

University of Birmingham

Manifold alignment aware ants
Mohammadi, Mohammad; Tino, Peter; Bunte, Kerstin

DOI:
10.1162/neco_a_01478

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Mohammadi, M, Tino, P & Bunte, K 2022, 'Manifold alignment aware ants: a Markovian process for manifold
extraction', Neural Computation, vol. 34, no. 3, pp. 595-641. https://doi.org/10.1162/neco_a_01478

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is an accepted manuscript version of an article first published in Neural Computation https://direct.mit.edu/neco. The final version of
record is available at https://doi.org/10.1162/neco_a_01478

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1162/neco_a_01478
https://doi.org/10.1162/neco_a_01478
https://birmingham.elsevierpure.com/en/publications/1e341115-66e6-4b1d-9231-e41e3a4a01cc

Manifold Alignment Aware Ants: a Markovian
process for manifold extraction

Mohammad Mohammadi1, Peter Tino2, Kerstin Bunte1

1Faculty of Science and Engineering, University of Groningen, the Netherlands.

2Department of Computer Science, University of Birmingham.

Keywords: manifold learning, swarm intelligence, dimensionality reduction, noise re-

duction, density estimation

Abstract

The presence of manifolds is a common assumption in many applications including

astronomy and computer vision. For instance, in astronomy low-dimensional stellar

structures, such as streams, shells and globular clusters, can be found in the neighbor-

hood of big galaxies such as the Milky Way. Since these structures are often buried

in very large data sets, an algorithm which can not only recover the manifold, but also

remove the background noise (or outliers) is highly desirable. While other works try to

recover manifolds either by pushing all points towards manifolds or by down-sampling

from dense regions, aiming to solve one of the problems, they generally fail to sup-

press the noise on manifolds and remove background noise simultaneously. Inspired

by the collective behavior of biological ants in food-seeking process, we propose a new

algorithm which employs several random walkers who are equipped with a local align-

ment measure to detect and denoise manifolds. During the walking process the agents

release pheromone on data points which reinforces future movements. Over time the

pheromone concentrates on the manifolds, while it fades in the background noise due

to an evaporation procedure. We use the Markov Chain (MC) framework to provide

a theoretical analysis of the convergence of the algorithm and its performance. More-

over, an empirical analysis, based on synthetic and real world data sets, is provided to

demonstrate its applicability in different areas, such as: a) improving the performance

of t-distributed stochastic neighbor embedding (t-SNE) and spectral clustering using the

underlying MC formulas, b) recovering astronomical low-dimensional structures and c)

improving the performance of the Fast Parzen Window density estimator.

1 Introduction

New technological developments facilitate the collection of large amounts of high-

dimensional data in different fields, such as astronomy, sensor networks, medical sci-

ence, and computer vision. A typical challenge in dealing with high-dimensional data is

the Curse of Dimensionality, where the data space is sparse, such that data points are far

from their neighbors. However, in practice, the high dimensional data is often generated

by a system governed by a small number of underlying components (Dixit, 2019). In

other words, the high-dimensional data lies on a lower-dimensional topological struc-

ture called a manifold. Therefore, many dimensionality reduction methods, such as

(Roweis and Saul, 2000; Belkin and Niyogi, 2003; Donoho and Grimes, 2003; Zhang

and Zha, 2003; Coifman and Lafon, 2006), aim to identify this underlying manifold

2

from the data. However, such approaches might be tremendously impeded in their per-

formance because of the presence of noise and outliers (Wang and Carreira-Perpinán,

2010). This led to the development of methods aiming to deal with noisy manifolds

and/or outliers.

There are different strategies to decrease the impact of noise on manifold learning

algorithms. The technique proposed in (Little et al., 2020) denoises data sets via down-

sampling and picking samples in high dense regions, whereas others suppress the noise

level via pushing all instances towards region with higher density. While the first cat-

egory can deal with background noise (or outliers not belonging to any manifold), the

basic assumption in the second category is that the noisy samples belong to a manifold,

and their deviations from the manifold are caused by measurement noise. An example

technique is Manifold Denoising (MD) (Hein and Maier, 2006), where the denoising

process is modeled as a diffusion process on a neighborhood graph using the Laplacian

to denoise the manifold. The aim of Klicpera et al. (2019) is to generalise the notion

of diffusion operator on graphs so that larger node neighborhoods than one-hop in the

neighborhood graph are considered. To this end, the authors first construct a transition

graph (that can be re-normalized to define a MC) that encompasses a variety of (po-

tentially unbounded) node neighborhoods, albeit strongly down-weighting increasingly

large ones. The resulting dense transition graph then needs to be sparsified to consider

only (potentially) higher order neighborhoods that “really matter”, i.e. have strong sup-

port in the transition structure. The Generalized Diffusion Convolution (GDC) is then

formulated in such a new neighborhood structure. (Wang and Carreira-Perpinán, 2010)

proposes Manifold Blurring Mean Shift (MBMS), where the mean shift directions are

3

only allowed to be parallel to manifold normals. Although increasing the number of

iterations in the above algorithms may cause a better result, they eventually partition

the manifold into local clusters. To overcome this problem, Locally Linear Denoising

(LLD) (Gong et al., 2010) proposes a non-iterative method, assuming that a manifold

can be explained as a set of overlapping linear patches. While it denoises each patch

separately, it simultaneously uses the graph Laplacian to achieve a smooth manifold.

However, such denoising methods may fail in applications, such as astronomy, where

noisy manifolds are buried inside point clouds. Thus, a method capable of handling

both types of noise, along with a manifold and background, is highly desirable.

Natural systems, such as ant colonies, have motivated many swarm algorithms in

computer science. For instance, the cooperation among ants in the food-seeking process

has inspired many solutions for optimization problems (Dorigo et al., 1991; Dorigo,

1992; Dorigo et al., 1996; Stützle and Hoos, 2000; Maniezzo, 1999; Blum et al., 2001)

and clustering (Tsai et al., 2004; Chu et al., 2004; Runkler, 2005). In nature, when an ant

leaves its nest to find food it deposits a chemical substance called pheromone on its path,

which serves as information for other ants which are attracted to it. Each ants’ decision

is influenced by the pheromone: the higher the concentration is on a particular route, the

more likely it is chosen as a path to follow. This seemingly uncoordinated local behavior

in collection assists the hive to find the shortest path to the food source. Following this

strategy, several algorithms were proposed and applied to optimization problems. Their

simplicity and flexibility make these methods desirable for many optimization tasks

that include graphs, such as vehicle/internet routing (Rizzoli et al., 2004) and water

distribution systems (Gil et al., 2011).

4

Unfortunately, strategies explained above fail to denoise data comprising of noisy

manifolds contained in point clouds, which are often faced in application domains in-

volving particle simulations, such as astronomy. In this contribution, we propose a new

algorithm to uncover noisy manifolds buried in high-dimensional background noise.

Motivated by ant colony optimization strategies, our method employs multiple artificial

ants who jump from point to point based on defined preferences and release pheromone.

In previous work we proposed a strategy in which ants were allowed to transport data

points towards the manifolds and hence denoising and “cleaning” them (Mohammadi

and Bunte, 2020). In contrast, this contribution aims to detect noisy manifolds in po-

tentially large amounts of background noise. Here, the position of data points is not

changed, instead the ants prefer to move towards low-dimensional structures and de-

posit pheromone on the points they visit. The latter serves as positive feedback that

accumulates and concentrates on the manifolds, leaving the noisy points with relatively

less pheromone and hence highlighting the structures. Both our approach and GDC are

built on a notion of a stochastic transition matrix reflecting the connection structure of

a given graph. While in our case, the neighborhood graph represents local geometric

structures of a point cloud, in GDC pairwise relationships are used (even though in ap-

plications the graphs do often represent point clouds). In general, our approach differs

from graph diffusion (GD) in several important aspects:

1. In our approach the adjacency structure of the neighborhood graph by itself is not

sufficient - we explicitly enforce a preference for neighbors that are aligned with

low-dimensional structures in the point cloud the neighborhood graph represents;

2. Motivated by ant colony algorithms we allow for an additional mechanism of

5

positive reinforcement when discovering low-dimensional point structures in a

noisy background, namely pheromone accumulation and evaporation;

3. We do not perform any graph convolution, instead we associate the “importance

values” of each node with the amount of accumulated pheromone. Note that

these values potentially reflect large scale geometric structures as the pheromone

is deposited over long-range ant walks. In this sense, our approach shares the

ambition of GDC for representing larger scale “important” neighborhoods. How-

ever, in GDC the larger scale structures are rapidly weighted down, whereas in

our case, the pheromone deposits can survive over large scale structures, if fre-

quently visited by the ants.

With empirical experiments we demonstrate the capability of our algorithm to high-

light manifolds in synthetic and real-world applications. Furthermore, we show that

the pheromone distribution can be used to improve the performance of the Fast Parzen

Window density estimator. In addition to an empirical analysis we provide a thorough

theoretical analysis to verify the ability of pheromone to encode information about dis-

tances of data points to the underlying manifold. First we only focus on a linear man-

ifold and use the Markov Chain framework to study the behavior of the algorithm. In

order to extend our analysis to non-linear manifolds we assume that a manifold can be

approximated by locally linear patches, and we analyze how the pheromone distribu-

tion asymptotically behaves. Our analysis shows that the pheromone sorts data points

according to their distances to the linear patch, i.e. the closer a data point is to the linear

patch, the higher pheromone level it has. In summary, we propose an algorithm that

provides valuable information, called pheromone, about how far points are from the un-

6

derlying manifolds. This information is beneficial not only to extract noisy manifolds

buried in point clouds, but also to build more effective density estimators.

The organization of this contribution is as follows. In section 2, we provide back-

ground information to study random walks in general. Section 3 contains three alter-

native transition probabilities for random walks and our proposed method to extract

manifolds from a point cloud is exhibited in section 4. A theoretical analysis of the

role of the pheromone and its convergence is presented in section 5. Section 6 con-

tains an empirical analysis on synthetic data sets and real-world application examples,

demonstrating the performance in recovering manifolds and improving visualization

and density estimation techniques.

2 Background and notation

Let X = [x1 x2 · · · xN] ∈ RD×N be the data matrix storing N D-dimensional

data points in its columns. Given a number r > 0, we define the neighborhood of any

point xi as follows:

Br(xi) = {xj| ‖xi − xj‖2 < r, 1 ≤ j ≤ N} , (1)

where ‖.‖ denotes the Euclidean norm. This definition of neighborhood has an advan-

tage of being geometrically motivated (Belkin and Niyogi, 2003), which also inspires

our theoretical analysis. Alternatives are methods such as k-nearest neighbor and mu-

tual k-nearest neighbor (Von Luxburg, 2007). In the neighborhood graph nodes corre-

spond to the data points fromX and (xi,xk) represents the directed edge connecting xi

to xk, with the associated weight w(xi,xk) ≥ 0. The usual way to describe a Markov

7

Chain (MC) is to use a weighted graph where the nodes denote the states of the MC,

and its weights represent the probability of transitions between the states. Thus, from

the above neighborhood graph one can construct an MC by row-normalization, i.e.:

pij =
w(xi,xj)∑

k∈Br(xi)w(xi,xk)
(2)

where pij is the transition probability of jumping from xi to xj . A popular MC process

is the random walk where a walker follows the transition probabilities to move on the

graph. We will now review some of the key results and notions from the MC theory that

will be needed in our study.

