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Abstract

This paper proposes an extension of principal component analysis for Gaussian pro-
cess (GP) posteriors, denoted by GP-PCA. Since GP-PCA estimates a low-dimensional
space of GP posteriors, it can be used for meta-learning, which is a framework for im-
proving the performance of target tasks by estimating a structure of a set of tasks. The
issue is how to define a structure of a set of GPs with an infinite-dimensional parameter,

such as coordinate system and a divergence. In this study, we reduce the infiniteness



of GP to the finite-dimensional case under the information geometrical framework by
considering a space of GP posteriors that have the same prior. In addition, we propose
an approximation method of GP-PCA based on variational inference and demonstrate

the effectiveness of GP-PCA as meta-learning through experiments.

1 Introduction

In recent years, machine learning algorithms have achieved high predictive accuracy
when sufficient amounts of a dataset are accessible. On the other hand, since a suf-
ficient dataset is not always available in practice, few-shot learning aiming to learn a
model from an insufficient dataset attracts a lot of attention (Wang et al., 2020). Meta-
learning is a framework for achieving few-shot learning by estimating common knowl-
edge among multiple tasks and applying that knowledge to target tasks when datasets of
similar tasks are available (Vilalta and Drissi, |2002; [Hospedales et al., 2020; Huisman
et al.| [2021)).

We focus on developing a meta-learning of Gaussian process (GP) (Rasmussen and
Williams, 2005). Conventional meta-learning methods of GP are classified into the
covariance function-based approach and mean function-based approach. The former
improves a predictive accuracy by estimating a covaiance function between tasks or a
hyperprior of covariance functions associate with each task (Bonilla et al., 2008; Srijith
and Shevade, 2014). Although the approach can estimate a suitable covariance function
of each task considering a relationship between tasks, it assumes that the mean function

of a prior is zero in general. Therefore, the approach may not be suitable for few-shot



learning when this assumption does not hold. The mean function-based approach esti-
mates a mean function and covariance function of a common prior across all tasks (Yu
et al., |2005; |[Fortuin et al., |2020). While this approach estimates the mean function, it
requires a sufficient data when a task deviates from the prior distribution, since it does
not estimate the task-specific knowledge.

In our approach, we assume a set of GP posteriors lies on a low-dimensional sub-
space and estimate the subspace. Since the subspace parameterizes a mean function and
covariance function associated with each task, we can estimate a suitable mean function
and covariance function for each task. Especially, our approach can be interpreted as
a kind of bagging of Gaussian processes (GPs) (Chen and Ren, |2009) when a rank of
the subspace is zero, and expresses the relationships between tasks more flexibly by in-
creasing the rank of the subspace. Therefore, even when only a few data are available,
our approach can accurately estimate a GP posterior by projecting a posterior associ-
ated with a target task onto the subspace of a set of GP posteriors. Since the subspace
is estimated by extending a principal component analysis (PCA) for GP posteriors, we
call the proposed method GP-PCA.

For our method, we have to consider a space of GPs with an infinite-dimensional
parameter. A structure of a probability space is nontrivial since Euclidean space is inap-
propriate as a structure of the space. For a finite parametric probability distribution, we
can define a structure of its space using information geometry (Amari, |2016). However,
even if we use the information geometry, yet it remains difficult to define a space of
GPs.

To overcome this problem, we consider defining the space of GP posteriors under



the assumption that GP posteriors have the same prior. Then, we can show that the set
of GP posteriors lies on a finite-dimensional subspace in an infinite-dimensional space
of GP. By using this fact, we can reduce the task of GP-PCA to a task of estimating a
subspace on finite-dimensional space. Additionally, we developed a fast approximation
method for GP-PCA using a sparse GP based on variational inference and a hyperpa-
rameter optimization method based on hierarchical Bayes.

The remainder of the paper is organized as follows. In Section 2, we explain our
approach and compare it with the conventional meta-learning of GP. In Section 3, we
explain the information geometry and PCA for exponential families. In Section 4, we
define a set of GP posteriors in terms of information geometry and show that the task
can be reduced to a finite-dimensional case. In Section 5, we explain the algorithm of
GP-PCA , its approximation method, and its hyperparameter optimization method. In
Section 6, we demonstrate the effectiveness of the proposed method. Finally, Section 7

presents the conclusion.

2 Conventional meta-learning of Gaussian process and

our approach

2.1 Gaussian process (GP)

Now let us review the GP regression. First, we present the definition of notations. An
output vector of function f corresponding to input set X = {z,,}2_, is denoted by f or

f(X). When an input set is denoted with a subscript, such as X 4, the corresponding



output vector is also denoted with the subscript, such as f4. Similarly, while a vector of
kernel k(x, 2") between X and x is denoted by k(z) := k(X z), a gram matrix between
X and X is denoted by K := k(X, X). The treatment of the subscript is the same as a
function.

GP is a stochastic process with respect to a function f : X — R. It is parameterized
by the mean function ;x : X — R and covariance function ¢ : X x X — R. The
GP has a marginalization property. This means that a vector f = f(X) corresponding
to an arbitrary input set X can consistently follow a multivariate normal distribution
f ~ N(w,X), where g := p(X) and X := (X, X). Therefore, GP can be regarded
as an infinite-dimensional multivariate normal distribution intuitively.

GP regression is a posterior distribution for given samples and GP prior, as formu-
lated below. Let z € X and y € R be an input vector and output, respectively. We
assume that the relationship between x € X and y € R is denoted as y = f(z) + ¢,
where ¢ is a noise. The task of regression is to estimate a function f : X — R from an
input set X = {,,}_, and corresponding output vector y = (y1,%s,...,yn). Here,
we assume that y is generated from Gaussian distribution with mean f and variance
B, and that the prior distribution is a GP with a mean function iy and covariance

function k. For any =, p(f(z.),y) is obtained as

v ] e | R K
flz) fio(@+) k'(z4)  k(rg,2y)

Since the posterior distribution is a conditional distribution of f(z. ) given y, the mean

and covariance function for a new input = of the posterior distribution can be obtained



by closed form as p(f(z4) | y) = N(f(z4) | u(z4), 0(x, x4)), where

p(rs) = po(ay) + KT (zy) (K+570) 7 (y — o), (1)
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which means that the posterior is given by another GP.
We can also interpret that the posterior is obtained using Bayes’ theorem. When X

and y are observed, the posterior for f = f(.X) is derived as follows:
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By using ¢(f | y), the predictive distribution for new input data x, is described as

follows:
W(fes) |y) = / p(f () | D)a(E | y)de,

where p(f(x) | ) is a conditional prior. Letting ¢(f | y) = N (w,X), p and X are

obtained as follows:

= po+ K (K+670) 7 (y - o).

