
= Eε

[
∂Ln (θ)

∂Ai,j

]
(a)
= Eε

[
np∑
`=1

∂Ln (θ)

∂θ`
· ∂θ`
∂Ai,j

]
(b)
= Eε

[
np∑
`=1

∂Ln (θ)

∂θ`
· ∂(µ` +

∑
k(A⊗B)`,kεk)

∂Ai,j

]
(c)
= Eε

[
np∑
`=1

∂Ln (θ)

∂θ`

np∑
k=1

(
∆

(n)
i,j ⊗B

)
`,k

εk

]

(d)
= Eε

 ip∑
`=(i−1)p+1

∂Ln (θ)

∂θ`

jp∑
k=(j−1)p+1

(
∆

(n)
i,j ⊗B

)
`,k

εk


= Eε

[
p∑
`=1

p∑
k=1

∂Ln (θ)

∂θ`+(i−1)p
B`,kεk+(j−1)p

]
, (56)

where

• (a) is because θ is a vector of length n · p and by the chain rule for derivatives;

• (b) holds since θ` = µ` +
∑np

k=1 (A⊗B)`,k εk;

• (c) is by definition of ∆
(n)
i,j , and since we differentiate by Ai,j;

• (d) is since (∆
(n)
i,j ⊗B)`,k 6= 0 if (i−1)p+1 ≤ ` ≤ ip or if (j−1)p+1 ≤ k ≤ jp.

Let ∆
(p)
i,j ∈ Rp×p such that

(∆
(p)
i,j )n,m = δn,iδm,j.
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We then have

∂Eε [Ln (θ)]

∂Bi,j

= Eε

[
∂Ln (θ)

∂Bi,j

]
(a)
= Eε

[
np∑
`=1

∂Ln (θ)

∂θ`
· ∂θ`
∂Bi,j

]
(b)
= Eε

[
np∑
`=1

∂Ln (θ)

∂θ`
· ∂(µ` +

∑
k(A⊗B)`,kεk)

∂Bi,j

]
(c)
= Eε

[
np∑
`=1

∂Ln (θ)

∂θ`

np∑
k=1

(
A⊗∆

(p)
i,j

)
`,k

εk

]
(d)
= Eε

[
n∑
`=1

n∑
k=1

∂Ln (θ)

∂θi+(`−1)n
A`,kεj+(k−1)n

]
, (57)

where

• (a) is because θ is a vector of length n · p and by the chain rule for derivatives;

• (b) holds since θ` = µ` +
∑np

k=1 (A⊗B)`,k εk;

• (c) is by definition of ∆
(p)
i,j , and since we differentiate by Bi,j;

• (d) is since (A⊗∆
(p)
i,j )`,k 6= 0 if k mod n = j and if ` mod n = i.
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13 Derivation of the fixed-point equations for the ma-

trix variate Gaussian

In this section, we provide additional details on the derivation of the fixed-point equations

for the the matrix variate Gaussian.

µ = m− (V1 ⊗V2)Eε [∇Ln (θ)] (58)

AA> +

(
p

Tr
(
V−12 Σ2

))V1
1

p
Eε

[
Ψ>BΦ

]
A> −

(
p

Tr
(
V−12 Σ2

))V1 = 0 (59)

BB> +

(
n

Tr
(
V−11 Σ1

))V2
1

n
Eε

[
ΨAΦ>

]
B> −

(
n

Tr
(
V−11 Σ1

))V2 = 0 (60)

Lemma 2 reveals the fixed-point equations

µ = m− (V1 ⊗V2)Eε [∇Ln (θ)] (61)

A = D1Q1 −
1

2

(
p

Tr
(
V−12 Σ2

))V1
1

p
Eε

[
Ψ>BΦ

]
(62)

B = D2Q2 −
1

2

(
n

Tr
(
V−11 Σ1

))V2
1

n
Eε

[
ΨAΦ>

]
(63)