Assume S = {1, 2, ..., N} represents the state space of a system. Let Xn denote the

random variable of the state of the system in the n-th time step. In an MC, we assume

that the next state of the system only depends on the current state, and the system’s

behavior is described through transition probabilities:

pij = P (X1 = j|X0 = i), ∀i, j ∈ S (3)

with X0 being the initial state of the system. In this section, we only consider homo-

geneous MCs where the transition probabilities are independent of the time n. Now,

let P = [pij] be a matrix containing the transition probabilities. While P includes the

transition probabilities for one time step, it can be extended to arbitrary number of steps:

Theorem 1. For a MC with the transition probability matrix P , we have

P (Xn = j|X0 = i) = p
(n)
ij

where p(n)ij is (i, j)-th element of the n-th power of the matrix P , i.e. P n = P × · · · × P︸ ︷︷ ︸
n times

(Kulkarni, 1999).

8

This distribution is used to study an MC in a limited time interval. Let Nj(n) denote

the number of visits state j accumulates over (n+1) steps including the initial state. To

study the behavior of a chain in this interval the occupancy time is defined as follows:

Definition 2.1. For any state j and initial state i, the occupancy time of state j up to n

is the expected number of times the system spends in state j in a random walk of n+ 1

steps starting in i, i.e.:

mij(n) = E[Nj(n)|X0 = i] ,

where E[·] denotes the expectation operator.

Let M(n) = [mij(n)] denote the occupancy time matrix. The following theorem con-

nects the occupancy time to the power of transition matrix (Kulkarni, 1999):

Theorem 2. Given an MC, its occupancy time matrix is

M(n) =
n∑
q=0

P q . (4)

While the above theorem helps to study an MC in a finite number of time steps, we

would like to investigate the long-term behavior of the chain, which is encoded in the

stationary distribution:

Definition 2.2. For an MC with the transition probability matrix P the distribution

π = [π1, ..., πN] is called its stationary distribution if the following balance equation

holds:

πP = π . (5)

Here, we only focus on a specific class of Markov Chains called ergodic chains.

9

Definition 2.3. An MC is called ergodic if the following condition holds:

∃T ∈ N : ∀n > T, ∀i, j ∈ S P (Xn = j|X0 = i) > 0 .

In other words, for sufficiently large time steps n the system can be found in any state.

The following theorem shows that the stationary distribution captures all information

about the long-term behavior of an ergodic MC (Cinlar, 2013; Kulkarni, 1999).

Theorem 3. For an ergodic MC its stationary distribution π is unique with:

∀i ∈ S; lim
n→∞

P (Xn = j|X0 = i) = πj , (6)

lim
n→∞

P (Xn = j) = πj , (7)

and the expected return time to state j is µj =
1

πj
. (8)

3 Homogeneous Markov Chain

An important class of manifold learning techniques relies on weighted graph represen-

tations of data. Markov Chains constructed on graphs offer a powerful tool to represent

non-linear manifolds and are used in several dimensionality reduction techniques. This

is exemplified by a well-known family of dimensionality reduction techniques called

”kernel eigenmap methods”, which includes local linear embedding (Roweis and Saul,

2000); Laplacian Eigenmaps (Belkin and Niyogi, 2003); Hessian Eigenmaps (Donoho

and Grimes, 2003); local tangent space alignment (Zhang and Zha, 2003) and diffusion

map (Coifman and Lafon, 2006). The general idea is that the eigenvectors of Markov

transition matrices are used to project high-dimensional data to a lower dimensional

Euclidean space preserving the main structures of the data (Coifman and Lafon, 2006).

10

Therefore, applying MCs in the context of manifold learning has been employed in

several techniques.

Although manifold learning techniques assume that the data lies on a lower-dimen-

sional topological structure, in practice, it rarely clear due to the presence of noise. One

way to improve their performance is to use ”less noisy data” closely aligned with the

underlying manifold. In this contribution, the goal is to perform a random walk that

places emphasis on such manifold aligned sub-samples. In the following, we introduce

three MCs that can recover a manifold by highlighting sample points closer to it.

3.1 Weights Based on Kernels

A common way to construct an MC on a data set is to use kernel functions (Berry and

Sauer, 2016), i.e. a map K : RD × RD → R that fulfills:

• ∀x,y ∈ RD K(x,y) = K(y,x)

• ∀x,y ∈ RD K(x,y) ≥ 0 ,

and quantifies a “similarity” between pairs of data points. The most popular kernel

function is the Gaussian, which for two points xi and xj is defined as:

Kσ(xi,xj) = exp

(
−‖xi − xj‖

2

2σ2

)
, (9)

with the Euclidean distance ‖.‖ and scale parameter σ > 0. Based on the Gaussian

kernel the transition probability reads:

pij =
Kσ(xi,xj)∑
k∈Ni Kσ(xi,xk)

with Ni being the set of point xi’s neighbors. This definition of transition probabilities

reinforces random walkers to spend more time in denser regions.

11

x2

x
x1

a)
x2

x
x1

b)

Figure 1: An illustration of a curved manifold. In contrast to x2 the points x and x1

lie on the curved manifold. The Euclidean distance (dashed) to both x1 and x2 is equal

(see panel a). As shown in panel b the distance to the tangent (dashed) reflects the

closeness to the manifold much better.

3.2 Weights Based on Tangent Spaces

Assuming the presence of a manifold the noise level of a data point can be related to

its distance from the manifold. Thus, to form a MC that encourages random walkers

to spend more time on the manifold the walkers need to know how far data points are

from the manifold. As depicted in Fig. 1 a) the Euclidean distance fails to reveal this

information. There, if a random walker resides on point x the Gaussian kernel gives

the walker the same chance to stay on the manifold (point x1) or to leave it (jumping to

point x2) 1. In order to overcome this drawback, we need to define a favorable measure

that improves the approximate distances to the manifold.

A manifold can be approximated locally at a point x by its tangent space (Tu, 2011).

1A similar problem holds for the GDC, introduced in Klicpera et al. (2019). Since it enforces sym-

metric weights between every pairs of point, it uses a similar weight for jumping from x to x2 and vice

versa.

12

Hence, we propose to use the tangent space to estimate the distance of x’s neighbors

to the manifold (see Figure 1b). Let N represent the set of x’s neighbors, for exam-

ple enclosed in Br(x). The tangent space at x is typically approximated by Principal

Component Analysis (PCA) on N 2, yielding a set of eigenvalues and unit orthogonal

eigenvectors of the local co-variance matrix, {(λk, uk)}Dk=1. Without loss of generality,

we assume that the eigenvalues are in descending order with λ1 ≥ λ2 ≥ · · · ≥ λD ≥ 0

and normalized to
∑

k λk = 1. Then for a d-dimensional manifold the subspace spanned

by the columns of U1 =
[
u1, u2, · · · , ud

]
provides an estimation for the tangent space

and locally for the manifold.

Since we consider noisy data sets we only have access to a noisy version of the

tangent space Û1. Hence, depending on the noise level the difference between U1 and

Û1 may be small or high. For more details, we refer the reader to (Kaslovsky and Meyer,

2014) and (Little et al., 2017). In the following we introduce two ways to define MCs

highlighting samples close to manifold structures.

A manifold with known intrinsic dimensionality: Consider a d-dimensional mani-

fold in x’s neighborhood. For any xi ∈ N one can estimate the distance to the tangent

space by:

δMi = ‖
(
I − Û1Û

T
1

)
(xi − x′)‖ , (10)

where x′ determines the place where the tangent space touches the manifold in the

neighborhood. Based on these quantities, we define the weight values to be used in the

2Note that methods, such as (Lerman et al., 2015), provide better estimation for the tangent spaces.

However, since in this contribution we consider big data sets we use the less costly PCA.

13

calculation of transition probabilities Eq. (2) as follows:

wd(x,xi) =

1− δMi

α
if α ≥ ∆i

0 if α < ∆i .

(11)

where α is a factor to ensure the weight values are positive. Here, we determine α such

that only p percent of neighbors have non-zero weights. This definition constructs a

random walk favoring jumps closer to the manifold. In other words, the random walker

observes a flat region and it is more likely to move to a point close to it.

A manifold with unknown intrinsic dimensionality In most applications the dimen-

sionality of a manifold d is unknown and eigenvalues are typically used to estimate it.

As suggested in (Wang et al., 2008) the intrinsic dimensionality may be estimated by:

d̂ = arg max
d
Sd ,

where Sd = d · (λd − λd+1), d ∈ {1, · · · , D − 1} and SD = D · λD. However, the

performance of these types of criteria highly depend on the neighborhood size which is

related to the noise level and the manifold curvature. In order to tackle this problem, we

consider all possible values of d instead of picking a specific value. The basic idea is to

compute the weight values for any d ∈ {1, · · · , D}, according to Eq. (11), followed by

the calculation of their mean:

w(x,xi) =
D∑
d=1

Sd · wd(x,xi) , (12)

where the eigengap Sd indicates the importance of each intrinsic dimensionality. Since

Sd ≥ 0 and
∑D

d=1 Sd = 1,we may interpret Sd as the “probability” of the manifold

being d-dimensional and the weight value w as the expected weight with respect to this

distribution over manifold dimensionalities.

14

4 Ant Colony: Non-Homogeneous Markov Chain

The group behavior of decentralized natural systems, such as ant colony and bird flock-

ing, has inspired many methods in computer science and is often summarized under the

keyword Swarm Intelligence (SI). For instance, the biological behavior of ants in the

food-seeking process has motivated several methods in combinatorial optimization and

clustering. In the process two mechanisms, one behavioral and one environmental, help

to find the shortest path to a food source:

• Deposition: when a bio-ant walks to (and from) a food source it releases a sub-

stance called pheromone on the ground. Ants are attracted by it when they choose

a path to follow. The more ants use a route the more pheromone accumulates in-

creasing the chance for the path to be selected by subsequent ants as well.

• Evaporation: the pheromone evaporates over time and hence less attractive trails

with less pheromone eventually disappear.

Thus, although there is no central authority to control the ants’ behavior, their indirect

form of local interactions, via pheromone, helps them to find the shortest path to the

closest food source.

In this contribution, we propose a new algorithm that aims to recover manifolds

from noisy samples. The basic idea is that a set of ant-like agents are released in the

data space to search for manifolds based on the following elements:

O1: an MC that highlights underlying manifolds in the data set, and

O2: deposition and evaporation mechanisms to update the pheromone.

15

The aim is that ants are more likely to visit points close to manifolds and deposit

pheromone. Higher pheromone levels function as a positive feedback mechanism re-

inforcing further visitations. Eventually, by extracting points with more pheromone

potential manifolds can be uncovered. In the following we formally define and illus-

trate the two elements outlined above.

4.1 Manifold Alignment Aware Ants (M3A)

Inspired by swarm intelligence, M3A uses several ants who walk in the data space and

search for manifolds. During the search process, the ants interact with one another

through pheromone and with the environment. In section 3, we have already proposed

possible formulations of transition probabilities for the random walk. However, they

consider only the distribution of data points in the environment and do not provide

any form of communication among ants. Thus, we modify the transition probabilities

by adding a pheromone factor f . Given any data point xi, let fi denote the amount

of pheromone on it and Ni represents the set of its neighbors. The new transition

probability is defined as:

pij =
(wij)

1−γ
(
f̂j

)γ
∑

xk∈Ni (wik)
1−γ
(
f̂k

)γ , (13)

where wij = w(xi,xj). To ensure that the weights w and the pheromone f are in

the same scale, i.e. [0, 1], the pheromone is normalized within the neighborhood by

f̂j =
fj∑

xk∈Ni
fk

. The γ ∈ [0, 1] effectively controls how much ants are attracted to

structures already found or are able to explore the data space for new regions. For

instance, if we set γ to zero, then there would be no interaction among ants and, as a

16

result, every ant could independently explore the data space. Hence, the new transition

probability takes into account both types of interactions O1 and O2.