1
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Furthermore, the predictive distribution is derived as

q(f(zs) [ y) =N(f(2y) | wlzy), 0(2s,24))
p(ry) = po(zy) + k' (x4 )K ',

o(ry,v) =k(ry,zy) + k(2 )KHE - K)K 'k(x).

Since p(f(z4) | £) is a prior distribution, ¢(f(z) | y) is determined uniquely when

p(f | y) is given.



2.2 Conventional meta-learning of GP

Meta-learning is a framework that estimates a common knowledge of tasks through
similar but different learning tasks and adapts this knowledge to target tasks (Vilalta and
Drissi, [2002; Hospedales et al., 2020; Huisman et al., 2021). As a framework similar
to meta-learning, there is a multi-task learning that improves the predictive accuracy
of each task by estimating a common knowledge of tasks (Zhang and Yang, 2017).
Given that the approach of the meta-learning for GP is the same as that of the multi-
task learning for GP, we explain the conventional meta-learning and multi-task learning
methods.

The standard approach to achiving meta-learning of GP is to learns of a covariance
function of a prior. This approach is classified into two approaches: the feature learn-
ing approach and the cross-covariance approach. In the feature learning approach, we
consider selecting input features in each task by estimating hyperparameters of auto-
relevant determination kernel or multi-kernel (Srijith and Shevade, |2014; Titsias and
Lazaro-Gredilla, 2011). Then, by estimating a hyperprior of the kernels associated with
tasks, knowledge common among tasks is shared. On the other hand, in the cross-
covariance approach, relationships between tasks are modeled by the Kronecker prod-
uct of a covariance function of samples and that of tasks (Bonilla et al., 2008]). That is,

covariance between tasks is defined as

=
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where k(25 and k("Pu) are covariance functions between tasks and inputs, respec-

tively. In geostatistics, the model is called intrinsic coregionalized model (ICM) (Alvarez



and Lawrencel 2011). In recent years, the conbination of feature learning and cross-
covariance approaches has been proposed (L1 and Chen, 2018). Although these ap-
proaches can estimate a suitable covariance function for each task, they do not estimate
the mean function. Therefore, these approaches are not always suitable for few-shot
learning setting.

An approach that learns a mean function has also been proposed. The simplest
method is to estimate a prior by modeling as hierarchical Bayes (Schwaighofer et al.,
2005} [Yu et al., [2005). The method estimates a mean function and covariance function
of a GP prior by assuming a normal-inverse-Wishart distribution as a hyperprior of the
GP prior. In recent years, the methods estimating a prior shared by all tasks by using
deep neural networks have been proposed (Fortuin et al., 2020; Rothfuss et al., 2021).
These methods do not estimate task-specific knowledge, since they do not considered
the relationships between tasks. Therefore, the more a predictive function associated

with a task deviates from the prior distribution, the more the required training data.

2.3 Our approach

In our approach, assuming that a set of GP posteriors lies on a low-dimensional sub-
space, we estimate that subspace. Since the subspace parameterizes a mean function
and covariance function associated with each task, by projecting a GP posterior esti-
mated from the dataset to the subspace, we can estimate accurately task-specific GP
posterior even when only a few data are available.

Our approach can be regarded as a generalization of bagging for GP (Chen and

Ren, 2009) to a meta-learning setting. To illustrate this, consider the bagging in the



case of GP. Bagging is a method of obtaining more robust and accurate models using
bootstrap datasets re-sampled from the training data. The simplest bagging method for
GP is to average a set of GP posteriors, each of which is estimated from each bootstrap
dataset (Chen and Ren, [2009). This corresponds to a case estimating a zero-dimensional
subspace (i.e., a point) of GP posteriors in our approach. Namely, estimating a zero-
dimensional subspace is equal to assuming that a dataset for all tasks is generated from
the same distribution. In meta-learning setting, since a dataset is generated from a
different distribution for each task, we estimate the task-specific GP posterior while
sharing data between tasks by estimating low-dimensional subspaces.

Furthermore, our approach can use any prior distribution as long as all tasks share
that prior distribution. Therefore, the proposed method can be combined with the con-
ventional meta-learning of GP, such as hierarchical Bayes-based GP, which uses as a

hyperparameter optimization method.

3 Information geometry-based dimensionality reduction

for exponential families

Information geometry(Amari, 2016) has enabled interpretation of many complicated
machine learning algorithms from a unified viewpoint. In this section, we review the
information geometry of the exponential family that is necessary to formulate the di-

mension reduction of GP.



3.1 Information geometry of the exponential family

The exponential family is a distribution parameterized by & = (£, &2, -+ ,&p) as fol-

lows:

p(z | &) = exp(€' G(z) + C(x) — ¥(§)).

In information geometry, a set of p(x | £) is regarded as a Riemannian manifold denoted
by S, i.e., each distribution p(z | £) is a point specified by a local coordinate £ on S.
The structure of the Riemannian manifold is determined by a metric and an (Affine)

connection. It is statistically natural to define a metric of S by Fisher information

(€)= Ee | (5 10tz 1)) (5 loente 1))

which defines a local linear structure of the space. As a connection, it is natural to
consider a family of connections parameterized by o € R, which is called a-connection.
In information geometry, flatness of a space is an important notion and many machine
learning algorithms are interpreted as a procedure to obtain an orthogonal projection
onto a flat subspace(Amari, 2010, 2016; |[Nielsen, 2020). Unlike ordinary Euclidean
space, the notion of flatness is not trivial. In fact, we can define the flatness depending
on the value of «, and further, it has been shown that in particular when o = £1, §
can be regarded as a flat manifold with respect to a corresponding coordinate system
(i.e., when a = 1, S is a flat manifold defined in a coordinate system specified by
natural parameter &, which is called e-coordinate system, and this flatness is called e-
flat). When o« = —1, S is a flat manifold defined in a coordinate system specified by

another parameter ¢ := F,,¢)|G(z)] (mean parameter), which is called m-coordinate
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system, and this flatness is called m—ﬂa
The e-coordinate and m-coordinate have an important property of duality. There
is a bijection between & and ¢, which can be described as Legendre transform. The

following equation with respect to £ and ¢ holds:

Y(€) +6(¢) —€7¢ =0,

where ¢ (£€) and ¢(() are potential functions of £ and ¢, respectively. From the above

equation, & and ¢ can be mutually transformed by Legendre transformation as follows.

=g, Y=t 3)

Flat space is defined as a linear space spanned by corresponding coordinate system.
Since any point in the whole space S can be represented by both e- and m- coordinates,
S is called a dually flat manifold.