14 Proof of Theorem 1

Proof. We define θj = µj + εjσj where εj ∼ N (0, 1). According to the smoothing

theorem, the following holds

Eε
[
∂Ln (θ)

∂θi
εi

]
= Eεj 6=i

[
Eεi
[
∂Ln (θ)

∂θi
εi

∣∣∣∣ εj 6=i]] . (64)

The conditional expectation is:

Eεi
[
∂Ln (θ)

∂θi
εi

∣∣∣∣ εj 6=i] =

∞∫
−∞

∂Ln (θ)

∂θi
εifεi (εi) dεi , (65)

36



where fεi is the probability density function of a standard normal distribution. Since fεi

is an even function

Eεi

[
∂Ln (θ)

∂θi
εi

∣∣∣∣ εj 6=i] =

∞∫
0

∂Ln (µi + εiσi, θ−i)

∂θi
εifεi (εi) dεi −

∞∫
0

∂Ln (µi − εiσi, θ−i)
∂θi

εifεi (εi) dεi .

(66)

Now, since Ln (θ) is strongly convex function with parameter mn > 0 and continu-

ously differentiable function over Rd, the following holds ∀θ1,θ2 ∈ Rd:

(∇Ln (θ1)−∇Ln (θ2))
T (θ1 − θ2) ≥ mn ‖θ1 − θ2‖22 . (67)

For θ1,θ2 such that

(θ1)j =


(θ2)j , j 6= i

µi + εiσi, j = i ,

(68)

(θ2)j =


(θ1)j , j 6= i

µi − εiσi, j = i ,

(69)

the following holds:

(
∂L (θ1)

∂θi
− ∂L (θ2)

∂θi

)
εi ≥ 2mnσiε

2
i . (70)

Therefore, substituting this inequality into (66), we obtain:

Eε
[
∂L (θ)

∂θi
εi

]
≥ mnσi > 0 . (71)
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15 FOO-VB Algorithm: Some Special Cases

In this section, we present the FOO-VB algorithms for the matrix variate Gaussian and

diagonal Gaussian variants.

15.1 Matrix variate Gaussian

In the case of matrix variate Gaussian, one can write the deterministic transformation

θ = µ + (A⊗B) ε (72)

in matrix form

W = M + BΦA> , (73)

where W,Φ ∈ Rd2×d1 and vec (W) = θ, vec (Φ) = ε. The deterministic transforma-

tion and the posterior update rule for the matrix variate Gaussian in the matrix form can

be found in Algorithm 3.

15.2 Diagonal Gaussian

The deterministic transformation and the posterior update rule for the diagonal Gaussian

can be found in Algorithm 4.

16 Implementation details

For the matrix variate version of FOO-VB, we initialize the weights by sampling from

a Gaussian distribution with zero mean and a variance of 2/(ninput + 2). We do so by
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Algorithm 3 Methods for the matrix variate Gaussian version

TRANSFORM(ε, φ = (M,A,B)) :

W = M + BΦA>

Σ1 = AA>

Σ2 = BB>

UPDATE
(
φn−1 = (M,A,B) , ε(1..K),g(1..K)

)
:

vec(Ψ(k)) = g(k)

vec(Φ(k)) = ε(k)

Ē1 = 1
K

∑K
k=1 Ψ(k)

Ē2 = 1
K

∑K
k=1

1
p
Ψ(k)>BΦ(k)

Ē3 = 1
K

∑K
k=1

1
n
Ψ(k)>AΦ(k)

M←−M−BB>Ē1AA>

A←− X such that XX> + AA>Ē2X
> −AA> = 0

B←− X such that XX> + BB>Ē3X
> −BB> = 0

(The matrix equations are solved using Lemma 2)
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Algorithm 4 Methods for the diagonal Gaussian version

TRANSFORM(ε, φ = (µ,σ)) :

θi = µi + σiεi

UPDATE
(
φn−1 = (µ,σ) , ε(1..K),g(1..K)

)
:

(
Ē1

)
i

= 1
K

∑K
k=1 g

(k)
i(

Ē2

)
i

= 1
K

∑K
k=1 g

(k)
i ε

(k)
i

µi ←− µi − σ2
i (Ē1)i

σi ←− σi

√
1 +

(
1
2
σi(Ē2)i

)2 − 1
2
σ2
i (Ē2)i

sampling the mean of the wights from a Gaussian distribution, such that

Mi,j ∼ N
(

0,
2α

ninput + 2

)
, (74)

where α ∈ (0, 1). In addition, we sample the diagonal elements of the matrices A,B

form a Gaussian distribution, such that

εiAi,i ∼ N

(
0,

√
2(1− α)

ninput + 2

)
(75)

εiBi,i ∼ N

(
0,

√
2(1− α)

ninput + 2

)
, (76)

where the non-diagonal elements are initialized to zero. We use 2500 Monte Carlo

samples to estimate the expected gradient during training, and average the accuracy of

2500 sampled networks during testing, unless stated otherwise.

For the diagonal version of FOO-VB, we initialize the mean of the weights µ by

sampling from a Gaussian distribution with a zero mean and a variance of 2/(ninput +
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noutput), unless stated otherwise. We use 10 Monte Carlo samples to estimate the

expected gradient during training, and set the weights to the learned mean testing.

16.1 Discrete permuted MNIST

We use a fully connected neural network with 2 hidden layers of 100 width, ReLUs

as activation functions and softmax output layer with 10 units. We used mini-batch of

size 128 and 20 epochs We conducted a hyper-parameter search for all algorithms and

present the best test accuracy for 10 tasks, with LR ∈ {0.1, 0.01, 0.001, 0.0001} and

regularization coefficient ∈ {250, 150, 10, 0.1, 0.02} (see tables 2, 3 and 4). For FOO-

VB we used α = 0.5 in the matrix variate version, and σinit = 0.047 in the diagonal

version. For Online EWC we used LR of 0.001 and regularization coefficient of 10.0

and for MAS we used LR of 0.001 and regularization coefficient of 0.1.

16.2 Continuous permuted MNIST

We use a fully connected network with 2 hidden layers of width 200. Following Hsu

et al. (2018), the original MNIST images are padded with zeros to match size of 32× 32.

The batch size is 128, and we sample with replacement due to the properties of the

continuous scenario (no definition for epoch as task boundaries are undefined). We

conducted a hyper-parameter search for all algorithms and present the best test accuracy

for 10 tasks, see Figure 6. For FOO-VB we used α = 0.6 in the matrix variate version,

and σinit = 0.06 in the diagonal version. For Online EWC and MAS we used the

following combinations of hyper-parameters: LR of 0.01 and 0.0001, regularization

coefficient of 10, 0.1, 0.001, 0.0001, and optimizer SGD and Adam. The best results for
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online EWC were achieved using LR of 0.01, regularization coefficient of 0.1 and SGD

optimizer. For MAS, best results achieved using LR of 0.01, regularization coefficient of

0.001 and SGD optimizer.
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Figure 6: Hyper-parameters search for continuous permuted MNIST experiment.

16.3 Vision datasets mix

We followed the experiment as described in Ritter et al. (2018). We use a batch size of

64, and we normalize the datasets to have zero mean and unit variance. The network

architecture is LeNet like with 2 convolution layers with 20 and 50 channels and kernel

size of 5, each convolution layer is followed by a Relu activations function and max pool,

and the two layers are followed with fully connected layer of size 500 before the last

layer. SGD baseline was trained with a constant learning rate of 0.001 and ADAM used

ε = 10−8, LR of 0.001 and (β1, β2) = (0.9, 0.999). FOO-VD trained with initial STD
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of 0.02 and batch size 64.

17 Complexity

The diagonal version of FOO-VB requires ×2 more parameters compared to SGD,

as it stores both the mean and the STD per weight. In terms of time complexity, the

major difference between SGD and FOO-VB arises from the estimation of the expected

gradients using Monte Carlo samples during training. Since those Monte Carlo samples

are completely independent the algorithm is embarrassingly parallel.