Pheromone is an indirect form of communication among artificial ants who release

it on the visited points. Therefore, the amount of pheromone on a sample varies and it

should be updated over time. In order to make the algorithm suitable for paralleliza-

tion the pheromone values are updated when the ants finish their walks of a predefined

number of steps n, called one round 3. Thus, the transition probability for the (t+1)-th

round can be re-written as:

p
(t+1)
ij =

(wij)
1−γ
(
f̂
(t)
j

)γ
∑

k∈Ni (wik)
1−γ
(
f̂
(t)
k

)γ , (14)

where f (t)
j denotes the amount of pheromone on xj after t rounds. Since the amount of

pheromone on a data point depends on the number of visits and the extent of evaporation

the updating rule consists of two parts:

• deposition based on the number of times a point has been visited, and

• evaporation depends on the environment and is controlled by hyper-parameter ρ.

Therefore, the pheromone level on any sample xi can be updated as follows:

f
(t+1)
i =

c

M

M∑
a=1

Na
i (n)

n+ 1
+ (1− ρ) · f (t)

i , (15)

where M is the number of ants and Na
i (n) is the number of times the a-th ant visits xi

over n+ 1 steps (including initial state) in the (t+ 1)-th round. Note that the deposition

3In one round, we can distribute the agents among several processors and update the pheromone after

n steps. Otherwise, communications between processors would be necessary to synchronize pheromone

values in every step, which would cause unnecessary overhead.

17

Algorithm 1: OneAnt

1 Input: pheromone f = [f1, f2, ..., fN];

2 Nv = [0, 0, ..., 0] ;

3 Randomly select a node as the initial position (say xi) ;

4 Nv[i] = Nv[i] + 1;

5 for s = 1 to n do

6 randomly select its next destination following Eq. (13) (say xj);

7 Nv[j] = Nv[j] + 1;

8 end

Result: number of visits Nv.

term is divided by M(n + 1) to prevent unlimited increase of the pheromone level

(especially for big M or n). The constant c > 0 specifies the amount of pheromone a

single ant deposits on a point in a single visit. The pseudo code of the M3A4 is provided

in Algorithm 2. In summary, we can highlight the following points:

• The proposed ant algorithm uses transition probabilities (Eq. 14) based on local

tangent alignment and pheromone to highlight manifold structures, with the latter

also reinforcing the agents to stay close.

• In contrast to previous works with the ant colony, the pheromone is deposited on

the nodes, instead of edges. This vastly reduces the number of pheromone values

that need to be stored. Moreover, the associated pheromone to each data point

can be used to extract points close to manifolds.

4M3A implementation is provided at https://github.com/mohammadimathstar/M3A

18

https://github.com/mohammadimathstar/M3A

Algorithm 2: Manifold Alignment Aware Ants (M3A)

1 Initialize the pheromone vector f = [f
(0)
1 , f

(0)
2 , ..., f

(0)
N];

2 for t = 1 to Niter do

3 Nv = [0, 0, ..., 0] ;

4 for a = 1 to M do

5 Na
v = OneAnt(f);

6 end

7 Nv =
∑M

a=1 Na
v ;

8 Update pheromone by Eq. (15).

9 end

Result: The pheromone vector f = [f1, f2, ..., fN].

• The amount of pheromone is updated after a pre-defined number of steps n. In

practice, this allows to distribute the computations among several processors and

parallelize the random walks.

4.2 Complexity analysis

As a preprocessing step for the M3A algorithm, we implement two operations on each

data point: a) finding its neighbors and b) performing PCA on its neighborhood. To

perform the neighbor search we need to calculate the distances of all pairs of N sam-

ples, which leads to the complexity of O(N2). However, there are approximate nearest

neighbor search strategies to reduce the complexity. For instance, the k-d tree algo-

rithm (Bentley, 1975) with the complexity O(N logN) can significantly decrease the

19

computational costs. Besides the neighbor search we perform local PCA using Singu-

lar Value Decomposition. In the worst case, its implementation for any point x scales

cubic with the dimensionality of the data and quadratic with the size of its neighbor-

hood |Nx|. Nonetheless, approximate strategies decrease the computational complexity

(Golub and Van Loan, 2012). In addition to speeding up the preprocessing step via ap-

proximate strategies the execution of the M3A can be accelerated via parallelization.

We only need to distribute the ants (line 5 in algorithm 2) among several processors.

5 Theoretical Analysis

Many metaheuristic methods suffer from the lack of theoretical analysis. Therefore,

their behavior and the effects of parameters on them are typically investigated only em-

pirically. In this section, we provide an analysis of the convergence and the impact of

hyper-parameters of the proposed algorithm in exemplary situations. More precisely,

we consider a data set containing a noisy d-dimensional manifold and we use Eq. (11)

to compute the weight values with α determined such that p = 100% of neighbors hav-

ing non-zero weight values. First, we study the effect of noise on the performance of

PCA and, as a result, on the M3A algorithm. Then, we examine the pheromone distri-

bution and demonstrate its convergence to the stationary distribution and its capability

in recovering a linear manifold. Finally, we study the performance of the algorithm

on non-linear manifolds under the assumption that they can be approximated by local

linear patches. We concentrate our analysis on a single patch and consider the other

patches as conceptually grouped in a single state representing “the outside”.

20

5.1 Spectral Analysis

An important subject in perturbation theory is to study the effect of noise on the eigen-

values and eigenvectors of matrices (Kaslovsky and Meyer, 2014). Since we use prin-

cipal directions of co-variance matrices to define the MCs, it is important to know the

effect of noise on the eigenvectors of co-variance matrices. LetM be a d-dimensional

vector subspace embedded in a higher dimensional space5. In the case of noise-free

samples it can be exactly recovered via PCA. However, in the presence of noise the

recovered subspace M̂ is perturbed. Here, the goal is to see the impact of noise on M̂.

Without loss of generality, let us consider the first d coordinates span the subspace

M. We assume the set {li}Ni=1 contains N realizations of M, such that their first d

coordinates (l
(1)
i , ..., l

(d)
i) are uniformly distributed withinBr(0). Thus, every point li on

the subspaceM has the form (l
(1)
i , . . . , l

(d)
i , 0, . . . , 0). Now, suppose these realizations

are disrupted via Gaussian noise with mean zero and standard deviation σID. If xi

denotes a noisy observation, then we have:

xi = li + ei ,

where ei is the noise vector. In this setting, the design matrix X can be described as:

X = L+ E , (16)

where the columns of L and E keep the noise-free realizations and noise vectors, re-

5The assumptions are made since we only focus on linear manifolds in the next subsection. For a

more general case, i.e. non-linear manifold, we refer to (Kaslovsky and Meyer, 2014) where the effect of

curvature on the covariance matrices is studied.

21

spectively. Let us denote the centered version of a matrix H = [h1,h2, · · · ,hN] as:

H̃ = H − µh1N ,

where µh = 1
N

∑
i hi and 1N =

[
1, 1, · · · , 1

]
withN entries. Then the data co-variance

matrix can be written as

1

N
X̃X̃T =

1

N
L̃L̃T + ∆

with the matrix ∆ representing the perturbation caused by the noise:

∆ =
1

N
(L̃ẼT + ẼL̃T + ẼẼT) .

From eigendecomposition, we obtain:

1

N
L̃L̃T = UΛUT =

[
U1 U2

] Λ1 0

0 0

[U1 U2

]T
,

where Λ1 is a d × d diagonal matrix containing non-zero eigenvalues in descending

order, and U1 includes their corresponding eigenvectors. Note that U2 can be any or-

thogonal basis for the last D − d coordinates. Similarly, we can write:

1

N
X̃X̃T = ÛΛÛT =

[
Û1 Û2

] Λ̂1 0

0 Λ̂2

[Û1 Û2

]T
.

The subspace M is spanned by U1 and the recovered subspace M̂ is spanned by Û1.

The orthogonal projectors ontoM and M̂ are derived as follow:

Q = U1U
T
1 Q̂ = Û1Û

T
1 .

Here, the Frobenius distance ‖Q − Q̂‖F is used to compare two subspaces because it

corresponds to the sum of the squared sines of the principal angles betweenM and M̂

22

(Kaslovsky and Meyer, 2014). If the number of samplesN and the probability constants

ε and ελ satisfy the following inequalities:

N > 4
(

max(
√
d,
√
D − d) + ε

)
, ε < 0.7

√
d(D − d), ελ <

3√
d+ 2

√
N (17)

then the following theorem offers a bound on the angle betweenM and M̂.

Theorem 4. (Kaslovsky and Meyer, 2014) Let

δ =
r2

d+ 2

(
1− 1√

N
ζ1(ελ)

)
− σ 1√

N
ζ2(ελ)− σ2

(√
d+
√
D − d+

1√
N
ζ3(ε)

)

and

β =
1√
N

[
σ
√
d(D − d)η(ε, ελ) +

1√
N
ζnumer(ε)

]
.

Additionally, if the following conditions hold:

• (Condition 1) δ > 0,

• (Condition 2) β < 1
2
δ

then

‖Q− Q̂‖ ≤ 2
√

2β

δ
(18)

with probability greater than

1− 2de−ε
2
λ − 9e−ε

2

(19)

over the joint random selection of the sample points and random realization of the noise,

23

where the following definitions have been made to ease the presentation:

ζ1(ελ) =
2√
N
− 1

N
3
2

+ (1− 1

N
)ελ
√

8(d+ 2) ,

ζ2(ε, ελ) =
2rd√
d+ 2

(
1 + ελ

5
√
d+ 2√
N

)(
1 +

6ε

5d

)
,

ζ3(ε) =
5

2

(√
d+ ε

√
2
) (√

D − d+ ε
√

2) ,

η(ε, ελ) =

(
1 +

6

5

ε√
d(D − d)

)[
σ +

r√
d+ 2

(
1 + ελ

5
√
d+ 2√
N

)]
,

ζnumer(ε) = σ2
√
d(D − 2)

(
1 +

6

5

ε√
d(D − d)

)(√
D − d+ ε

√
2
)
.

This theorem provides an upper bound for the difference between the true manifold

M and the recovered subspace M̂. Therefore, it is safe to say that the definition of

weights, in Eq. (11), is reasonable in keeping a random walker close to theM (via en-

couraging to stay close to M̂). Moreover, the above theorem can help us to explain the

relation between the quality of the recovered subspace M̂ and the hyper-parameters N ,

σ and r. An empirical example demonstrates the relationship in practice. We generate

samples from a noisy one-dimensional linear manifold embedded in R10 for various

(hyper-) parameter settings. Their influence is demonstrated in Figure 2. Panel (a)

shows that the approximation performance increases with a growing number of sam-

ples N . On the other hand, there is a direct connection between the noise level σ and

the approximation error as shown in panel (b). Moreover, Figure 2 (c) demonstrates

that a bigger neighborhood radius r recovers an increasingly accurate subspace, which

is not the case for non-linear manifolds, where this also depends on the curvature.

24

0 0.5 1 1.5 2

10
4

10
-4

10
-2

10
0

10
2

a) the effect of the number

 of samples

Bound

True error

0 0.05 0.1
10

-5

10
0

b) the effect of noise level

0 10 20 30 40 50
10

-5

10
0

c) the effect of radius

Figure 2: The effect of (hyper-)parameters on the quality of the recovered subspaces:

a) the effect of the number of samples N within the neighborhood (σ = 0.01, r = 1),

b) the role of the noise level σ (N = 1000, r = 1), and c) the impact of neighborhood

radius r (N = 1000, σ = 0.01).

5.2 Pheromone distribution for a linear manifold

The proposed M3A algorithm associates a pheromone value with each sample. In this

section, we show that the pheromone values encode distances of the samples to the re-

constructed subspace M̂. Let the data set fulfill the conditions explained in the previous

subsection, i.e. the noisy data points are uniformly distributed along a linear manifold

inside Br(0). In order to simplify our analysis we make the following assumptions in

constructing the MC:

• The radius r is big enough such that all pairs of samples are neighbors and any

sample belongs to its neighborhood. Therefore, instead of using local PCA for

each point we apply PCA on the whole data set.

