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Abstract

Complex processes in science and engineering are often formulated as multistage decision-making problems. In

this paper, we consider a type of multistage decision-making process called a cascade process. A cascade process is

a multistage process in which the output of one stage is used as an input for the subsequent stage. When the cost of

each stage is expensive, it is difficult to search for the optimal controllable parameters for each stage exhaustively.

To address this problem, we formulate the optimization of the cascade process as an extension of the Bayesian

optimization framework and propose two types of acquisition functions based on credible intervals and expected

improvement. We investigate the theoretical properties of the proposed acquisition functions and demonstrate their

effectiveness through numerical experiments. In addition, we consider an extension called suspension setting in

which we are allowed to suspend the cascade process at the middle of the multistage decision-making process that

often arises in practical problems. We apply the proposed method in a test problem involving a solar cell simulator,

which was the motivation for this study.

1 Introduction

A complex process in science and engineering problems is often formulated as a multistage cascade process. For

example, the production process of semiconductor chips consists of hundreds of process steps such as ingot growth,

wafer slicing, and polishing, device fabrication, and packaging as shown in Figure 1 (a). Similarly, most manufacturing

processes, including garment manufacturing, automobile manufacturing, and building construction are multi-stage

processes. These multistage processes are often formulated as a cascade process in which the output of one stage is

used as a part of the input for the subsequent stage.

Figure 1 (b) shows a schematic illustration of a cascade process. Each stage of a cascade process is formulated

as a function with two types of inputs: the controllable parameters of that stage and the output of the previous stage.

The former is controllable, whereas the latter is uncontrollable because of the uncertainty in the previous stage. The
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(a) Production process of semiconductor chips.
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(b) Schematic illustration of a cascade process.

Figure 1: (a) Example of the cascade manufacturing process for semiconductor chips. (b) The left part shows a

cascade process with N stages, where the function f (n) is the black-box function representing the nth stage for

n ∈ [N ]. The function f (n) considers two types of inputs: the controllable parameters of that stage x(n) and the

output of the previous stage. The goal of the cascade process optimization is to identify the controllable parameters of

all the stages {x(n)}n∈[N ] that optimize the output of the final stage. The right part shows the fully black-box model

view of the problem, where the function F collectively considers all the controllable parameters {x(n)}n∈[N ] as the

inputs. By properly modeling each stage and incorporating the observable outputs in the middle of the cascade process

y(1), . . . , y(N−1), more efficient optimization than that of the fully black-box model F is possible.

optimization of the entire cascade process can be formulated as a joint optimization problem by collectively consider-

ing the controllable parameters of all the stages as the inputs. Nevertheless, more efficient optimization is possible by

properly modeling each stage and incorporating the observable outputs in the middle of the cascade process.

In this study, we consider the problem of optimizing a cascade process composed of black-box functions with

expensive evaluation costs within the framework of Gaussian process-based (GP-based) Bayesian optimization (BO).

Each stage is modeled as a GP, whose inputs consist of controllable parameters and the outputs from the previous

stage. To optimize the output of the final stage, we consider the identification of the controllable parameters for each

stage by considering the uncertainties of the GP models. The difficulty with this problem is that when setting the

controllable parameters for each stage, decisions are made by considering the influence of the output of that stage on

the subsequent stages.

Considering the main contribution of this study, we propose a method that deals with the intractable predictive

distribution and develop two acquisition functions (AFs) based on the expected improvement (EI) and credible interval

(CI). The proposed AFs can quantify the uncertainties of the subsequent stages in the cascade process using techniques

developed in a multistep look-ahead strategy (Ginsbourger and Le Riche, 2010; Lam et al., 2016). The validity of the

AFs was clarified through theoretical analysis, and their effectiveness was demonstrated using numerical experiments.

Furthermore, as generalizations, we consider extensions of a cascade process optimization problem, such as the case

where suspensions and resumes are possible in the middle of the cascade process and where the cost of each stage

is different. Finally, we apply the proposed method to a test problem involving a solar cell simulator, which is the
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motivation for this study.