In a dually flat manifold, we can consider two kinds of linear subspaces (submani-
fold): e-flat and m-flat subspaces. Let &; and ¢, be an e-coordinate and m-coordinate of
p; € S. While an e-flat subspace is defined as a linear combination of = = {¢,}/_,, an
m-flat subspace is defined as a linear combination of Z = {{,}._,. Let M, and M,,, be

e-flat and m-flat subspaces, respectively. Then, M, and M,,, are described as follows:

mz]‘i: = }7 4)

e- and m- are abbreviations of exponential and mixture, which come from corre-

M. = { Z tmé,,

1

sponding families of distribution
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where t = (t1,to,-- ,tpy). When M = 2, M, and M,, are called e-geodesic and
m-geodesic, respectivel Note that e-flat subspace does not always become m-flat
and vice versa, since £ and ¢ are in a nonlinear relationship in general from (3)),

By using &, and ¢;, we define a Kullback-Leibler (KL) divergence between the two

points p;, p; € S as follows:

Dxw[pillp;] = ¥(&;) + 6(¢;) — fiTCj- (6)

We denote the KL divergence by using e-coordinates or m-coordinates depending on the
situation, i.e., Dxy[€;]|€;] and Dki[C;||¢;]. The following theorems show an interesting

duality of e-coordinate and m-coordinate.

Theorem 1 (Pythagorean theorem (Amari, |2016)). Let p;, p; and py, be points on S.
If an e-geodesic between p; and p; and an m-geodesic between p; and p;, are dually
orthogonal, i.e., (&, — EJ)T(C ;i —Ck) =0 hold Then, the following relationship

holds.

Dxi[pillpe] = Dkelpillpj] + Drelp;||pk)-

When an m-geodesic between p € S and ¢ € M, C S is orthogonal at g to M., ¢q
is called m-projection from p to M.. Similarly, when an e-geodesic between p € S and
q € M,, C S is orthogonal at q to M,,, q is called e-projection from p to M,,. From

the Pythagorean theorem, the following theorem holds:

Theorem 2 (Projection theorem(Amari, 2016))). An m-projection fromp € Stoq € M,
2

geodesic is an extended notion of a straight line

3This dually orthogonality (ordinary sum product between dual coordinate) coincides

with the orthogonality in each coordinate with respect to Riemmanian metric g;;
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uniquely exists and it minimizes D [p||q|. Similarly, an e-projection from p € S to

q € M,,, uniquely exists, and it minimizes D [q]|p)].

This theorem tells us a lot of insights on machine learning algorithms. For a flat
subspace, we can obtain unique projection, which is computationally convenient, for
instance, we can avoid local optimum problem. As a projection for the flat subspace,
we should choose the dual projection (m-projection for e-flat subspace and e-projection
for m-flat subspace) for the uniqueness. In fact, the m-projection onto m-flat subspace
is not necessarily unique. Further, the projection is characterized as minimizing KL
divergence that is a natural measure of distance between two distributions in statistics.

Based on these properties, PCA for exponential families have been proposed by

(Collins et al., 2001; /Akaho, 2004). We explain the method below.

3.2 PCA for exponential families

Let S be a set of exponential families. Since there are two types of subspaces on S: e-
flat and m-flat subspaces, we can consider two PCAs for a dataset P = {py, pa, -+ ,ps1} €
S. One is e-PCA, which estimates an e-flat affine subspace M. The other is m-PCA,
which estimates an m-flat affine subspace M,,,. There are two main reasons to use this
information geometric PCA instead of ordinary PCA: The one is that the projection
point given by the ordinary PCA is not always well-defined (e.g., negative variance),
while the e-PCA (m-PCA) gives a well-defined projection. The other is that Euclidean
distance implicitly assumed in ordinary PCA is not appropriate distance for distribu-
tions, while KL divergence used in e-PCA (m-PCA) is more natural. In the following,

although we only explain e-PCA, the same argument holds for m-PCA.
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Assume that M, can be described in e-coordinate by L basis {u;, us,...,u;} and
offset ug € S, where w; € R” (1 = 0,1,...,L). It means that using a weight vector
w = (wy,wy, ..., wr)T € RE and basis U = (ug, uy, uy, ..., ur)T, any point on M,

can be represented as

L
&w,U) = Zwlul +ug
=1

= (1,whHU.

When {€,}_, is obtained, the task of e-PCA is to estimate W = (w1, wy, ..., wy)T

and U minimizing the following objective function.

E(W,U) =Y Di[€,|l€(w;, U)). (7)

i=1

Because W and U minimizing £(W, U) cannot be obtained analytically in general,
e-PCA alternatively estimates W and U using a gradient method. Let ¢; and Z’Z be
m-coordinates of &; and &(w;, U), respectively. We denote matrices of {¢;}._, and
{¢,}L, by Z and Z, respectively. The gradients of Eq. (7)) with respect to W and U are

given by the following equations.

OE(W.U) . .

WD) (- 20 ®)

OE(W, U .

WD) _wrz-z) ©)
where U = (uy,uy,...,up)".

For multivariate normal distributions, each probabilistic distribution can be param-
eterized a mean vector p and covariance matrix X. Letting G (x) = x and G3(x) =

xx 7, the e-coordinate &€ can be described as follows:
€= (0", vec(®)")T, (10)

14



where @ = X7 1u, © = —%2_1. On the other hand, the m-coordinate can be described

as follows:

¢=(n", vec(H)N)T, (11)

where 7 = p, H = ppu™ + . Then, the transform between £ and ¢ can be described

as follows:

1 -1
®=—5H-—mm") ",
1
- 00
n=-3 :
H- 00070 - to
1 27

4 PCA for Gaussian processes (GP-PCA)

Similar to e-PCA and m-PCA, we consider two types of GP-PCA: GP-ePCA and GP-
mPCA. In this study, we only explain the GP-ePCA, but the same argument holds for
GP-mPCA. Let p(f | y:) be a GP posterior obtained from {X;,y;}. When a set of
posteriors P = {p(f | y:)}_, is given, the task of GP-ePCA is to estimate an e-flat
subspace minimizing KL divergence between GP posteriors and their corresponding
points on the subspace. However, it is nontrivial to define a structure of GPs since GP
has an infinite-dimensional parameter.