• In Eq. (10) we set x′ to the origin 0. Thus, for any point xi its distance to M̂ is:

δMi = ‖
(
I − Û1Û

T
1

)
xi‖ ,

25

and with Eq. (11) the weight values are computed as:

wki = 1− δMi
α

= wi 1 ≤ k ≤ N . (20)

We define wi = wki since wki does not depend on k.

• Since the presence of powers in the transition probabilities (i.e. γ and 1 − γ)

makes our analysis intractable, we analyse the special case with removed powers,

such that our arguments can be presented in a tractable manner:

p
(t+1)
ji =

wif
(t)
i∑

k wkf
(t)
k

(21)

• The pheromone values are uniformly initialized by:

f
(0)
i =

1

N
∀i . (22)

• In the updating rule of pheromone Eq. (15) we set the constant c to the evaporation

rate ρ:

f
(t+1)
i =

ρ

M

M∑
a=1

Na
i (n)

n+ 1
+ (1− ρ)f

(t)
i . (23)

Without loss of generality we re-label the data points by {1, ..., N} such that

w1 ≥ w2 ≥ ... ≥ wN . (24)

Thus, the new labels sort samples according to their closeness to the subspace M̂.

Corollary 4.1. The pheromone values across the samples form a probability distribu-

tion called pheromone distribution denoted by f(t) =
[
f
(t)
1 , f

(t)
2 , . . . , f

(t)
N

]
.

26

Proof. It can be proven by induction over t. From (22) we have
∑N

i=1 f
(0)
i = 1 and if

we assume that the statement is valid for t, i.e.
∑N

i=1 f
(t)
i = 1, we can re-write (23):

N∑
i=1

f
(t+1)
i =

ρ

M

M∑
a=1

(=1︷ ︸︸ ︷
1

n+ 1

N∑
i=1

Na
i (n)

)
+ 1− ρ = 1 .

Note that the expression inside the parentheses is equal to 1 since
∑N

i=1N
a
i (n) equals

to the number of steps (i.e. n) plus 1 (for the initial point).

In this setting we show that:

• the pheromone values on sample points are sorted by their distances to the sub-

space M̂, and

• the pheromone distribution f(t) converges as t→∞.

Our analysis is based on the Markov Chain framework and we consider two cases. First,

we assume there is only one ant who walks for an unbounded number of steps in every

round (i.e. n→∞). Second, we assume an unbounded number of ants (i.e. M →∞)

who walk for n steps each in every round. In other words, we study the long-term and

the short-term behavior of random walks, respectively.

5.2.1 Single ant, unbounded path length

We assume a single ant (i.e. M = 1) performing n → ∞ steps in each round. From

theorem 3, the long-term fraction of time spending in a point xi is equal to its station-

ary distribution value πi. Therefore, for any point xi, its pheromone value is updated

27

according to:

f
(t+1)
i =

ρ

M

M∑
a=1

π
(t+1)
i + (1− ρ)f

(t)
i

= (1− ρ)f
(t)
i + ρ · π(t+1)

i , (25)

where π(t+1) is the stationary distribution associated to the transition probability matrix

in the (t + 1)-th round. The stationary distribution can be computed via the balance

equation:

π
(t+1)
i =

∑
j

π
(t+1)
j p

(t+1)
ji

=
∑
j

π
(t+1)
j

wif
(t)
i∑

k wkf
(t)
k

=
wif

(t)
i∑

k wkf
(t)
k

= p
(t+1)
ji ∀j . (26)

From (22) and (24), it can be shown (by induction) for any t > 0:

π
(t)
1 ≥ π

(t)
2 ≥ · · · ≥ π

(t)
N (27)

and by (25):

f
(t)
1 ≥ f

(t)
2 ≥ · · · ≥ f

(t)
N . (28)

Since the weight values encode the distance of samples to the subspace M̂, see Eq.

(11), the following corollary holds.

Corollary 4.2. The pheromone values are sorted according to their closeness to the

linear manifold M̂.

In the next step, we would like to prove the convergence of the pheromone distribution,

but we need to first establish the following lemma:

28

Lemma 5. The sequence {a(t)}∞t=0 with

a(t) =
∑
k

wkf
(t)
k (29)

• is monotonically increasing (i.e. a(t+1) ≥ a(t)) and

• is convergent (i.e. a(t) → a for some a ≥ 0).

Proof. a) To demonstrate that the sequence {a(t)}∞t=0 is monotonically increasing, we

need to show:

I(t) = a(t+1) − a(t) =
∑
k

wk ·∆(t)fk ≥ 0 ,

where ∆(t)fi = f
(t+1)
i − f (t)

i . We can write:

∆(t)fi
Eq.(25)

= ρ(π
(t+1)
i − f (t)

i)

Eq.(26)
= ρ

(
wi∑

k wkf
(t)
k

− 1

)
f
(t)
i

=
ρ

a(t)
(
wi − a(t)

)
f
(t)
i . (30)

For every fixed twe have: {f (t)
i }Ni=1 and {wi−a(t)}Ni=1

6 that are monotonically decreas-

ing sequences. Thus, the sequence {∆(t)fi}Ni=1 will be decreasing as well. Therefore,

we have:

I(t) =
∑
k≤k∗

wk ·

≥0︷ ︸︸ ︷
∆(t)fk +

∑
k>k∗

wk ·

<0︷ ︸︸ ︷
∆(t)fk

where k∗ = max{k : ∆(t)fk ≥ 0} and we define the following values:

w = min
k≤k∗

wk , w′ = max
k>k∗

wk .

Since {wi}Ni=1 is decreasing we have w > w′:

6From inequlaity (24) we know that {wi}Ni=1 is a decreasing sequence. Therefore, the sequence

{wi − a(t)}Ni=1 is also decreasing, since a(t) is a constant number for a fixed t.

29

I(t) ≥ w ·
∑
k≤k∗

≥0︷ ︸︸ ︷
∆(t)fk +w′ ·

∑
k>k∗

<0︷ ︸︸ ︷
∆(t)fk

w>w′

> w ·
∑
k≤k∗

∆(t)fk + w ·
∑
k>k∗

∆(t)fk

= w ·
∑
k

∆(t)fk = w ·
∑
k

(f
(t+1)
k − f (t)

k)

= w ·

(∑
k

f
(t+1)
k −

∑
k

f
(t)
k

)
= 0 .

b) We know that:

0 ≤ wi ≤ 1, 0 ≤ f
(t)
i ≤ 1

and therefore

0 ≤ a(t) ≤ N .

Since a(t) is an increasing and bounded sequence it is convergent.

The following theorem states that the pheromone values are convergent over time, and,

as a result, the algorithm is convergent to a unique distribution.

Theorem 6. For any point xi, its pheromone value f (t)
i is convergent as t→∞.

Proof. Since we know that the pheromone values f (t)
i are bounded from below and

above for all t, it is enough to show that {f (t)
i }∞t=1 is a monotonic sequence. From Eq.

(30) we just need to show that wi − a(t) becomes only positive or only negative after

some round T . Let us define the sequence {b(t)} as b(t) = wi − a(t). From lemma 5

we know sequence a(t) is increasing and a(t) → a (as t → ∞). Thus, b(t) will be a

decreasing sequence and convergent to wi − a:

• If wi ≥ a, then b(t) ≥ 0 for any t. Thus, from Eq. (30) we get ∆(t)fi ≥ 0 and then

f
(t)
i is a monotonically increasing sequence.

30

• If wi < a then there exists T ∈ N such that

∀t > T : a(t) > wi =⇒ b(t) < 0 ,

so f (t)
i is a decreasing sequence for t > T .

Corollary 6.1. From the convergence of pheromone values and the updating rule in Eq.

(25) it is clear that π(t)
i is convergent (as t→∞) for any i ∈ {1, 2, . . . , N}.

After proving the convergence of the pheromone distribution and stationary distri-

bution, we show in the following that the pheromone distribution (coming from the

algorithm) converges to the stationary distribution.

Theorem 7. The pheromone distribution f(t) converges to the stationary distribution

π(t) as t→∞, i.e. for any ε > 0, there exists T ∈ N such that

∀i ∈ {1, . . . , N}, ∀t > T → |π(t)
i − f

(t)
i | < ε .

Proof. Theorem 6 states that the pheromone distribution converges (i.e. ∀i f (t)
i → fi

as t→∞). Therefore, the update rule can be written as follows:

fi = (1− ρ)fi + ρ · lim
t→∞

π
(t)
i =⇒ lim

t→∞
π
(t)
i = fi .

Thus, the pheromone and stationary distribution converge towards the same distribution.

Theorems 6 and 7 indicate two important points: first, that the pheromone distribu-

tion is convergent and second, that f (t) converges to a well-known distribution called

the stationary distribution.

31

-5 0 5

X

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Y

a) Gaussian kernel

-5 0 5

X

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Y

b) Pheromone conc-

 entration

500 1000 1500 2000

t

0.75

0.80

0.85

0.90

0.95

1.00

 w
ij
 F

j

e) evolution of mean

 weight values

500 1000 1500 2000

t

0.00

1.00

2.00

3.00

4.00

5.00

6.00

p
h
e
ro

m
o
n
e
 v

a
lu

e
s

10 -4
d) points far from the

 manifold

500 1000 1500 2000

Iteration (t)

0.00

0.01

0.01

0.02

p
h
e
ro

m
o
n

e
 v

a
lu

e
s

c) points close to the

 manifold

500 1000 1500 2000

t

0.00

0.01

0.01

0.02

0.02

0.03

0.03

D
K

L
 (

 |
|
F

)

f) deviation of stationary

 and pheromone dist.

Figure 3: 1D manifold consisting of 2000 data points disrupted by Gaussian noise

(N(0, 0.1)) depicted as gray points in panel a and b. The 120 points with highest den-

sity (using a Gaussian kernel) and pheromone values (resulting from Eq. (20)) are high-

lighted in red in a) and b) respectively. The development of the pheromone values over

iterations t for points close to the manifold is steeply increasing (as shown in panel c),

while it is abruptly dropping to zero for points far away (see panel d). Panel e) shows

the evolution of the mean value of weights a(t) (see Eq. 29) and f) the KL- divergence

from the stationary to the pheromone distribution over the iterations t.

In order to demonstrate the above results with an example we generate a 1D man-

ifold such that 2000 data points are uniformly distributed on a line and disrupted by

32

Gaussian noise N(0, 0.1)7 (gray points as shown in Figure 3a and b). In panel (a)

the Gaussian kernel with σ = 1 and r = 0.1 8 is used to detect 120 samples with

the highest density highlighted in red. Panel (b) shows the samples with the highest

pheromone values using the weights defined in Eq. (20). With the Gaussian kernel fail-

ing we clearly see the superiority of the new algorithm in recovering the linear manifold

nearly perfectly, since it uses PCA in the creation of the MC. Panels (c) and (d) depict

the evolution of pheromone values of samples close to and far from the underlying 1D

manifold, respectively. Closer samples to the manifold exhibiting lower noise levels

receive more and more visits in smaller time intervals (from theorem 3) and thus ac-

cumulate more and more pheromone over time. Panel (e) displays that the mean of

weight values a(t) =
∑

k wkfk is monotonic increasing and convergent, as explained

in Lemma 5. Finally, panel (f) uses the Kullback Leibler (KL) divergence to show that

the pheromone distribution converges towards the stationary distribution, confirming

theorem 7.

5.2.2 Unbounded number of ants, fixed bounded path length

Since our algorithm allows employing multiple ants we study its performance in the

presence of a swarm of ants, which walk for a limited number of steps n in every round.

7Other noise models, such as uniform noise (“tubes” around the manifold) or the Laplace distribution

(strongly concentrating points along the manifold) can be alternative scenarios dependent on the process

with which the manifolds are sampled. However, here we concentrate on Gaussian noise that is suitable

for our applications to keep the paper more concise.