Related Studies GP-based BO has been intensively studied as an efficient way to optimize black-box functions

with high evaluation costs (Shahriari et al., 2015; Frazier, 2018). Various types of AFs were proposed for BO, such

as Gaussian process upper confidence bound (GP-UCB) (Srinivas et al., 2010) and expected improvement (Močkus,

1975; Jones et al., 1998). The GP-based BO framework was extended to various problem settings, such as con-

strained optimization (Gardner et al., 2014; Takeno et al., 2022b), multiobjective optimization (Couckuyt et al., 2014;

Suzuki et al., 2020), and multifidelity optimization (Swersky et al., 2013; Takeno et al., 2020, 2022a).

However, the only existing studies on cascade process optimization using a GP-based BO framework can be found

in (Dai Nguyen et al., 2016) and (Astudillo and Frazier, 2021). In CBO (Dai Nguyen et al., 2016), the controllable

parameters for each stage are determined in a reverse order (i.e., starting from the controllable parameters for the last

stage, the second last stage, etc). That is, CBO selects the controllable parameters that are likely to produce the desired

output, which is defined through the inverse function of the predictive mean function of the GP model in the subsequent

stage. Importantly, since this desired output does not depend on the outputs from the previous stages, incorporating

the observed outputs of the previous stages is difficult in CBO. Furthermore, if the earlier stages cannot achieve the

desired output (which typically occurs when the range of each stage is unknown), the algorithm can become stuck. In

addition, the exploration-exploitation trade-off cannot be considered in their method because the uncertainty of each

stage is ignored when the desired output is predetermined by the predictive mean functions. Recently, a modified

version of CBO was proposed in material science (Nakano et al., 2022). However, their approach is to address the

practical application issues of CBO with some heuristics and does not fundamentally solve the drawbacks of CBO. EI-

FN (Astudillo and Frazier, 2021) focuses on the optimization of a function network represented as a directed acyclic

graph (DAG). Whereas their problem settings include the cascade structure as one of the DAGs, decision-making at

each middle stage is not incorporated. In addition, noisy observations and suspension settings are not considered in

their study. Furthermore, their approach is based on EI with full sampling (even the final stage), whereas our EI-based

approach uses partial sampling, and we also provide a CI-based AF. Thus, our proposed method is clearly different

from EI-FN.

One important related study is the study on multistep forward time-series prediction based on GP (Quinonero-Candela et al.,

2002). In their study, the output of the GP at a time point becomes the input of the GP at the subsequent time point.

This can be interpreted as a cascade process without controllable parameters. They introduced an iterative Gaussian

approximation method to approximate the predictive distribution for the multistep forward time points. However, their

method cannot be directly extended to cases with controllable parameters at each stage. Cascade process optimization

is partially related to BO under input uncertainty because the output of the previous stage with uncertainty becomes the

input of the subsequent stage. Recently, BO under input uncertainty was intensively studied (Beland and Nair, 2017;

Oliveira et al., 2019; Iwazaki et al., 2021; Inatsu et al., 2021, 2022). However, these existing methods cannot be easily

extended to our problem because the uncertainties in multiple stages are accumulated in a complicated manner in a cas-

cade process. For example, an approach using the Bayesian quadrature framework (O’Hagan, 1991; Beland and Nair,

2017) cannot model the same cascade process correctly (see Appendix B for details). In our proposed method, the

expected improvement in the cascade process is computed based on a multistage look-ahead strategy. Therefore, the

BO methods for multistep look-ahead (Ginsbourger and Le Riche, 2010; Lam et al., 2016) are closely related to our

method. In general, the exact evaluation of a look-ahead AF is difficult owing to its computational complexity. Our

proposed method is based on several computational analyses developed in look-ahead type AFs, especially batch-type

approximations (Jiang et al., 2020).
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Reinforcement learning (RL) (Sutton and Barto, 2018; Bertsekas, 2019) is also formulated as a multi-stage decision-

making problem, which often involves several uncertainties similar to the output of each stage in the cascade process.