Specifically, given a mini-batch: for each Monte Carlo sample, FOO-VB generates

a random network using µ and σ, then making a forward-backward pass with the

randomized weights.

Two main implementation methods are available (using 10 Monte Carlo samples as

an example):

1. Producing the (10) Monte Carlo samples sequentially, thus saving only a single

randomized network in memory at a time (decreasing memory usage, increasing

runtime).

2. Producing the (10) Monte Carlo samples in parallel, thus saving (10) randomized

networks in memory (increasing memory usage, decreasing runtime).

We analyzed how the number of Monte Carlo iterations affects the runtime on

Continuous permuted MNIST using the first method of implementation (sequential MC

samples). The results, reported in Table 1, show that runtime is indeed a linear function

of the number of MC iterations.
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Table 1: Average runtime of a single training epoch with different numbers of Monte

Carlo samples. The MC iterations have linear effect on runtime for classification, and

almost no effect in the continuous task-agnostic experiment, probably due to implementa-

tion specifics. Using less MC iterations does not affect accuracy significantly. Accuracy

reported in the table is from the continuous experiment (Fig 5).

Experiment MC iterations Accuracy Iteration Vs. SGD

runtime [seconds]

Continuous SGD 77.79 % 0.0024 ×1

task-agnostic 2 (FOO-VB) 92 % 0.0075 × 3.12

(Fig 5) 10 (FOO-VB) 93.40% 0.0287 × 11.95

For the matrix variate version of FOO-VB, the main bottleneck is the SVD operation,

with the following breakdown:

• A single MC iteration takes 0.002 seconds

• A single iteration (including all MC iterations and the matrix updates) takes 0.68

seconds (with 10 MC iterations)

• Each SVD takes 0.22 seconds, in this case we have two SVDs, which takes 0.44

seconds - about 2
3

of the iteration runtime.

In the experiments we used a single GPU (GeForce GTX 1080 Ti).
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Table 2: Hyper-parameter search results on discrete permuted MNIST - EWCOnline

Algorithm LR Regularization coef. Accuracy

EWConline 0.01 250.0 38.47

EWConline 0.01 150.0 48.33

EWConline 0.01 10.0 81.33

EWConline 0.01 0.1 42.46

EWConline 0.01 0.02 39.40

EWConline 0.0001 250.0 46.70

EWConline 0.0001 150.0 55.58

EWConline 0.0001 10.0 84.03

EWConline 0.0001 0.1 58.68

EWConline 0.0001 0.02 55.17

EWConline 0.001 250.0 46.20

EWConline 0.001 150.0 54.19

EWConline 0.001 10.0 85.06

EWConline 0.001 0.1 52.13

EWConline 0.001 0.02 40.48

EWConline 0.1 250.0 19.32

EWConline 0.1 150.0 29.05

EWConline 0.1 10.0 10.04

EWConline 0.1 0.1 10.49

EWConline 0.1 0.02 9.688

45



Table 3: Hyper-parameter search results on discrete permuted MNIST - MAS

Algorithm LR Regularization coef. Accuracy

MAS 0.01 250.0 29.73

MAS 0.01 150.0 29.85

MAS 0.01 10.0 44.20

MAS 0.01 0.1 63.50

MAS 0.01 0.02 63.46

MAS 0.0001 250.0 49.57

MAS 0.0001 150.0 54.13

MAS 0.0001 10.0 78.03

MAS 0.0001 0.1 83.49

MAS 0.0001 0.02 75.32

MAS 0.001 250.0 46.41

MAS 0.001 150.0 50.64

MAS 0.001 10.0 72.59

MAS 0.001 0.1 84.56

MAS 0.001 0.02 82.63

MAS 0.1 250.0 8.948

MAS 0.1 150.0 9.772

MAS 0.1 10.0 13.64

MAS 0.1 0.1 21.45

MAS 0.1 0.02 19.49
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Table 4: Hyper-parameter search results on discrete permuted MNIST - Adam, SGD and