8Note that we select r such that the red points are more distributed along the manifold. For bigger

value for r, the red points are more concentrated around x = 0 and fail to recover the 1D manifold.

33

Let M denote the number of ants and Nj(n) represents the number of times a random

walker visits point xj during n steps on (t+ 1)-th round. For a specific case M = 1 we

have (according to Definition 2.1):

E[Nj(n)] = EP (X0=xi)[mij(n)] (31)

and assuming uniform distribution over the initial states (sample points),

E[Nj(n)] =
1

N

N∑
i=1

mij(n) . (32)

For M > 1 we still have the above equality for each ant since pheromone values are

kept fixed over one round. Hence, in each round an ant walks independently and others

do not have any impact on it. Initializing each ant on one of the sample points with

probability P (X0 = xi) we obtain by the Law of Large Numbers:∑M
a=1N

a
j (n)

M
→ E[Nj(n)], as M →∞ . (33)

As the number of ants M goes to infinity and from Eq. (32) and (33) the updating rule,

in Eq. (23), can be re-written:

f
(t+1)
j = (1− ρ)f

(t)
j +

ρ

N

N∑
i=1

mij(n)

n+ 1
. (34)

The following corollary says that, like the weight values, the pheromone values form a

decreasing sequence.

Corollary 7.1. For each t the sequence of pheromone values {f (t)
i }Ni=1 is monotonically

decreasing.

Proof. We use induction on t to show that the following statement holds for any arbi-

trary pair of points xi and xj with i < j:

f
(t)
i ≥ f

(t)
j . (35)

34

For simplicity we drop the exponent t in the following computations. In the first round

t = 1 we have:

f
(0)
i = f

(0)
j =

1

N

wi≥wj
=⇒ pki ≥ pkj ∀k ,

and

p
(2)
ki =

∑
l

pklpli ≥
∑
l

pklplj = p
(2)
kj ,

where p(2)ki is the (k, i)-the element of the second power of the transition matrix P .

Similarly, it can be generalized for any q:

p
(q)
ki ≥ p

(q)
kj ∀k .

As a result of theorem 2, we derive:

mki(n) ≥ mkj(n) ∀k .

Thus, the updating rule (see Eq. (34)) shows that the inequality (35) holds in the first

round. Now, let the statement hold up to t-th round (i.e. f (t)
i ≥ f

(t)
j). In the (t + 1)-th

round we have:

pki =
wifi∑
wkfk

wi≥wj
≥ wjfj∑

wkfk
= pkj .

Similar to the first round, we obtain for any q:

∀k p
(q)
ki ≥ p

(q)
kj =⇒ mki(n) ≥ mkj(n) =⇒ f

(t+1)
i ≥ f

(t+1)
j

Therefore, the pheromone values, similar to weights, encode information about how

close the individual sample points are to the subspace M̂. Analogously to Theorems

35

6 and 7 the following theorem guarantees the convergence of the pheromone and the

stationary distributions.

Theorem 8. The following statements hold for the pheromone distribution:

(a) For any point xi its pheromone values f (t)
i converge in time t (i.e. f (t)

i → fi as

t→∞).

(b) The pheromone distribution f(t) converges to the stationary distribution π(t) as

t→∞, i.e. for any ε > 0 there exists T ∈ N such that:

∀i ∈ {1, . . . , N},∀t > T → |π(t)
i − f

(t)
i | < ε .

Proof. The proof of (a) follows that of theorem 6.

b) From the convergence of pheromone values and the updating rule (34) we can write:

fi =
1

N(n+ 1)

N∑
i=1

lim
t→∞

m
(t)
ji (n) .

From (26) we know :

∀i, j; p
(t)
ji = π

(t)
i =⇒ p

(t)(q)
ji = π

(t)
i ∀q , (36)

where p(t)(q)ji is the (j, i)-th element of (P (t))q in the t-th round. Therefore, we have

fi = lim
t→∞

(
1

N(n+ 1)

N∑
i=1

m
(t)
ji (n)

)
theo.(2)

= lim
t→∞

(
1

N(n+ 1)

N∑
i=1

n∑
q=0

p
(t)(q)
ji

)
Eq.(36)

= lim
t→∞

1

N(n+ 1)

N∑
i=1

n∑
q=0

π
(t)
i = lim

t→∞
π
(t)
i .

Hence, it can be said that both scenarios (n → ∞ or M → ∞) result in the same

pheromone structure and asymptotic:

36

Figure 4: a) approximation of a piece of non-linear manifolds with a linear patch. b)

the linear patch with an external node (o), simulating points outside the neighborhood.

• pheromone values are sorted according to their closeness to the recovered linear

manifold, and finally

• they are convergent to the stationary distribution of the Markov Chain.

5.3 Pheromone distribution for a non-linear manifold

For non-linear manifolds we consider a simplified scenario for our analysis. Although

it is slightly different from the algorithm’s definition, we use it as an example to explain

the success of M3A in recovering non-linear manifolds. Motivated by the assumption

that a non-linear manifold can locally be approximated by linear patches (see Fig. 4 a),

we focus on a small part of the manifold (red circle), and we model all points outside

via a single state called o. Therefore, we assume that the random walker can jump from

any point inside the red circle to o with a probability proportional to the fixed-number

ν and vice versa with a probability proportional to the fixed-number ω (see Fig. 4 b).

Consequently, the transition probabilities are defined as:

37

p
′(t+1)
oj =

ω
N

, if j 6= o

1− ω if j = o

and p
′(t+1)
i(6=o)j =

ν∑

k 6=o wkf
(t)
k +ν

, if j = o

wjf
(t)
j∑

k 6=o wkf
(t)
k +ν

, if j 6= o

,

where N is the number of data points inside the red circle. Note that in order to dif-

ferentiate the transition probabilities and the stationary distribution in this section from

the previous one, we use the prime symbol (′).

From the balance equation we can compute the stationary distribution. Thus, for

any state j (6= o) we have:

π
′(t+1)
j =

∑
i 6=o

π
′(t+1)
i p

′(t+1)
ij + π′(t+1)

o p
′(t+1)
oj

=
∑
i 6=o

π
′(t+1)
i

wjf
(t)
j∑

k wkf
(t)
k + ν

+ π′(t+1)
o

ω

N

=
wjf

(t)
j∑

k wkf
(t)
k + ν

∑
i 6=o

π
′(t+1)
i + π′(t+1)

o

ω

N

=

(
wjf

(t)
j∑

k wkf
(t)
k

)(∑
k wkf

(t)
k∑

k wkf
(t)
k + ν

)
(1− π′(t+1)

o) + π′(t+1)
o

ω

N
. (37)

In the previous section we found p(t+1)
ij =

wjf
(t)
j∑

k wkf
(t)
k

and hence we can re-write the terms

above as follows:

π
′(t+1)
j = p

(t+1)
ij

(∑
k wkf

(t)
k∑

k wkf
(t)
k + ν

)
(1− π′(t+1)

o) + π′(t+1)
o

ω

N

= ap
(t+1)
ij + b , where (38)

a =

(∑
k wkf

(t)
k∑

k wkf
(t)
k + ν

)
(1− π′(t+1)

o) > 0

and b = π′(t+1)
o

ω

N
> 0 .

From Eq. (26) we obtain:

π
′(t+1)
j = aπ

(t+1)
j + b , (39)

38

where π(t+1)
j denotes the stationary distribution of the random walk in the previous

section. Thus, this equation connects the stationary distributions of the new MC π′ to π

in the previous section. In other words, the new distribution is monotonically increasing

with respect to the previous one.

The theorem 3 connects the long-term behavior of a random walk to its stationary

distribution. From (27) and (39) we see that the stationary distribution (and similarly the

pheromone distribution) is sorted according to the distances of data points (inside the

neighborhood) to the linear patch constructed by PCA. From theorem 2, we know that

the occupancy time (i.e. the short-term behavior) is directly connected to the transition

probabilities of the MC. For any i and j (6= o), we have:

p
′(t+1)
ij =

wjfj∑
k wkfk + ν

=

(
wjfj∑
k wkfk

)(∑
k wkfk∑

k wkfk + ν

)
= ap

(t+1)
ij

Thus, the new transition probabilities are monotonically increasing function of the pre-

vious transition probabilities. Therefore, similar results as in section 5.2.2 hold.

By simplifying the scenario, we show in this section that the algorithm sorts data

points according to their distances to the linear patches (as estimators for a manifold).

From (Little et al., 2017), we can conclude that the performance of the new algorithm

depends on several factors including selecting an appropriate neighborhood size r. Note

that r should be big enough to include enough number of samples for recovering the

tangent space, and small enough to prevent to cover high-curvature. Therefore, in the

presence of an appropriate r value, our analysis shows that the pheromone distribution

contains valuable information in order to highlight non-linear manifolds.

39

6 Experiments

In this section we use synthetic and real world data sets to investigate the performance

of M3A in different scenarios. At first we discuss the influence and specification of

its hyper-parameters. Furthermore, complementary to our analysis in section 5.1 we

empirically examine the impact of the new MC formulations for denoising and visual-

ization of non-linear manifolds. Moreover, we show how the proposed algorithm helps

to discover manifolds and to build better probabilistic models in the sense of sparseness,

descriptiveness, and preservation of structural details.

6.1 Strategy for hyper-parameter selection

Our analysis in section 5 shows that the neighborhood size r, the number of antsM , and

the number of steps n in one round play a major role for the performance of M3A. Thus,

an automatic strategy to find appropriate values for these quantities is highly desirable.

In the following we present such strategies for practical application.

In subsection 5.1, we demonstrate that a proper value for r depends on the noise

level σ of the manifold. We observe that a bigger r helps to reduce the effect of the noise

and achieve a better approximation for the linear manifold. However, as it is shown in

(Kaslovsky and Meyer, 2014) and (Little et al., 2017) for non-linear manifolds, the

presence of curvature encourages to use a smaller radius r, such that the manifold looks

almost linear within the local neighborhood. Hence, the selection of r is a trade-off

between the noise level and curvature of the manifolds. Here, to specify a suitable

value for r we use a mixture of Gaussian models to assess quantitatively the recovery of

the manifold. First, we place the centers of Gaussian distributions on points with higher

40

pheromone values, and then their co-variance matrices are computed based on the local

neighbors. Finally, we use the average log-likelihood (ALL) function to evaluate how

good models (for each r) fit the data set and to pick the best r (see Figure 5c).

In subsection 5.2 we investigate two strategies: a) using a few ants walking many

steps in every round, and b) using many ants walking a limited number of steps. As a

rule of thump to determine a suitable number of steps and ants (n and M) we assume

they fulfill the following inequality:

n ·M ≥ z ·N (40)

for a constant z. Thus, one may use a small number of workers M (or processors/cores)

with a big number of steps n or use many workers with a small number of steps in each

round. In our experimentation, we set the number of steps and the number of ants to

n = N and M = z = 50, respectively.

The pheromone determines how much the ants are reinforced to prefer points fre-

quently visited before. And the evaporation rate ρ and parameter γ control the impact of

the pheromone on the random walk process, and thus their determination is connected

to M and n. If M and n are both small, it means the algorithm has neither enough

ants nor enough time to highlight manifolds; thus, our analysis in subsection 5.2 is not

valid any more. In this case, we suggest using smaller ρ and γ to prevent highlight-

ing background noise. In this contribution, we set them to ρ = γ = 0.1 for all the

experiments.

Furthermore, the maximum amount of pheromone c added on a sample per round

is fixed to 2, and the factor α for the weight wd, in Eq. (11), is determined such that

only p = 50% of neighbors have non-zero values. Finally, for any sample xi, we

41

approximate the point x′ that touches the underlying manifold by x′ = 1
|Ni|
∑

xk∈Ni xk,

(see Eq. (10)).