This study shows that a set of GP posteriors is a finite-dimensional dually flat space
under the assumption that each posterior has the same prior and reduces the task of

GP-ePCA to a task of estimating a subspace on finite space. To explain our approach,
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S*

GP-ePCA(S*)

Probability space of p(f.)
(infinite dimensional space)

Probability space of p(f)
(finite dimensional space)

Figure 1: Concept of GP-ePCA. An e-flat subspace M? C S* is shown to be identical

to an e-flat subspace M, C S to T * through linear map L.

we introduce the two probabilistic spaces shown in Fig[I] One is a space consisting of
Gaussian distributions for an output vector f := f(X) corresponding to a training set
X = UiI:1 X;. The other is a space consisting of Gaussian distributions for an output
vector f, := f(X,) corresponding to a set X, which is a union of the training input
set and an arbitrary test input set X . The former is denoted by S and the latter is
denoted by S*. Both § and S* are dually flat spaces since they are a set of Gaussian
distributions. Note that $* can be regarded as an infinite-dimensional space since the
cardinal of X can be any number. In our approach, we define a space consisting of GP
posteriors as a subspace on S* denoted by 7 *. Then, we estimate an e-flat subspace M,
on § and transform M, to S* using an affine map £ : S — 7T * instead of estimating

an e-flat subspace M} on S*. Since there is no guarantee that £(M.) is equivalent to

16



M, this study proves this.
In the present section, after defining 7* and GP-ePCA, we prove that M’ and
L(M,) are equivalent. Next, we describe the standard algorithm and its sparse ap-

proximation algorithm.

4.1 Definition of the structure of GP posteriors and GP-ePCA

Let X and X, be a union set of {X;}_, and test set. We consider estimating p(f | y;)
given {X;,y;} in each task. Then, i-th task’s predictive distribution for X, is derived
as ¢(fy | yi) = [p(f: | £)p(f | y;)df. Suppose that GP posteriors have a common
prior, then ¢(f, | y;) is determined uniquely given p(f | y;). From this fact, the affine

subspace spanned by GP posteriors is defined as follows:

Definition 1. Let X, X, and X, be an input set, test set, and a union set of input
and test sets, respectively. We denote the size of X by N. Let p(f | p) be a Gaussian
distribution with p, where p is a pair of N-dimensional vector p and N X N positive-
definite symmetric matrix Y. Then, a probability space consisting of GP posteriors

corresponding to f(X.,) with a common prior is defined by the following equation:

T ={qt,f]p)|qf . f|p)=pE |£)p(f|p)Vp}, (12)

where p(fy | f) is a conditional distribution of the prior and p(f | p) is any Gaussian
distribution with a parameter p. In particular, when X = X, holds (i.e., when X is

an empty set), S* and T* are denoted by S and T, respectively.

Satisfying the assumption, p(f,,f | y;) is contained in 7*. Let p, = {p,, 3;} be a

17



parameter of p(f, , f | y;). p; can be described as follows:

;= o + Ki(Kii + 87 Hyi — poy),s (13)

¥ =K - K(K;; + ') 'KT, (14)

where K = k(X X), K; = k(X, X)), Ki; = k(X;, X3), ny = 1o(X) and py;, =
to(X;). Therefore, we can define a space of GP posteriors as 7 *.

Since S* is a dually flat space, p(f.) € S* can be represented by e-coordinate
and m-coordinate denoted by £ and (", respectively. We denote e-coordinate and m-
coordinate for a point on 7 * parameterized by p as £*(p) and ¢*(p), respectively. From
the definition of 7%, when X, = X, § = 7 holds since u, = p and ¥, = 3 hold.
This means that 7 (= S) is also a dually flat space. Therefore, we denote e-coordinate
and m-coordinate of p(f | p) € 7 by & = &(p) and ¢ = {(p), respectively.

By using the definition of 7, we define GP-ePCA in the respective spaces of S*

and S.

Definition 2. Let {€*(p;)}!_, be a set of GPs on the T*. Then, the objective function

of GP-ePCA on 8% is defined as follows:

W*, U* = arg min E*(W*, U")
W, U

I
— argmin Y D€ ()| [€7 (wi, UY)] (15)

WU
GP-ePCA estimating e-flat submanifold M?* C S* minimizing Eq. (13)) is called GP-
ePCA(S*). Here, £ (w}, U*) is e-coordinate of M}, denoted by a linear combination
T

of U* = (ug,ut,us, ... ub)" with weight (1, w:™h), where w! := (wi,ws, ..., wi)T.

Similarly, when {&(p;)}L_, is observed, we call the ePCA minimizing the following

18



equation GP-ePCA(S):
W, U = arg min E(W, U)
W,U

I
- argv%m;z)m[giug(wi,un. (16)

Here, &, and &(w;, U) are e-coordinate of S and M., which is a linear combination of

U = (ug,uy, vy, ..., ur)t with weight (1,w}), where w; := (wy,ws, ... ,w)".

In this study, we guarantee that GP-ePCA(S™) is equivalent to GP-ePCA(S) by the

following theorem.

Theorem 3. Let M and M. be an e-flat subspace on S* minimizing Eq. (15)) and an
e-flat subspace on S minimizing Eq. (16), respectively. Then, there is an affine map

L : S — T satisfying the following equation:

M= L(M,). (17)

We prove the theorem below.

4.2 Proof of Theorem

The proof of the Theorem [3|is composed of the proof of the following three statements:
(S1) For Vp, there is L satisfying £*(p) = L(&(p)).

(S2) ForVp, o, Dk €7 (p)]|€7 ()] = Dxo[€(p)[I§(0)] holds.

(S3) For a subspace M* C §* minimizing £*(W*, U*), M?* C T* holds.

19



From (ST)) and (S2)), denoting a subspace minimizing Eq. (16) by M., we can prove
that £(M,) also minimizesf Eq. in a set of subspaces on 7*. However, since a
subspace minimizing Eq. (I5]) does not always lie on 7*, we confirm this by (S3).

To prove the statements, we present the following lemmas:

Lemma 1. Let p be a parameter of T*. Then, there is an affine map L : S — T*

satisfying the following equation:

§.(p) = L(&(p)) (18)

proof. The proof is shown in Appendix [

Lemma 2. Let p and p' are two arbitrary parameters, and let us take two points q(f, |
p)and q(f, | p') in T and q(f | p) and q(f | p') in T. Then, the following equation

holds:

Diclq(f. | p)lla(f. | p")] = Drelg(f | p)lla(f | p)] (19)

proof. The proof is shown in Appendix [

Lemma 3. Suppose S* be a dually flat manifold and T* C S* be a K-dimensional
submanifold. If T* is a dually flat and a set of points P = {p(f* | py),...,p(f* |
p;)} € T* the L-dimensional e-flat submanifold M’ minimizing Eq. (13) for P is

included in T* when L < K.

proof. The proof is shown by Appendix O

20



Lemma 4. Let p be a parameter of T*. Then, there is a linear mapping L : T — T*

satisfying the following equation:

C.(p) = L(C(p)) (20)

proof. The proof is shown by Appendix [

The proofs of and are obvious from Lemma [I] and Lemma From
Lemma [3] (S3)) can be proved by showing that 7 is a dually flat for arbitrary test
set X,. When X = X,, (i.e., the test set is empty), then 7 is a dually flat since 7 = S.
When X C X,, by the linear relation proved in Lemma[I]and Lemma[d] Lemma[3]also

holds in the general case. Thus, Theorem@ is proved.