Adagrad

Algorithm LR Regularization coef. Accuracy

Adam 0.0001 0.0 52.64

Adam 0.01 0.0 10.69

Adam 0.1 0.0 10.31

Adam 0.001 0.0 27.20

SGD 0.01 0.0 66.18

SGD 0.0001 0.0 71.17

SGD 0.001 0.0 76.94

SGD 0.1 0.0 36.97

Adagrad 0.1 0.0 51.48

Adagrad 0.001 0.0 82.42

Adagrad 0.0001 0.0 74.14

Adagrad 0.01 0.0 75.98
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18 5000 epochs training

We turn to a MNIST classification experiment to demonstrate the convergence of the

log-likelihood cost function and the histogram of STD values. We train a fully connected

neural network with two hidden layers and layer width of 400 for 5000 epochs.
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Figure 7: Average log-likelihood cost function of the train set and the test set - layer

width 400.

Figure 7 shows the log-likelihood cost function of the training set and the test set.

As can be seen, the log-likelihood cost function on the training set decreases during

the training process and converges to a low value. Thus, FOO-VB does not experience

underfitting and over-pruning as was shown by Trippe and Turner (2018) for BBB

(Blundell et al., 2015).

Figure 8 shows the histogram of STD values during the training process. As can

be seen, the histogram of STD values converges. This demonstrates that σi does not
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Figure 8: Histogram of STD values, the initial STD value is 0.05.

collapse to zero even after 5000 epochs.

Figure 9 shows the learning curve of the train set and the test set. As can be seen, the

test accuracy does not drop even if we continue to train for 5000 epochs.

19 Task-aware continual learning on vision datasets

We followed Ritter et al. (2018) and challenged our algorithm with the vision datasets

experiment. In this experiment, we train sequentially on MNIST, notMNIST, 4 Fashion-

MNIST, SVHN and CIFAR10 (LeCun et al., 1998; Xiao et al., 2017; Netzer et al., 2011;

4Originally published at

http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html and downloaded from

https://github.com/davidflanagan/notMNIST-to-MNIST
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Figure 9: Test accuracy and train accuracy - layer width 400.

Krizhevsky and Hinton, 2009). Training is done in a sequential way with 20 epochs per

task — in epochs 1-20 we train on MNIST (first task), and on epochs 81-100 we train on

CIFAR10 (last task). All five datasets consist of about 50,000 training images from 10

different classes, but they differ from each other in various ways: black and white vs.

RGB, letters and digits vs. vehicles and animals etc. We use the exact same setup as in

Ritter et al. (2018) for the comparison — LeNet-like (LeCun et al., 1998) architecture

with separated last layer for each task as in CIFAR10/CIFAR100 experiment. Results

are reported on Table 5.
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Table 5: Accuracy for each task after training sequentially on all tasks. PTL stands

for Per-Task Laplace (one penalty per task), AL is Approximate Laplace (Laplace

approximation of the full posterior at the mode of the approximate objective) and OL is

Online Laplace approximation. Results for SI, PTL, AL and OL are as reported in Ritter

et al. (2018). We highlight the best accuracy in bold.

Test accuracy [%] on the end of last task (CIFAR10)

Method Average MNIST notMNIST F-MNIST SVHN CIFAR10

Diagonal methods

FOO-VB 81.37 86.42 89.23 83.05 82.21 65.96

SGD 69.64 84.79 82.12 65.91 52.31 63.08

ADAM 29.67 17.39 26.26 25.02 15.10 64.62

SI 77.21 87.27 79.12 84.61 77.44 57.61

PTL 82.96 97.83 94.73 89.13 79.80 53.29

AL 82.55 96.56 92.33 89.27 78.00 56.57

OL 82.71 96.48 93.41 88.09 81.79 53.80

Non-Diagonal methods

PTL 85.32 97.85 94.92 89.31 85.75 58.78

AL 85.35 97.90 94.88 90.08 85.24 58.63

OL 85.40 97.17 94.78 90.36 85.59 59.11
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