6.2 Homogeneous Markov Chain

In this section we extend our theoretical analysis with an empirical analysis on non-

linear manifolds. First, we demonstrate the denoising capability of the MCs defined

in Eq. (11) and (12) on highlighting the underlying manifold. Second, we investigate

their impact on the performance of t-distributed stochastic neighbor embedding (t-SNE)

(Van der Maaten and Hinton, 2008), a widely used dimension reduction and visualiza-

tion technique.

Denoising the manifold: To check the success of the weighting methods (section 3)

in keeping ants close to the manifold, we need to study the short and long-term behavior

of the random walk defined by Eq. (2). According to theorems 2 and 3 the short and

long-term behaviors of MCs are directly connected to the power series of the transition

probability and to the stationary distribution, respectively. Here, we use a synthetic data

set to investigate the constructed MCs.

In Figure 5, panels (a,b) show 6000 samples generated from the s-curve manifold

disrupted by Gaussian noise N(0, 0.2). In order to select r we follow the strategy intro-

duced before (in section 6.1). We apply M3A with different r using 20% of the samples

(1200 points) with the highest pheromone values as means for Gaussian distributions

and their neighbors to determine the co-variance matrices. The quality of the models

is computed by the average log-likelihood (ALL) function and the results are shown in

42

-1

0

3

1

2

3

2
11

a) noisy data

00 -1

-1 0 1

-1

0

1

2

3

b) noisy data

0.4 0.6 0.8 1 1.2

r

-3.6

-3.5

-3.4

-3.3

A
L

L

c) selecting r

gaus.ker.

d=2

not fixed

-1

0

3

1

2

3

2
11

d) gauss. kernel

00 -1

-1

0

3

1

2

3

2
11

e) known d

00 -1

-1

0

3

1

2

3

2
11

f) unknown d

00 -1

-1 0 1

-1

0

1

2

3

g) gauss. kernel

-1 0 1

-1

0

1

2

3

h) known d

-1 0 1

-1

0

1

2

3

l) unknown d

Figure 5: 2 views of the noisy s-curve data set (a,b), radius selection via average

log likelihood for different r (c), and 1200 points with highest stationary distributions

values for the MCs defined by Eq. (11) (e,h) and Eq. (12) (f,l), using r = 0.6.

Figure 5c. Panels (d-l) show 1200 points with the highest stationary distribution values

for different MCs. As it can be seen the MC based on the Gaussian kernel function fails

to recover the manifold (see panels d and g). However, the other methods are successful

in keeping random walkers close to the manifold (see panels e, f, h and l). Note that

panels (e, f) also show that, since we use our knowledge about the intrinsic dimension-

43

ality of the manifold in Eq. (11), it gives a slightly better result than the MC defined

by Eq. (12). A similar result is achieved for the short-term behavior of the MCs where

the two formulation of Eq. (11) and (12) outperforms the Gaussian kernel function.

Manifold aligned similarities in t-SNE: A specific case of dimensionality reduction

is the visualization where high-dimensional data is embedded in two or three dimen-

sions. A well-known non-linear tool to visualize high-dimensional data is t-distributed

stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton, 2008). It trans-

forms pairwise similarities of data points to probability distributions of the high-dimen-

sional data as well as the low-dimensional embedding and then minimizes the Kullback-

Leibler divergence between them. While the original t-SNE is based on the Gaussian

kernel function Eq. (9), we replace it with the tangent space dissimilarity measure de-

fined in Eq. (11) and (12). Since high-dimensional data spaces are typically sparse we

use a k-nearest neighbors instead of radius neighborhood, and we set p = 100% (i.e.,

we normalize the distances in Eq. (11) via dividing them by their maximum values).

Furthermore, we compare the results to the original t-SNE using the Euclidean distance

to compute the neighborhood probabilities, and a t-SNE version using the Mahalanobis

distance instead. The latter is based on the co-variance of the data and can therefore

align with global directions of major variance. Therefore, the locally aligned formula-

tion, in Eq. (11) and (12), is compared to “no alignment” and “global alignment”.

We demonstrate the strategy using two real non-linear dimensionality reduction

benchmark data sets: 1) COIL20: consists of images (with 32×32 = 1024 pixels) of 20

objects rotated 72 times (5 degrees per image) forming one dimensional manifolds, and

44

2) USPS: contains 9298 gray-scale images (with 16× 16 pixels) of handwritten digits.

As a preprocessing step we apply PCA to decrease the dimensionality to 20. The differ-

ent t-SNE outputs are compared and evaluated using the quality of group compactness

(QGC) (Gorban and Zinovyev, 2010) as a measure of how close samples from the same

class remain in the embedding space. Let c(i; k) denote the number of points in the

k-neighborhood of xi with the same label, then the compactness of a class is defined

as:

QGCk(l) =
1

k ·N(l)

∑
yi=l

c(i; k)

where N(l) is the number of samples with the label l. If the QGC for a class is close to

one, it means the class is compact and well-separated from others. Since t-SNE is non-

convex it generates different results for each run and hence we repeat the experiment 10

times and report the average quality.

Figure 6 shows example t-SNE embeddings for COIL20 and USPS (panel a and

c), accompanied by results using Eq. (11) with d = 1 and k = 10 and Eq. (12) with

k = 20 (panels b and d). Panels e and g depict the average QGC curves for the different

similarity measures, respectively. It can be seen that the new similarity measures out-

perform others, especially for COIL20 since we use our knowledge about the intrinsic

dimensionality d = 1 of the manifolds. For the USPS, it is clear that it does a better

job for more global structures, i.e. clusters visible for k > 200. Since the new weights

only consider the distance to the estimated manifold, it can recover more closed loops

with less distortion (see panels a and b). Moreover, the four objects corresponding to

four types of toy cars cannot be separated using the original t-SNE because it maps cars

with the same orientations close to each other. As seen in panel g, the new weights do

45

0 20 40 60

k

0.6

0.7

0.8

0.9

1

Q
G

C

e) COIL20

HighD

Eucl.

Mahal.

New

0 20 40 60

k

0.2

0.4

0.6

0.8

1

g) COIL20 (cars)

Eucl.

New

a) b)

300 600 900

k

0.6

0.8

1
f) USPS

Orig.

Eucl.

Mahal.

New

300 600 900

k

0.6

0.8

1
h) USPS (3 & 5)

Eucl.

New

c)
d)0

1

2

3

4

5

6

7

8

9

Figure 6: The impact of the new similarity measures on the t-SNE: Top row COIL20: a)

using original t-SNE (perpl. 20) and b) tSNE+ using Eq. (11) (d = 1, k = 10). Middle

row USPS: c) using original t-SNE (perpl. = 30) and d) tSNE+ using Eq. (12) (k = 20).

Bottom row: average QGC measures for COIL20 and USPS (panel e and f). g) QGC

curves for four classes of toy cars in COIL20 and h) of digits 3 and 5 in USPS.

46

a better job in embedding them. Not knowing the intrinsic dimensionality of manifolds

in the handwritten digit data set, we use Eq. (12) to define a similarity measure for

t-SNE. Although t-SNE with the Gaussian kernel function can recover most classes, a

strong overlap between samples from digit 3 and 5 is visible. The new weights however,

successfully separate them and increase the QGC measure, as seen in panels d and h.

6.3 Manifold Alignment Aware Ants (M3A)

In this section we analyze the capability of M3A in recovering structures surrounded

by background noise. First, we compare it to related state-of-the-art techniques for

denoising low-dimensional manifolds. And second, we demonstrate the performance

of our algorithm on a real-world astronomical data set, namely the GAIA DR2 catalog

(Collaboration et al., 2018), to extract stellar structures.

Extracting low-dimensional manifolds: Typically, manifold learning assumes that

data points are lying on a low-dimensional manifold embedded in a higher-dimensional

space. However, in practice, manifolds are disrupted by high-dimensional noise, for

example stemming from equipment or the presence of samples that do not belong to

the manifolds. In those cases, the goal is to extract the manifolds by removing the

background noise and simultaneously suppressing the noise level on the manifolds. To

compare the performance of denoising techniques we create a synthetic 1D manifold

forming a circle (r = 6), which misses a part of its arc. Furthermore, we randomly

select 3000 points from the manifold and add Gaussian noise N(0, 0.3). To model

background noise, 3000 samples are generated following a uniform distribution in the

47

-10 0 10

-5

0

5

10

15

a) dataset

-10 0 10

-5

0

5

10

15

b) MD

-10 0 10

-5

0

5

10

15

c) MBMS

-10 0 10

-5

0

5

10

15

d) LLD

-10 0 10

-5

0

5

10

15

e) LLPD

-10 0 10

-5

0

5

10

15

f) M3A

Figure 7: Panel a): 1D circular manifold embedded in uniform background noise. Best

results of: b) MD, c) MBMS, d) LLD, and e) LLPD (containing 2000 samples, i.e.

35%). Panel f): denoised M3A result where gray and red points show 2700 (45%) and

780 (%13) samples with r = 3 and r = 2.

square [−15, 15]× [−10, 20] (see Figure 7a).

In the following we compare four denoising techniques to the proposed M3A. We

use: a) MD with hyper-parameters settings δt = 0.1, Niter = 20 and k = 40, b) MBSM

with k = 40 and Niter = 40, and c) LLD with λ = 0.01, k = 40 and σ = 1. Lastly,

LLPD is deployed using a threshold of 0.15. Moreover, in order to select r in M3A

we follow a two step strategy. First, we apply the algorithm using r = 3 to remove

the background noise. Note that since the density of the background is lower than the

manifold it can be done using a wide range of r. Then, we use the strategy explained in

48

section 6.1 to find the best r for the remaining points.

Some techniques, such as MD, MBMS and LLD, are not designed to deal with the

presence of the background noise and are therefore not directly suitable for the given

situation, as shown in Figure 7. Since the Manifold Denoisiong (MD) algorithm pushes

samples towards dense regions it has two disadvantages: first, it creates some new dense

structures in data space, and second, the real manifold becomes discontinuous (see

panel b). Since Manifold Blurring Mean Shift (MBMS) limits the movement of samples

to be parallel to the manifold normals, it can prevent discontinuity on the manifold.

However, it creates many artificial 1D manifolds and fails to recover the missing arc

in the circle structure of interest (see panel c). Similar to MBMS, the presence of

background noise highly influences the result of the LLD algorithm, which also fails to

recover the manifold (see panel d). In contrast to previous methods, LLPD considers the

presence of the background noise and extracts the samples in dense regions recovering

the noisy circle. Although it does not create new structures, it can not denoise the

manifold. It also fragments the structure into smaller clusters (see panel e). On the

other hand, our method encourages random walkers to stay close to the manifold and

overcomes all three problems: 1) it recovers the circle from the background noise, 2)

it preserves the missing part in the arc without creating artificial structures, and 3) it

reduces the manifold noise by subsampling based on the highest pheromone level (see

panel f).

Detecting dense structures in real world data: An important task in astronomy is

to extract stellar structures, such as galaxies and globular clusters. Here, we apply M3A

49

to a part of the GAIA DR2 catalog (Collaboration et al., 2018) containing 1, 071, 714

light sources. The data set contains seven features, including five denoting positional

information (right ascension (ra), declination (dec), motion along ra and dec, and par-

allax), as well as photometric information, that is G-band magnitude and (B-R) color.

As a preprocessing step, we normalize the data set and select the k nearest neighbor

(with k = 20) to speed up the computation. First, we use the positional information

to detect stellar structures. Figure 8a shows that M3A detects five of the known globu-

lar clusters (GC): 1) NGC4147 2) NGC5024 3) NGC5053 4) NGC5272 5) NGC5466.