S Algorithm of GP-ePCA

From the above discussion, GP-ePCA(S*) can be reduced to GP-ePCA(S). In this
Section, we explain a concrete algorithm of GP-ePCA(S), its sparse approximation

method and hyperparameter optimization.

5.1 Exact GP-ePCA

Let X; € XNi and y; € R™: be a training input and corresponding output dataset of i-th
task, respectively, where NV; is the size of X;. We denote a union set of the input sets
by X,ie., X = Ule X, and define the probability space of GP posteriors as Eq. (12)).

Then, we denote the GP posterior given (X;,y;) by ¢(f | p;). From Theorem (3| the

21



task of GP-ePCA(S) is to estimate a subspace M, for {p(f | p;)}!_; and transform
M, to T*.

In training phase, GP-ePCA calculates the {p; }._, and transforms the m-coordinates
Z = (¢;,¢y, " ,¢;). The p, is calculated using Egs. (13) and (14) and from ¢; =
(n;, vec(H;)) is transformed from p, by n, = p; and H; = X; + p,ul. Next, GP-
ePCA(S) estimates the subspace M, using e-PCA. That is, estimating W and U min-
imizing Eq. through gradient descent iterations. Algorithm (1| shows the summary
of the algorithm.

In the prediction phase, GP-ePCA predict outputs corresponding to a test data x

using the following equations:

() =pol) + K" ()K" (6,10, -,

oi(z, ') =k(z,2') + kKT (z)K* (-%é;l — K) K 'k(z)

Since this algorithm requires calculating the inverse matrix in each task, the cal-
culation cost of the algorithm becomes O(IN?), where N := S/ | N;. Since this

algorithm is impractical, we derive a faster approximation below.
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Algorithm 1 Algorithm of Exact GP-ePCA
Given {(X;,y;)}._,, kernel k and 3.

Initialize U and W

fori=1...Ido
i < o + Ki(Kii + 87T) 7 (yi + py0)
3+ K- K;(K; +71)'K!
Ci ¢ (g, vec(Z; + pypl))

end for

while stopping criterion is met do
Wew) o WOl — (7 — 7)TU
Ukew) U _ e W (Z — Z)
U®ev) is orthonormalized by QR decomposition
fori=1...Ido

end for

end while

5.2 Sparse GP-ePCA

Most sparse approximation methods for GP reduce a calculation cost by approximating
the gram matrix for input set using inducing points (L1u et al., 2020). Let X, and K be
a set of inducing points and gram matrix between inputs, respectively. The gram matrix
is approximated as

K~K,K!K'

mm m)
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where K,,, = k(X, X,,,), Kium = k(Xn, X;n). By using this approximation, we con-
sider a set of GPs for £, :== f(X,,) instead of a set of GPs for f(X). Denoting the set
of GPs for f,, by S,,,, the sparse GP-ePCA estimates a subspace on S,,, and transforms
the subspace to 7*. Then, we reduce the calculation cost of GP-ePCA from O(IN?) to
O(Im?), where m is the size of inducing points.

We adopt a sparse GP based on variational inference proposed by Titsias (Titsias),
2009). The variational inference-based sparse GP minimizes the KL-divergence be-

tween a true posterior p(f, f,, | y) and variational distribution ¢(f, f,,,), that is,

B Q<f> fm)
Dia 8. £ (8.8 )] = [ £, 10 L)

Then, the variational distribution minimizing the equation is derived as follows:

dfdt,,.

q(fn) =Nt | p,2)
n=p0 + KmmA;;nK?n (y — :U‘O>

X :B_lemAy_n}nKmma

where A,,,,, = 7' K,m + KmKE1 The predictive distribution for new input = is as

follows:

q(f(z4)) =N(f(zy) | p(zy), 0(zy, 74))
() =po(as) + ko, (04 Koy

o(x1,24) =07k (24 Ko ZK L Ko (24,

We regard p and X as a parameter of Eq. (12). That is, denoting a parameter of
i-th task’s variational distribution by p, = {u,, 3;}, the sparse GP-ePCA estimates a
subspace minimizing Eq. for {p,}!_, and transforms the subspace to 7* by the
affine map L.
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In practice, to stabilize the sparse GP-ePCA, we re-parametrize p, as follows:

p =Ko .h,

Y =K. ! YK .

We denote a space of p' = {u/, X'} by S’ Letting @ = X' 'p/, @ = —1371 9 =
Y 'pand © = -1, the following relationships between &'(p) = (', vec(©’))

and &£(p) = (0, vec(©)) hold.

0 =K lOK,.' .

0 =K., O'K,.pto + K;,0".

m

Furthermore, using the above equations, we can show the equivalence between the KL-

divergence of ¢’ and that of €. That is, for any p, and p;, the following equation holds:

DKL[SI(pi)Hgl(pj)] = DKL[E(Pi)HE(/’j)]

From the above relationships, S,, and S/, are isomorphic. Therefore, we estimate a
subspace on S/, instead of estimating a subspace on S,,,. The algorithm is summarized

by algorithm [2]
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Algorithm 2 Algorithm of Sparse GP-ePCA

Given {(X;,y:)}._,, kernel k, 3 and X,,.

Initialize U and W

fori=1...1do
A — K + K KE
pi < ALK (Y — o)
%« AL
G 4 (b, vee(Z; + pp))

end for

while stopping criterion is met do
Wew) Wl _ (7 — Z)TU
Ukew) Ul _ oW (Z — Z)
U(®ew) 5 orthonormalized by QR decomposition
fori=1...Ido

end for

end while

5.3 Hyperparameter optimization

In this study, we use a hierarchical Bayes-based GP (HBGP) proposed by Yu et al.
(2005)) for the hyperparameters optimization method under the assumption the GP pos-

teriors lie on a subspace estimated by GP-ePCA. In HBGP, p, and K are estimated by

26



maximizing the following likelihood function:

I
H yz|l"l’07 Hp y2|f f’/J’OJ ) (IJ/(),K), (21)
i=1

where f; := f;(X), p(fi|p, X) = N (£;|p, K) and p(p, K) is the following normal-

inverse-Wishart distribution:
1
Pro, K) = N (10, —“K)IW(K]7. Ko).

Here, kq is a kernel function and Ky = ko(X, X). p and K can be estimated by using
EM algorithm. However, we cannot calculate a value of the prior corresponding to a
new input data. Therefore, we assume that f is represented by linear combination of
K, that is,

f= Koa.