Thus, RL can be casted into the optimization of the cascade process by setting the state and action as the output from

the previous stage and the input of the current stage, respectively. On the other hand, it is difficult to directly apply the

RL algorithm to our cascade optimization problem because the problem setup differs in many aspects. For example,

while the goal of RL is to maximize cumulative rewards, the goal of cascade process optimization is to find opti-

mal input conditions for multiple stages. Furthermore, cascade process optimization has the limitation that function

evaluation is costly and cannot be performed many times, making it difficult to apply the RL algorithm under such a

limitation.

2 Preliminaries

2.1 Cascade Process Optimization

We consider a cascade process with N stages. Let x(n) ∈ X (n) ⊂ RD(n)

be a D(n)-dimensional controllable input

and y(n) ∈ Y(n) ⊂ R be a scalar output of the stage n ∈ [N ] := {1, . . . , N}. Each stage is formulated as a function

f (n) : Y(n−1) ×X (n) → Y(n) and is written as

y(n) = f (n)(y(n−1),x(n)), n ∈ [N ], (1)

where we define y(0) = 0 and Y(0) = {0} for notational simplicity.

Combining all the inputsx(1), . . . ,x(N), the entire cascade process can be represented as y(N) = F (x(1), . . . ,x(N)),

where F : X (1) × · · · × X (N) → Y(N) is recursively defined using (1). The goal of a cascade process optimization is

to solve the following optimization problem:

x
(1)
∗ , . . . ,x

(N)
∗ = argmax

(x(1),...,x(N))∈X
F (x(1), . . . ,x(N)) (2)

with a number of function evaluations as small as possible, where X := X (1) × · · · × X (N).

For simplicity, we consider the case in which the output of each stage is scalar. Furthermore, we assume that

the output y(n) is observed without noise. Extensions to the case of multidimensional output and noisy observation

settings are described in the Appendix.

2.2 GP Models

In this study, we employed GP models as surrogate models for black-box functions. One simple way to model the

cascade process is the fully black-box model view, where we regard F as a single black-box function that outputs y(N)

for a collected input (x(1), . . . ,x(N)). However, regarding the fully black-box model view, the outputs observed in

the intermediate stages of the cascade process cannot be effectively used. Therefore, we employ a cascade model , in

which all stages are modeled by independent GP surrogate models. We assume that the prior distribution for f (n) is

GP(0, k(n)), where GP(µ, k) denotes a GP with mean and kernel functions µ and k, respectively. From the properties

of a GP, given the observed data, the posterior distribution of f (n), n ∈ [N ] is also represented as a GP, and its mean

and variance functions can be obtained in a closed form (Rasmussen and Williams, 2005).
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3 Proposed Method

In this section, we consider the sequential observations of a cascade process from stage 1 to N . For each it-

eration t ∈ {0, N, 2N, . . .}, users determine x
(1)
t+1, a controllable parameter of stage 1, and observe an output

y
(1)
t+1 = f (1)(0,x

(1)
t+1). Subsequently, users choose x

(2)
t+2, a controllable parameter of stage 2, and observe y

(2)
t+2 =

f (2)(y
(1)
t+1,x

(2)
t+2). By repeating this operation, users obtain y

(N)
t+N = f (N)(y

(N−1)
t+N−1,x

(N)
t+N ).

Regarding the cascade process optimization problem in (2), the following two points should be considered: First,

because the optimization target is the output of the final stage, a multistep look-ahead is indispensable when a decision

is made in the earlier stages. Second, the input at each stage can be determined after observing the output of the previ-

ous stage. Therefore, when designing the AF for stage n, we need to consider F (x(n:N) | y(n−1)), where the output of

the final stage is represented as a function of the remaining controllable parameters x(n:N) := (x(n), . . . ,x(N)) given

the output of the previous stage y(n−1). If the predictive distribution of F (x(n:N) | y(n−1)) is available, appropriate

AFs can be easily derived for stage n. However, in the cascade model, the predictive distributions of F (x(n:N)|y(n−1))

cannot be explicitly written because of the nested structure of the cascade process. To address this problem, we con-

sider two approaches. First, by utilizing the property that is easy to sample from nested predictive distributions, we

propose an EI-based AF in section 3.1. Second, by constructing the credible interval of F (x(n:N)|y(n−1)), we propose

a CI-based AF in section 3.2.