Second, we would like to cluster the members of a GC. To extract stars of a GC, we

use objects which are not further than 0.05 degree from the center of the GC. Then,

we use their photometric information since it reveals the stage of life a star is in (for

more details see (Mohammadi et al., 2019)). Panels b and d display the clusters de-

tected by spectral clustering using a Gaussian kernel (Von Luxburg, 2007). However,

the resulting clusters do not correlate to any astrophysical meaning. If M3A is applied

on the extracted light sources, we obtain the transition probability matrix P . After sym-

metrization P ′ = 1
2
(P + P T), the spectral clustering can be implemented based on P ′.

From panels c and e, we see that the resulting clusters coincide with the three known

groups called: Main Sequence (MS), Horizontal Branch (HB) and Red Giant Branch

(RGB) (see (Mohammadi et al., 2019)). It can be seen that MS is separable since it is

a 2D manifold while HB and RGB are 1D manifolds. Moreover, since HB is almost a

line perpendicular to RGB, the weight values between these two clusters are small, and

as a result, they are separable. In summary, M3A provides: 1) a pheromone distribution

that can be used to find stellar structures, and 2) a transition probability matrix that can

50

180 187 194 201 208 215

ra

15

18

21

24

27

30

d
e
c

a) Globular clusters extracted

 from GAIA survey 2

NGC 5024

NGC 5053

NGC 5272

NGC 5466

NGC 4147

14

16

18

20

M
G

b) NGC 5466 c) NGC 5466

HB

RGB

MS

-1 0 1 2

(B-R) color

14

16

18

20
M

G

d) NGC 5053

-1 0 1 2

(B-R) color

e) NGC 5053

HB

RGB

MS

Figure 8: 5 clusters formed by 0.02% of samples with highest pheromone values result-

ing from M3A (r = 0.1, Nsteps = 5×106) applied to a window in the sky between right

ascension (ra) ∈]180, 220[and declination (dec)]15, 30[. b-e) the application of spectral

clustering on the photometric data of two globular clusters: b,d) using Gaussian kernel

as a similarity measure. c,e) using the transition probability in Eq. (14) (r = 0.5).

be used to group stars according to the stage of their life.

6.4 Improved density estimation

A common task in machine learning is to estimate the underlying probability density

function (pdf) given a limited number of data points. A typical way to model it is to use

a finite mixture model

f̂(x;θ) =
K∑
k=1

p(k)f̂(x; θk) ,

where p(k) and θk are the mixture weight and the parameter values of the k-th compo-

nent, respectively, while θ denotes the set of all parameters. If the number of models

51

(K) is much smaller than the number of samples (N) it provides a sparse representa-

tion for the data set. A well-known algorithm is the Gaussian Mixture Model (GMM)

(Bishop, 2006), which uses a mixture of full-rank Gaussian distributions to model the

pdf. Its parameters are learned via optimizing the likelihood function through an itera-

tive process, called Expectation-Maximization (EM). It is known that EM is sensitive to

the initialization step, and it may get stuck in local optima. Moreover, the time needed

for EM is dependent on the number of components and increases for large data sets

with many samples and dimensions. One way to avoid this problem is to use a non-

parametric method, such as Parzen Window (PW), which is a special case of the finite

mixture model with K = N , and it only has one parameter σ:

f̂(x;σ) =
1

N

N∑
k=1

K(x;xk, σ)

where K is the Gaussian kernel function. However, if the data points are distributed

along a low-dimensional manifold the spherical Gaussian kernel is often not an optimal

choice (Vincent and Bengio, 2003). Therefore, (Vincent and Bengio, 2003) proposed

the Manifold Parzen Window (MPW) which allows the Gaussian distributions to have

elliptical shapes instead of spherical. Whereas PW and MPW may provide a reliable

estimation, they both suffer from high computational costs in the test phase, due to the

large number of Gaussian models. To prevent this problem several methods, such as

Simplifying mixture models (SMM) (Zhang and Kwok, 2010) and Hierarchical clus-

tering of a mixture model (HCMM) (Goldberger and Roweis, 2005) were proposed.

They start with a large mixture model and then construct a simpler model, such that the

distance between the original model and the simplified one is minimized. In contrast

to these approaches, (Wang et al., 2009) proposed a new method called Fast Parzen

52

Algorithm 3: Partitioning the data space

Result: set S, containing the center of balls ;

1 Input: The pheromone vector f = [f1, f2, ..., fN] and the balls’ radius rball;

2 Set D = {x1,x2, · · · ,xN}, S = φ;

3 while D 6= φ do

4 l = arg maxxi∈D fi ;

5 find l’s neighbors Nl = Brball(xl) ;

6 S ← S ∪ {l} ;

7 D ← D − {l} − Nl ;

8 end

Window (FPW), which partitions the data space via hyper-balls positioned randomly

with fixed radii rball. Then, it fits a full-rank Gaussian distribution for each ball only.

Extending the latter idea we use the pheromone values obtained by M3A to find the

best position for the center of the hyper-balls. We start with the whole data set D and

pick the point xl with the highest pheromone as the center of a ball. Then we remove

all points within the ball from D. Then, we continue picking the next point in D with

the highest pheromone as the new center and remove its neighbor from D. Following

this strategy, we obtain a more compact list of centers. Its pseudo-code is summarized

in Algorithm 3.

To demonstrate the performance of the new strategy, we use three data sets:

1) a synthetic spiral shape manifold with Gaussian noise N(0, 0.04) for which 1000

samples are generated as a training set (see Figure 9a), and another 20000 samples

53

as a test set.

2) two intersected circular manifolds with radius 2: a) in the above circle the density

varies and the noise level is 0.2; b) at the bottom the noise level varies between

0 to 0.3 (see Fig. 10a). We generated 3350 and 16750 points for training and

testing, respectively. And

3) an astronomical simulation of a jellyfish galaxy that contains 3D position infor-

mation of 58531 particles.

To evaluate the performance, we use the average log-likelihood (ALL) to measure how

well the adapted model can describe the data set. We furthermore use 10-fold cross-

validation on the training set to find the best hyper-parameter values.

Table 1 reports the results of the above algorithms on the spiral shape manifold.

From cross-validation, hyper-parameters are found where m, k, and σ are the number

of components and neighbors, and the scale of Gaussian kernel, respectively, and rrw

is the neighbor size for M3A. Note that GMMk is the Gaussian mixture model when

k-means is used to initialize components. We repeat the experiment for M3A 10 times.

While ALL for the M3A+FPW (i.e., algorithm 3) is comparable with PW, it provides

a much sparser representation for the data set and speeds up the computation in the

testing phase. Moreover, Figure 9 shows the contour curves of the pdfs. We observe

that most methods represent the center of the spiral fairly well, with the exception of PW

and SMM, which provide the most noisy model. Strikingly, PW, SMM, and HCMM

discontinue the manifold in the less dense tail on the right side of the spiral, dividing

it into several small clusters. Our strategy M3A+FPW, on the other hand, not only

54

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

a) dataset

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

b) PW

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

c) MPW

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

d) GMM+rand

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

e) GMM+kmeans

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

f) SMM

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

g) HCMM

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

h) FPW

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

l) M3A+FPW

Figure 9: a) the noisy spiral data set, b-h) the contour curves for the density estima-

tors: PW, MPW, GMM+rand, GMM+kmeans, SMM, HCMM, FPW, and l) M3A+FPW:

neighborhood radius rrw = 0.13 and balls’ size rball = 0.21.

provides a compact model but also successfully tracks the underlying structure and

stays very close to the original manifold as compared to others.

In Table 2 we present the outputs of the studied algorithms on the two circular man-

ifolds. as in the previous examples, cross-validation is used to tune hyper-parameters,

and then the performance of the algorithms on the test set is reported. While the

55

Table 1: Comparison of density estimators for the spiral data set.

Algorithm Parameters ALL (std)

PW σ = 0.03 0.3130 (0.0)

MPW k = 45 0.3003 (0.0)

FPW rball = 0.18 (m = 20.8) 0.2851 (0.0092)

SMM m = 95 0.2762 (0.0116)

HCMM m = 35, σ = 0.06 0.2832 (0.0049)

GMM m = 20 0.2944 (0.0028)

GMMk m = 15 0.2802 (0.0049)

M3A+FPW rrw = 0.13, rball = 0.21 (m = 17.1±1) 0.3101 (0.0052)

FPW+M3A yields a sparse representation for the data, it also outperforms (in terms

of ALL) others, except for the GMMs methods. However, since the M3A can be paral-

lelized, it is more suitable for big datasets, in comparison to GMM techniques. More-

over, we display the contour curves of pdfs in Fig. 10 where the true manifold (without

noise) is shown in red. It can be seen that the M3A helps FPW to be more compact

and more successful in tracking the manifolds, as indicated by the black diamond in the

plot. In comparison to GMMs, FPW+M3A uniformly distributes Gaussian models on

the manifolds, even in less dense regions. It is especially important in some applica-

tions such as astronomy where low-density streams have high importance in studying

the evolution of astronomical structures. Therefore, similarly to previous experiments,

we conclude that FPW+M3A builds a compact model, which is more successful in

following the manifolds, regardless of their densities.

56

-2 0 2

-4

-3

-2

-1

0

1

2

3

4

a) dataset

-2 0 2

-4

-3

-2

-1

0

1

2

3

4

b) PW

-2 0 2

-4

-3

-2

-1

0

1

2

3

4

c) MPW

-2 0 2

-4

-3

-2

-1

0

1

2

3

4

d) GMM+rand

-2 0 2

-4

-3

-2

-1

0

1

2

3

4

e) GMM+kmeans

-2 0 2

-4

-3

-2

-1

0

1

2

3

4

f) SMM

-2 0 2

-4

-3

-2

-1

0

1

2

3

4

g) HCMM

-2 0 2

-4

-3

-2

-1

0

1

2

3

4

h) FPW

-2 0 2

-4

-3

-2

-1

0

1

2

3

4

l) M3A+FPW

Figure 10: a) two circular manifolds with variation in density and noise level, b-l) the

contour curves for the compared eight density estimators. Note that black diamonds

represent the means of the Gaussian distributions.

Astronomical simulations are often used to study the evolution of astronomical ob-

jects through time. Since a simulation often includes many Millions of particles, it is

57

Table 2: Comparison of density estimators for the two circular manifolds.

Algorithm Parameters ALL (std)

PW σ = 0.09 -2.668 (0.0)

MPW k = 140 -2.689 (0.0)

FPW rball = 0.75 (m = 31) -2.682 (0.0116)

SMM m = 800 -2.671 (0.0007)

HCMM m = 130, σ = 0.15 -2.700 (0.0014)

GMM m = 20 -2.620 (0.0036)

GMMk m = 20 -2.621 (0.0034)

M3A+FPW rrw = 0.6, rball = 0.95 (m = 20.6± 1) -2.650 (0.0027)

not possible to track each particle individually. Therefore, it is desirable to encode the

distribution of particles via a sparse pdf and follow its evolution instead. Since our goal

in this section is to compare different density estimators, we only use one time snapshot

of a simulated jellyfish galaxy, as shown in Figure 11 a and b. This data set is chal-

lenging since the density changes significantly in the data space. While the head of the

jellyfish is very dense the outer parts depict much lower density. Those parts contain

some low-dimensional structures called streams, as highlighted by boxes in panels a

and b. During the evolution process these structures are more affected by other astro-

nomical objects and change over time. Thus, in addition to the dense regions a suitable

density estimator should capture these lower density regions well.

We compare our M3A+FPW algorithm with the result of GMM initialized by k-

means visually and additionally report the quality of all density estimators as before.