Assuming that f is generated by Eq. (21)), let a prior of a be p(a|u,, K,), then the

following relationships hold (Yu et al., 2005).

1 _
p(alptq, Ka) =N (1,]0, —Ko) IW(K, |7, K, Y

I‘I’O :KOIJ’a

K =K(K,Kj.

By using the relationships, instead of maximizing Eq. (21)), we estimate p, and K, by

maximizing the following equation:

I I
[yl Ka) = [ [ p(vilaip(al e, Ko)p(pg, Ka),
=1 i=1
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The likelihood is maximized by the following EM algorithm.

E-Step
&(w;, U) =(0;,vec(O,)) = (1,W);FU
Zl — _ 1@-_1
2 7
M-Step

I
1 /
l’l’a_ﬂ__i_[;l’l’l

1 1 1
1 _
K, = Z{W“a“E+TK01+ZE;+Z(u;_l'l‘a)(l'l‘;_u’a>T}
=1

T I i i=1 i=1

1
1
57 = 5 D v = (e, Xl 4+ Telko (X, X)Kko((X., X0
=1

Here, we modify the E-step from HBGP since &(w;, U) is more accurate than &,. The

hyperparameter is updated after GP-ePCA is converged.

5.4 Related works

Dimensionality reduction techniques for probability distributions have been proposed
in various fields. For example, there are dimension reduction techniques of a set of
categorical distributions (Hofmann, 2001) and a set of mixture models (Akaho) 2008;
Cuevas-Covarrubias, 2013). Especially, e-PCA and m-PCA are closely related to the
present study (Collins et al., 2001} Akaho, 2004). e-PCA and m-PCA are proposed
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in the context of information geometry for the dimension reduction method of a set of
exponential distribution families, which becomes the basic framework for conducting
this study. This study differs from previous studies in that it deals with GP sets that are
infinite-dimensional stochastic processes.

This study interprets meta-learning for GP from the information geometry view-
point. Transfer learning and meta-learning are often addressed from the information
geometry perspective (Takano et al., 2016; [Waytowich et al., 2016; Flennerhag et al.,
2019). However, to our best knowledge, there is no research of meta-learning for GP
addressed from the information geometry viewpoint.

GP-PCA can also be interpreted as a functional PCA (fPCA). fPCA is a method for
estimating eigenfunctions from a set of functions (Shang, [2014). Let { f;}._, be a set of

functions. fPCA estimates eigenfunctions to minimize the following objective function:

Fiees =Y. [ ((a) = hlz) = F(o)plo)de
s.t. /hz(av)p(x)dx =1,

where f =1 Zi]:l fi(z). In fPCA, each function is represented as a linear combination

of M basis functions. Let g(x) = (g1(x), g2(), ..., g1(x))T, f; is obtained as
M
[i(@) =) Timgm (@)
m=1
=r; g(v),

where r; = (ry1,7i2,...,7i0)T. h(z) is represented as a linear combination of g(z):

h(z) = sTg(x). By using the equations, the objective function of fPCA is rewritten as

29



follows:

I
Frpca :Z(ri —s— f)TG(ri —s—T),

=1

st. sTGs=1,

where t = 1/I3." r; and G = [g(2)g"(x)p(x)dz. In practice, f; is estimated
using linear regression from the dataset. That is, the fPCA algorithm consists of two
processes: estimating f; from {X;,y;} and estimating i from {f; {:1. When f; is
estimated as GP, GP-PCA is equivalent to fPCA. Therefore, GP-PCA can be interpreted

as fPCA considering the estimated function and confidence of the function.

6 Experimental results

In this Section, we demonstrate the effectiveness of the proposed method. We compare
the performance of sparse GP-ePCA, ICM (Bonilla et al., [2008), Hierarchical Bayes-
based GP (HBGP) (Yu et al.| 2005) and Single-task sparse GP by using an artificial
dataset and two real datasets, where ICM is implemented by GP We also compare

the calculation time of exact GP-ePCA and sparse GP-ePCA.

6.1 Evaluation of performance by using an artificial dataset

In this experiment, we compare the performance of the proposed method to the other

methods in training task and test task. The artificial dataset is generated from the fol-

4https:// github.com/SheffieldML/GPy
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lowing equations:

Yin = zisin(472;,) + 3(1 — 2)(— (i — 1)* + 1) + i (22)

where Ula, b] means a continuous uniform distribution of interval [a, b], z; is a latent
variable of i-th task, and ¢;,, is a Gaussian noise with mean 0 and variance 3~ = 0.22.

To verify the performance of GP-ePCA for training and test tasks, training data and
test data of training and test tasks are necessary. In training tasks, after z; is sampled for
50 points according to Eq. (23]), we sample N training data and 100 test data of each task
according to Eq. (22)). Figure [2(a) and (b) show the training sample and true functions
of training tasks, respectively. In test tasks, after sampling latent variables of the test
tasks at 100 samples, we sample N training data and 100 test data for test tasks. Then,
the training data of the test tasks are used to determine a point on an estimated subspace
in GP-ePCA. In GP and HBGP, the posteriors for the test tasks are estimated from the
training data of the task. In ICM, the test tasks are regarded as have been obtained
together with the training tasks and are learned together with the training tasks. The
performance of each method is evaluated using an average of root mean square error
(RMSE) for test data in each task. We calculate the average and standard deviation
when 7' = 5 times iterates.

GP has hyperparameters, which are kernel and variance of observation noise. In this
experiment, we use RBF kernel k(z,2') = exp(—(z — 2/)?/21%). Then, the hyperpa-
rameters of GP are a length scale [ of the RBF kernel and variance of an observation
noise 3~1. These hyperparameters are optimized by maximizing the marginal likeli-
hood in GP and ICM. In GP-ePCA, a rank of subspace is also a hyperparameter. In
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these experiments, we set L. = 1 since the functions of the artificial data are varied
by a one-dimensional parameter. The effectiveness of the rank is validated by the next
experiments.

Figure 2] shows representative results of each method. In this case, each task has five
samples: single-task GP cannot predict output in an area without training data since a
mean function of GP is close to prior (Fig. 2(c)). In ICM, while most of tasks are
able to estimate the predictive function, the prediction function cannot be estimated
for some tasks, shown by Fig. [2[d). On the other hand, HBGP and GP-ePCA can
predict output in an area without training data since mean functions are smoothed by
transferring knowledge from other tasks (Fig. [2(c)). This result implies that estimating
the mean function is important in few-shot learning. Figure [3] shows the RMSE of the
methods for training and test tasks when NV 1s varied. These results shows that GP-
ePCA performs better than the other methods in both training and test tasks. Especially,
even in case that training sample size of each task is small, the RMSE of the proposed

method remains low compared to other methods in both of training tasks and test tasks.