3.1 EI-based Acquisition Function

In this subsection, we assume that the true black-box function f (n) is sampled from the GP prior GP(0, k(n)) for each

n ∈ [N ]. Let Fbest = max1≤t′≤t y
(N)
t′ be the maximum value of the objective function F observed up to iteration t.

Thereafter, we define the improvement Un(x
(n)|y(n−1)) for the observation of stage n with input (y(n−1),x(n)) as

the expected improvement of Fbest. First, in the case of n = N , Fbest is improved when f (N)(y(N−1),x(N)) > Fbest.

Therefore, the expected improvement of Fbest, UN (x(N)|y(N−1)), is given by:

UN(x(N)|y(N−1)) = Ef(N)

[(
F (x(N)|y(N−1))− Fbest

)+]
, (3)

where (·)+ := max(0, ·). Equation (3) is the same formulation as in the ordinary EI, and its expectation can be

calculated analytically.

With regard to the case of n 6= N , we define Un(x
(n)|y(n−1)) as the maximum expected improvement of

F (x(n:N)|y(n−1)):

Un(x
(n)|y(n−1)) = Ef(n)

[
max
x(n+1)

Un+1(x
(n+1)|y(n))

]
. (4)

Equation (4) is a recursive expression that contains the max operator and expectation. Thus, it is difficult to calculate it

analytically. In the context of multistep look-ahead approaches, methods to avoid this problem through approximation

and sampling have been investigated (Lam et al., 2016; González et al., 2016b; Wu and Frazier, 2019; Jiang et al.,

2020). We use the similar approach as in (Jiang et al., 2020) to approximate the lower bound of (4). Using the Monte

Carlo integration with S samples and the exchange of expectation and max operators (note that (5a) contains the nested
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max operators and expectation), (4) can be approximated as follows:

Un(x
(n)|y(n−1)) = Ef(n)

[
max
x(n+1)

· · ·Ef(N−1)

[
max
x(N)

UN(x(N)|y(N−1))

]]
(5a)

≥ max
x(n+1),...,x(N)

Ef(n),...,f(N−1)

[
UN (x(N)|y(N−1))

]
(5b)

≈ max
x(n+1),...,x(N)

1

S

S∑

s=1

UN (x(N)|y(N−1)
s ), (5c)

where the inequality (5b) can be derived by (Jiang et al., 2020), and the sampling of y
(N−1)
s is based on the GP model.

First, we generate each y
(n)
s from the predicted distribution of f (n)(y(n−1),x(n)) independently. Then, we calculate

the predicted distribution of f (n+1)(y
(n)
s ,x(n+1)) using the generated y

(n)
s , and we generate y

(n+1)
s based on that.

By repeating this process, y
(N−1)
s can be generated. We propose the approximated utility function Ũn(x

(n)|y(n−1)),

defined as (5c), as the EI-based AF. Therefore, given the observation y
(n−1)
t+n−1 of the previous stage, the observation

point of the subsequent stage n is given by:

x
(n)
t+n = argmax

x(n)∈X (n)

Ũn(x
(n)|y(n−1)

t+n−1). (6)

Although (5c) is the optimization problem for a stochastically determined function, deterministic gradient-based meth-

ods can be applied by applying the reparameterization trick (Kingma and Welling, 2014). Compared to EI-FN, which

approximates all expectations by the Monte Carlo estimation, we analytically calculate the expectation with respect to

f (N) in (5c). Furthermore, we select the controllable input in each stage depending on the output from the previous

stage by using (6) in contrast to EI-FN which does not incorporate intermediate observations.

3.2 CI-based Acquisition Function

Thus far, we assume that each f (n) is sampled from the GP prior. Hereafter, we assume that each f (n) is an element

of a reproducing kernel Hilbert space (RKHS). Under this RKHS setting, we propose a CI-based AF that can be

interpreted as an optimistic improvement. First, we provide a credible interval of F (x(n:N)|y(n−1)) and then, design

the AF. To construct a valid CI, we assume the following regularity assumptions.