58

45

a)

50

x

45

55

y

45
50

55

50

55

45

45

55

50

50

50

55
45

55

b)

c) M3A+FPW d) GMM+kmeans e) M3A+FPW f) GMM+kmeans

Figure 11: The simulated Jellyfish galaxy (viewpoint a and b). c-f) contour curves of

density estimators projected by the first two principal directions of Gaussian co-variance

matrices for zoomed regions a) (left) and b) (right) using Algorithm 3 (c,e) and GMM

initialized by k-means (d,f).

From Table 3 it can be seen that the GMM outperforms the other methods in terms of

ALL, which is expected since it aims to optimize the likelihood function. However, its

optimization process is time-consuming for big data sets, which makes it challenging

to be applied in big simulations, as indicated by large training times reported in the last

column of Table 39. PW as before provides an unnecessary complex model, which is

not very desirable for this application. Alternatively, the M3A+FPW strategy presents

a sparse model while preserving a comparable ALL.

9Here, we distribute the M3A ants among 10 processors (i.e. 5 ants per CPU) and restrict the number

of step in each round to n = 10000.

59

Table 3: Comparison of density estimators for the simulated jellyfish galaxy.

Algorithm Parameters ALL (std) dH (std) time in s (std)

PW σ = 0.08 -3.775 (0.018) 0.264 (0.040) 0.2 (0.0)

FPW r = 0.4, m = 949 -3.855 (0.023) 0.633 (0.071) 9.2 (0.4)

SMM m = 4100 -3.815 (0.021) 0.699 (0.115) 144.8 (10.5)

SMM m = 600 -4.249 (0.032) 0.393 (0.053) 63.0 (5.2)

HCMM σ = 0.17, m = 600 -3.967 (0.014) 0.697 (0.091) 12.4 (0.5)

GMM m = 300 -3.772 (0.025) 2.916 (0.600) 1244.4 (257.4)

GMMk m = 300 -3.767 (0.024) 3.060 (0.654) 909.3 (63.1)

M3A+FPW rrw = 0.4,

rball = 0.5, m = 566

-3.838 (0.025) 0.737 (0.109) 165.5 (2.1)

M3A+FPW rrw = 0.4,

rball = 0.65, m = 309

-3.882 (0.024) 0.823 (0.072) 151.2 (11.9)

In addition to ALL we also report the Hausdorff distance

dH(A,B) = max
{

max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(a, b)
}

where d denotes the Euclidean distance, and A and B are the set of particles and the set

of centers of Gaussian models, respectively.

It is informative since it shows how much the model captures the original low-

density structures. To compare our method to GMM we increase the balls’ radius to

rball = 0.65. From the table it is clear that the Hausdorff distance of the proposed

method is much lower than the one achieved by GMM. To visually see its success we

added the contour plots (see panels c-f). It can be seen that the new method is more

60

successful in fitting the pdf along with the low-dimensional structure. In summary, if

selecting a model is a trade-off between simplicity (sparsity) and capturing structural

details the M3A+FPW strategy, outlined in Algorithm 3, provides a sparse model with

a very competitive ALL value.

Conclusion

In some applications, such as astronomy, it is common to have low-dimensional struc-

tures buried inside big data sets. Therefore, it is desirable to have a method that extracts

these structures of varying density while their continuity is kept unchanged. Although

there are several methods, they often fail to either extract manifolds or keep their con-

tinuity. Inspired by the ant colony algorithm we propose a new method where a value,

called pheromone, is assigned to each sample. Later these quantities can be used to

reveal manifolds without the undesirable effects. To study the behavior of the algo-

rithm and the effect of its hyper-parameters, we provide a theoretical analysis using the

Markov Chain framework, where we consider a noisy manifold and apply the algorithm

examining two cases: a) a random walker with an unbounded number of steps, and b)

an unbounded number of walkers with a fixed number of steps. We show for both cases

that the pheromone distribution captures information about the distances of data points

to the underlying manifold. In addition to the theory, we empirically analyze the al-

gorithm using synthetic and real data sets, demonstrating three different scenarios: a)

denoising and clustering manifolds, b) visualizing data, and c) density estimation. In

all investigated scenarios and application examples strategies based using M3A exhibit

61

comparable or superior results in suppressing the noise, capturing the manifolds and

providing sparser models.

Acknowledgments

This work was supported by the European H2020-MSCA-ITN SUrvey Network for

Deep Imaging Analysis and Learning (SUNDIAL), project ID 721463. We thank the

Center for Information Technology of the University of Groningen for their support

and for providing access to the Peregrine high performance computing cluster. Fur-

thermore, this work has made use of data from the European Space Agency (ESA)

mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia

Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.

int/web/gaia/dpac/consortium). Funding for the DPAC has been provided

by national institutions, in particular the institutions participating in the Gaia Multilat-

eral Agreement.

References

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction

and data representation. Neural computation, 15(6):1373–1396.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative search-

ing. Communications of the ACM, 18(9):509–517.

Berry, T. and Sauer, T. (2016). Local kernels and the geometric structure of data. Ap-

plied and Computational Harmonic Analysis, 40(3):439–469.

62

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.cosmos.esa.int/web/gaia/dpac/consortium

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Blum, C., Roli, A., and Dorigo, M. (2001). Hc–aco: The hyper-cube framework for ant

colony optimization. In Proceedings of MIC, volume 2, pages 399–403.

Chu, S.-C., Roddick, J. F., Su, C.-J., and Pan, J.-S. (2004). Constrained ant colony

optimization for data clustering. In Pacific Rim International Conference on Artificial

Intelligence, pages 534–543. Springer.

Cinlar, E. (2013). Introduction to stochastic processes. Courier Corporation.

Coifman, R. R. and Lafon, S. (2006). Diffusion maps. Applied and computational

harmonic analysis, 21(1):5–30.

Collaboration, G., Brown, A., Vallenari, A., Prusti, T., de Bruijne, J., Babusiaux, C.,

Bailer-Jones, C., Biermann, M., Evans, D., Eyer, L., et al. (2018). Gaia data release 2.

summary of the contents and survey properties. Astronomy and Astrophysics, 616:1–

22.

Dixit, P. D. (2019). Introducing user-prescribed constraints in markov chains for non-

linear dimensionality reduction. Neural computation, 31(5):980–997.

Donoho, D. L. and Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding

techniques for high-dimensional data. Proceedings of the National Academy of Sci-

ences, 100(10):5591–5596.

Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph. D. Thesis,

Politecnico di Milano.

63

Dorigo, M., Maniezzo, V., and Colorni, A. (1991). Positive feedback as a search strat-

egy. Technical Report 91-016, Politecnico di Milano, Italy.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 26(1):29–41.

Gil, C., Baños, R., Ortega, J., Márquez, A. L., Fernández, A., and Montoya, M. (2011).

Ant colony optimization for water distribution network design: a comparative study.

In International Work-Conference on Artificial Neural Networks, pages 300–307.

Springer.

Goldberger, J. and Roweis, S. T. (2005). Hierarchical clustering of a mixture model. In

Advances in Neural Information Processing Systems, pages 505–512. Citeseer.

Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, volume 3. JHU press.

Gong, D., Sha, F., and Medioni, G. (2010). Locally linear denoising on image mani-

folds. In Proceedings of the Thirteenth International Conference on Artificial Intelli-

gence and Statistics, pages 265–272. JMLR Workshop and Conference Proceedings.

Gorban, A. N. and Zinovyev, A. (2010). Principal manifolds and graphs in practice:

from molecular biology to dynamical systems. International journal of neural sys-

tems, 20(03):219–232.

Hein, M. and Maier, M. (2006). Manifold denoising. In NIPS, volume 19, pages 561–

568.

64

Kaslovsky, D. N. and Meyer, F. G. (2014). Non-asymptotic analysis of tangent space

perturbation. Information and Inference: a Journal of the IMA, 3(2):134–187.

Klicpera, J., Weißenberger, S., and Günnemann, S. (2019). Diffusion improves graph

learning. In Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,

E. B., and Garnett, R., editors, Advances in Neural Information Processing Systems

32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS

2019, December 8-14, 2019, Vancouver, BC, Canada, pages 13333–13345.

Kulkarni, V. G. (1999). Modeling, Analysis, Design, and Control of Stochastic Systems.

Springer.

Lerman, G., McCoy, M. B., Tropp, J. A., and Zhang, T. (2015). Robust computation

of linear models by convex relaxation. Foundations of Computational Mathematics,

15(2):363–410.

Little, A. V., Maggioni, M., and Murphy, J. M. (2020). Path-based spectral clustering:

Guarantees, robustness to outliers, and fast algorithms. Journal of machine learning

research, 21:1–66.

Little, A. V., Maggioni, M., and Rosasco, L. (2017). Multiscale geometric methods

for data sets i: Multiscale svd, noise and curvature. Applied and Computational

Harmonic Analysis, 43(3):504–567.

Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search procedures

for the quadratic assignment problem. INFORMS journal on computing, 11(4):358–

369.

65

Mohammadi, M. and Bunte, K. (2020). Multi-agent based manifold denoising. In

International Conference on Intelligent Data Engineering and Automated Learning,

pages 12–24. Springer.

Mohammadi, M., Petkov, N., Bunte, K., Peletier, R. F., and Schleif, F.-M. (2019). Glob-

ular cluster detection in the gaia survey. Neurocomputing, 342:164–171.

Rizzoli, A. E., Oliverio, F., Montemanni, R., and Gambardella, L. M. (2004). Ant

colony optimisation for vehicle routing problems: from theory to applications. Gal-

leria Rassegna Bimestrale Di Cultura, 9(1):1–50.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally

linear embedding. science, 290(5500):2323–2326.

Runkler, T. A. (2005). Ant colony optimization of clustering models. International

Journal of Intelligent Systems, 20(12):1233–1251.

Stützle, T. and Hoos, H. H. (2000). Max–min ant system. Future generation computer

systems, 16(8):889–914.

Tsai, C.-F., Tsai, C.-W., Wu, H.-C., and Yang, T. (2004). Acodf: a novel data cluster-

ing approach for data mining in large databases. Journal of Systems and Software,

73(1):133–145.

Tu, L. W. (2011). An introduction to manifolds. Springer.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of

machine learning research, 9(11):2579–2605.

66

Vincent, P. and Bengio, Y. (2003). Manifold parzen windows. Advances in neural

information processing systems, pages 849–856.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing,

17(4):395–416.

Wang, W. and Carreira-Perpinán, M. A. (2010). Manifold blurring mean shift algo-

rithms for manifold denoising. In 2010 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, pages 1759–1766. IEEE.

Wang, X., Tino, P., and Fardal, M. A. (2008). Multiple manifolds learning framework

based on hierarchical mixture density model. In ECML PKDD, pages 566–581.

Wang, X., Tino, P., Fardal, M. A., Raychaudhury, S., and Babul, A. (2009). Fast parzen

window density estimator. In 2009 International Joint Conference on Neural Net-

works, pages 3267–3274. IEEE.

Zhang, K. and Kwok, J. T. (2010). Simplifying mixture models through function ap-

proximation. IEEE Transactions on Neural Networks, 21(4):644–658.

Zhang, Z. and Zha, H. (2003). Nonlinear dimension reduction via local tangent space

alignment. In International Conference on Intelligent Data Engineering and Auto-

mated Learning, pages 477–481. Springer.

67

	Introduction
	Background and notation
	Homogeneous Markov Chain
	Weights Based on Kernels
	Weights Based on Tangent Spaces

	Ant Colony: Non-Homogeneous Markov Chain
	Manifold Alignment Aware Ants (M3A)
	Complexity analysis

	Theoretical Analysis
	Spectral Analysis
	Pheromone distribution for a linear manifold
	Single ant, unbounded path length
	Unbounded number of ants, fixed bounded path length

	Pheromone distribution for a non-linear manifold

	Experiments
	Strategy for hyper-parameter selection
	Homogeneous Markov Chain
	Manifold Alignment Aware Ants (M3A)
	Improved density estimation