6.2 The performance of GP-ePCA varying the rank

Next, we evaluate the impact of the rank of A on RMSEs when a dimension of a set of
the true functions differs, or the domain shift between tasks occurs. For this purpose,
we use the three artificial datasets. Each artificial dataset is generated by the following

equations:
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(d) ICM (e) HBGP (f) GP-ePCA
Figure 2: Result of artificial dataset using five samples / task for training. The colors of

the scatter plot and function indicate a value of z;.

—— GP-ePCA 0.6
%] —— HBGP
— ICM 05
0.54
(9] 2]
= = 04
oc 041 4
031 0.3 I\

0.2 4 0.2
é 1‘0 1‘5 2‘0 2‘5 3b 5 10 15 20 25 30
Training sample / task Training sample / task

(a) Training task (b) Test task

Figure 3: RMSE of the GP-ePCA and GP for artificial dataset. Line and bar mean

average and standard deviation of RMSE, respectively.
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Artificial data 1:

Yin = sin(27x,) + 32 + €in

Tin ~ U(0,1)

Artificial data 2:
Yin = sin(27 (2 + 25)) + €in
Tin ~ U(0,1)

Artificial data 3:

Yin = SIN27 (24 — 2;)) + 32 + €in

Tin ~ U(2i,2; + 1)

In each dataset, training and test task sizes are set 50, and training and test data sizes of
each task are set 5. The parameter of a noise is set 3! = 0.22.

Figure 4] shows a difference of RMSE varying the rank. In Artificial data 1, there is
no significant difference in RMSE for any rank. This is because a set of true functions
lies on a one-dimensional subspace on functional space and domain-shift between tasks
does not occur. On the other hand, the RMSE is smaller when the rank is greater than 2
in Artificial data 2, since a set of true functions lies on a two-dimensional subspace on
functional space. In Artificial data 3, since the domain of each task shifts in conjunction
with the function shift, GP posteriors lie on a curve. Therefore, the more the rank is
increased, the smaller the RMSE is. From these results, the proposed method tends
not to increase the RMSE even when the rank is increased. This is because even if
we increase the rank of the subspace, the RMSE of GP-ePCA becomes about the same
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Figure 4: The performance of GP-ePCA varying the rank.(a) — (c) RMSEs for training

tasks. (d) — (f) RMSEs fo test tasks.

as the RMSE of the GP posterior since the input data of GP-ePCA is GP posteriors

estimated from datasets.

6.3 Computational cost of GP-ePCA

The third experiment is to compare the computational cost of exact GP-ePCA and sparse
GP-ePCA by using an artificial data of the first experiment, where the number of induc-
ing points of sparse GP-ePCA is fixed to 20. We measure the time of each method when
the task size is increased and sample size of each task is fixed to 10. To simplify, neither
method estimates hyperparameter.

Figure [5] shows the calculation time of each method. While the computational cost

of exact GP-ePCA increased fourth power with the task size, that of sparse GP-ePCA
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Figure 5: Calculation time of exact GP-ePCA and sparse GP-ePCA.

increased linearly. For this reason, it is recommended to use sparse GP-ePCA in prac-

tice.

6.4 Evaluation of the performance by using real datasets

Table 1: RMSE of each method for real datasets.

Datasets Computer survey Movie lens 100k
Methods Training task Test task Training task Test task
Single task GP 3.6665+0.0941 4.204740.0945 1.1426+0.0238 1.2718+0.0467
ICM 2.0806£0.0365 2.2427+0.0463 1.1206+0.0182 1.2095+0.0230
HBGP 2.3082+0.1067 2.2069-+0.0481 1.1005+0.0288 | 1.1416 +0.0178
GP-ePCA(L=1) 2.1232+0.0451 2.1606+0.0441 1.0847+0.0241 1.14974+0.0180

GP-ePCA(L=3)

GP-ePCA(L=5)

2.0723 +£0.0382

2.1037+£0.0546

2.1605 £+ 0.0468

2.1761+0.0577

1.0833 £ 0.0225

1.0886£0.0265

1.1436+0.0151

1.1422+0.0177

In this experiment, we demonstrate the effectiveness of the proposed method by
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using two real datasets: computer survey dataseﬁ and movie lens 100k dataset@ The
computer survey dataset is a survey data of 190 people who rates the likelihood of pur-
chasing one of 20 personal computers, each of which has 13 features such as price,
CPU, and RAM. In this experiment, we consider a task estimating each person’s pref-
erence for personal computers by regarding each computer’s features and each person’s
rating as input data and output data, respectively. After 100 tasks are sampled randomly
as the training task, 10 training data are sampled and the rest of the data is used as test
data. The rest of the tasks are used for the test task, each of whose dataset divides into
o training data and 15 test data. We calculate the average and standard deviation of
RMSE when T' = 5 times iterates.

The movie lens 100k dataset is a rating data of 943 users who rated their preference
of 1682 movies. Each movie has a 13 features (movie id and genres). In this experiment,
a task is to predict each user’s preference for movies by regarding movie’s features and
user’s ratings are input and output, respectively. After 50 tasks are sampled randomly
as the training task, 10 training data are sampled and the rest of the data is used as test
data. In the test tasks, after 50 tasks are sampled from the rest of the tasks, 5 training
data are sampled and the rest of the dataset is used for the test data. We calculate the
average and standard deviation of RMSE when 7" = 5 times iterates.

Table[I]shows the RMSE of each method. In the computer survey dataset, the RMSE
of GP-ePCA of L = 3 is the lowest compared to the other methods in both training and

test tasks. In particular, although ICM’s RMSE is similar to that of the proposed method

5https:// github.com/probml/pmtk3/tree/master/data/conjointAnalysisComputerBuyers
6https ://grouplens.org/datasets/movielens/100k/
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in training tasks, the RMSE of the proposed method is smaller than that of the ICM in
new tasks. In the movie lens 100k dataset, while the RMSE of the proposed method is
the smallest of all the methods in training tasks, the RMSE of the HBGP is the smallest
of all the methods in test tasks. However, considering the standard deviation, there
is no difference between the RMSEs of HBGP and the proposed method, since the
discrepancy between the RMSEs of HBGP and the proposed method was within the

standard deviation. From these results, our approach is effective for few-shot learning.

7 Conclusion

In this study, we proposed a PCA for a set of GP posteriors. Since a structure of a set
of GPs is nontrivial, we defined the space of GP posteriors and proved that the space
becomes a finite dually flat subspace. Given this fact, PCA for a set of GP posteriors can
be regarded as an e-PCA or m-PCA for a set of finite-dimensional multivariate normal
distributions. Furthermore, we proposed a fast algorithm, which reduces the calculation
order from O(IN?) to O(Im?), where N > m. We demonstrated that the proposed

algorithm can be applied to multi-task learning and meta-learning.
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A Woodbury’s matrix inversion Lemma and its derived

Lemma

Lemma 5 (Woodbury| (1950)). Let A, U, B, and V be arbitrary N x N, N x M,

M x M, and M x N matrices, respectively. Suppose that there are inverse matrices of

A and B. Then, the following equation holds.