Regularity Assumptions We assume that Y(n−1) ×X (n) is a compact set, and let k(n) be a positive definite kernel

with k(n)((w,x), (w,x)) ≤ 1 for any n ∈ [N ] and (w,x) ∈ Y(n−1) × X (n). Furthermore, let Hk(n) be an RKHS

corresponding to the kernel k(n). Additionally, for each n ∈ [N ], we assume that f (n) ∈ Hk(n) and ‖f (n)‖k(n) ≤ B,

where B > 0 is a constant, and ‖ · ‖k(n) denotes the RKHS norm on Hk(n) . There are several studies on BO using a

GP model for the black-box function assumed as an element of an RKHS (Srinivas et al., 2010; Oliveira et al., 2019;

Iwazaki et al., 2021).

To construct the credible interval of F (x(n:N)|y(n−1)), we first formally define a posterior mean and variance of

a GP with independent Gaussian noiseN (0, σ2). Note that what we have just introduced is the noise modelN (0, σ2)

of a GP, and the actual observations are still noiseless. For each n ∈ [N ], (w,x) ∈ Y(n−1) × X (n) and t ≥ 1, let

µ
(n)
t (w,x) and σ

(n)2
t (w,x) be the posterior mean and variance of f (n)(w,x), respectively. The interval [µ

(n)
t (w,x)±

β1/2σ
(n)
t (w,x)] with an appropriate trade-off parameter β is the credible interval for f (n)(w,x) (Srinivas et al., 2010).

We apply this interval to construct a valid credible interval for F (x(n:N)|y(n−1)). However, it cannot be used directly

because it has an uncontrollable variable w. To avoid this issue, we additionally consider the following assumptions.
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Lipschitz Continuity Assumptions We assume that f (n) and σ
(n)
t satisfy the following assumptions:

(L1) Assume that f (n) is Lf -Lipschitz continuous with respect to L1-distance for any n ∈ {2, . . . , N}, where Lf > 0

is a Lipschitz constant.

(L2) Assume that σ
(n)
t is Lσ-Lipschitz continuous with respect to L1-distance for any n ∈ {2, . . . , N} and t ≥ 1,

where Lσ > 0 is a Lipschitz constant.

This assumption enables us to give the CI of the output using the CI of the input. Since the output becomes the input

of the next stage in the cascade process, CIs of the subsequent stages can be constructed in a chain reaction.

Under these assumptions, we introduce a credible interval of F (x(n:N)|y(n−1)) using a cascade model.

Theorem 3.1. Let

µ̃
(m)
t (x(n:m)|y(n−1)) = µ

(m)
t

(
µ̃
(m−1)
t (x(n:m−1)|y(n−1)), x(m)

)
,

σ̃
(m)
t (x(n:m)|y(n−1)) = σ

(m)
t

(
µ̃
(m−1)
t (x(n:m−1)|y(n−1)), x(m)

)
+ Lf σ̃

(m−1)
t (x(n:m−1)|y(n−1)),

where µ̃
(n)
t (x(n)|y(n−1)) = µ

(n)
t (y(n−1),x(n)) and σ̃

(n)
t (x(n)|y(n−1)) = σ

(n)
t (y(n−1),x(n)). Assume that regularity

assumptions and the Lipschitz continuity assumption (L1) hold. Also assume that µ̃
(m)
t (x(n:m)|y(n−1)) ∈ Y(n) for all

m ∈ [N ], t ≥ 1 and x(n:m). Define β = B2. Then, the following holds:

|F (x(n:N)|y(n−1))− µ̃
(N)
t (x(n:N)|y(n−1))| ≤ β1/2σ̃

(N)
t (x(n:N)|y(n−1)).