(A+UBV)'=A"1—-A'UB '+ VA'U) 'VA!

Lemma 6. In Lemma[5| when N = M and K := A = U =V, the following equation

holds.

(K+KBK)'=K'-B'+K)!

Lemma 7. Let K., K, and V be arbitrary M x N, N x N, and N x N matrices,
respectively. Suppose that there are inverse matrices of K and V. Then, the following

equation holds:
Z+Z_1 - K+K_1,

where 3, (=K, + K, VK and ¥ := K+ KVK.
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proof.

2,3 =(K, + K, VK)(K + KVK) !
—K,(I+VK)(I+VK)"'K"

:K+K71
[

Lemma 8. Let K and V be N x N and N x N non-singular matrices, respectively,
and let K, and K., be arbitrary M x N and M x M matrices, respectively, including

K as a sub-matrix, where M (> N). Then, the following equation holds:

0. .K.K'e!'=K 'K, (24)
where ©,, = (K., + K.VK,)™!, © := (K+ KVK)™.
proof.

(K. + K.VK. ) 'K, K (K + KVK)
—(K 'K, + KK, (V' + K)'K'K'K,) K} (K + KVK)
=K /K, +K_/K,(V'+K)'K)K (K + KVK)
=K K.(I+ (V"' +K) KK {(K+ KVK) '}
=KUK(KT - (VI K) (KT + (VI +K) 7)™

=K. 'K,
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B Proof of Lemmas

B.1 Proof of Lemma I

For any p = {u, X}, the natural parameter £*(p) = (0., vec(O.,)) € T* represented

as follows:

0* = E*_*lu*v

e, =X

*k )

where p, = p,o + K.K ' ( — pp) and 3, = K., + KK (X — K)K”K

Similarly, £(p) = (0, vec(®)) € T is described as

6=3""p,

="
From Lemma [5|and Lemma [6]in Appendix [A] we have
0., = (K.+KK'!'®©e'!'-KK'K",
=K -K /KK (0" -K) "'+ K ) 'K'K.K/

=K, - K/K.(K'-0)K. K, (25)

*%

7Since a coefficient of e-coordinate is irrelevant to the proof of the lemma, we abbre-

viate the coefficient of the e-coordinate.
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V 0
LettingV := K }(X - K)K!'and V,, := , 0, is described as follows:

0 0

0. = O..( 1, + K.K ' (1 — pp))

= O,.(p o + KK (1 — prg — KV, + KVp))

= 0, (Lo + K Vi) + KK (e — T+ KV)py))

= 0..(Kuw + Ko VL KK g + KUK (g — (K + KVK)K )
Since ®_ ! = K,, +K,.V..K,, =K., + K, VK and ®! = K+ KVK?", we have

0. =0.(0 K., + KK (©70 - 07K 'p))
— K g+ O, KK 07 (0 - K 'p).
By using Lemma [§]in Appendix [A] the following equation holds:
0. =K. 1o+ K K(0 - K 'py). (26)

Since 6, and O, are transformed from 6 and © by Egs. and (26)), lemma

can be proved.

B.2 Proof of Lemma 2

From the definition of 7*, we have ¢(f. | p) = p(f, | f)p(f | p). Therefore, the KL

divergence Dy [q(f. | p)||a(f | p')] can be decomposed as follows.

Dxcq(f. | p)lla(fe | p1)] =Dxola(f | p)lla(f | p')]
+ Eqe10) [P p(fs | £)[[p(Ey | £)]] 27)
The above equation entails that the second term of Eq. is zero. Hence, lemma
holds.
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B.3 Proof of Lemma

Since 7 * is dually flat, we can take a dual coordinate system in S* such that e-coordinate

. T T . . T T
is decomposed as £* = (&7, &5, )T and m-coordinate is decomposed as ¢* = (¢}, ¢ )Y

and 7 is as a subspace defined in the m-coordinate {¢* | {; = 0}.

Let M? C T* be the L-dimensional e-flat submanifold minimizing Eq. (13) for
P. Since the case L = K is trivial, we assume L < K. Let ¢; be the m-coordinate
of p(f* | p;) € P and &: be the m-projection of p(f* | p,) € P onto M?. By using
the basis vectors U* = (ujj, uf,u, ..., u})T, é’: is represented in the e-coordinate as
g = (1,whU~.

The derivative of Eq. (13)) with respect to the parameters W* and U* is given by

OE*(W*, U*) B ~ T

——=(Z"-7")U" 28

OE*(W*, U") T A

— =W (Z" -7 29
where U* = (u,us, ..., ut)T. We consider that u* is decomposed as u* = (ui*, uj; "),

and let U}, Z; and Z; be matrices of {uj,}t, {¢;}/, and {é’; I_,, respectively.
Since M is a stationary point of the GP-ePCA(S*) constrained in 7, (i.e., from
Egs. and (29)), we have

(Zi —Z;)U; =0, (30)

A~

W*(Z; —Z;) =0 (3D

Further, since Z* and Z* are included in Mz, it holds that Zfl = Zi; = 0. Therefore
and are all zeros. That means M is a stationary point of the GP-ePCA(S*)

in §* as well, which proves the Lemma.
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B.4 Proof of Lemma {4

proof. In the case of a Gaussian distribution parameterized g and X, the natural pa-

rameters represented using p and 32 are as follows:

n. = Ky,

H, = 3., + /J*M*Ta

Then, the following equations hold:

M =Hy
= + KK (1 — py)

=M. + K*K_l("? - y’O)7
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and

H, =K., + K.K (X - K)K 'K} + n.n!

=K. + K.K'H-nn" —K)K 'K +n.n,.

=K., + K.K'H- KK 'K - K.K 'nn'K'K!
+ (ko + KK (1 — o)) (10 + KK (1 — )™

=K., +t K. K'(H-K - ngp")K'K!
ol T Bao(m — o) KK + KK (1 — po) sy
+ KK (1 — o) (n — po) ' KK

=K., + K,K'(H-K —nn")K'K!
+ Baobtly + oo (m — o) KK + KK (0 — pg) ey
+ KK (" — pon” — npg + popg ) KK

=K.. + KK '(H-K — pon" —npg + popg ) KK

+ Haolly + B — po) KK + KK (n — po) .

From the above, we show that the Lemma]is proved.
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