From Theorem 3.1, a lower confidence boundLCB
(F )
t (x(n:N)|y(n−1)) and an upper confidence boundUCB

(F )
t (x(n:N)|y(n−1))

of F (x(n:N)|y(n−1)) are given by:

LCB
(F )
t (x(n:N)|y(n−1)) = µ̃

(N)
t−1(x

(n:N)|y(n−1))− β1/2σ̃
(N)
t−1(x

(n:N)|y(n−1)),

UCB
(F )
t (x(n:N)|y(n−1)) = µ̃

(N)
t−1(x

(n:N)|y(n−1)) + β1/2σ̃
(N)
t−1(x

(n:N)|y(n−1)).
(7)

Based on the above credible intervals, we define the pessimistic maximum estimator of F (x(1:n)) as Qt :=

maxx(1:N) LCB
(F )
t (x(1:N)). In addition, given the observation y

(n−1)
t+n−1 in stage n − 1, we define the pessimistic

maximum estimator of F (x(n:N)|y(n−1)) as follows:

LCB
(F )
t+n(y

(n−1)
t+n−1) = max

x(n:N)
LCB

(F )
t+n(x

(n:N)|y(n−1)
t+n−1), (8)

where themax operator is not necessary when n = N . Similarly, the optimistic maximum estimator ofF (x(n:N)|y(n−1)
t+n−1)

is defined as follows:

UCB
(F )
t+n(x

(n)|y(n−1)
t+n−1) := max

x(n+1:N)
UCB

(F )
t+n(x

(n:N)|y(n−1)
t+n−1).

Then, we define the optimistic improvement with respect to (y(n−1),x(n)) as follows:

a
(n)
t+n(x

(n)|y(n−1)
t+n−1) = UCB

(F )
t+n(x

(n)|y(n−1)
t+n−1)−max

{
LCB

(F )
t+n(y

(n−1)
t+n−1), Qt+n

}
. (9)

Furthermore, we define the maximum uncertainty

b
(n)
t+n(x

(n)|y(n−1)
t+n−1) = max

x(n+1:N)
σ̃
(N)
t+n−1(x

(n:N)|y(n−1)
t+n−1). (10)
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Using (9) and (10), we propose a CI-based AF c
(n)
t+n(x

(n)|y(n−1)
t+n−1):

c
(n)
t+n(x

(n)|y(n−1)
t+n−1) = max

{
a
(n)
t+n(x

(n)|y(n−1)
t+n−1), ηtb

(n)
t+n(x

(n)|y(n−1)
t+n−1)

}
, (11)

where ηt is some learning rate and tends to zero. Therefore, the subsequent observation point is given by x
(n)
t+n :=

argmaxx(n)∈X (n) c
(n)
t+n(x

(n)|y(n−1)
t+n−1).

Equation (8) denotes the pessimistic maximum when we observe in the subsequent stages with the previous output,

and Qt represents the pessimistic maximum when the observation is performed from the first stage. Thus, the second

term of (9) indicates a pessimistic maximum estimator in the current iteration, and a
(n)
t optimistically evaluates how

much the observed value exceeds the pessimistically estimated maximum value. Intuitively, CI-based AF selects the

point that has high optimistic improvement, and if no optimistic improvement is expected (i.e., a
(n)
t is small), it selects

the point with the highest uncertainty of the cascade process.

The Lipschitz constant Lf is a new parameter derived from our proposed method. Since each f (n) is a black-box

function, it is difficult to obtain the exact value of Lf . In practice, we have to estimate Lf , and one simple way is to

determine it from prior knowledge. Another way is to estimate it from a GP surrogate model. For any Lipschitz contin-

uous function f on a compact set X ⊂ Rd, L̄ = maxx∈X ‖∇f(x)‖1 satisfies the Lipschitz condition (González et al.,

2016a). Additionally, it is known that if a GP is differentiable, its derivative is also a GP. Based on these facts, we can

estimate Lf by constructing a GP surrogate model of ∇f and using its sample paths and predictive mean (Sui et al.,

2015; González et al., 2016a). On the other hand, for the Lipschitz continuity assumption (L2), it depends on how

the kernel function is chosen. If we use a kernel that does not consider any similarity between different points, i.e.,

a pathological kernel such as k(x,x′) = 1 if x = x′, and otherwise zero, the posterior standard deviation is dis-

continuous at the observed points, and (L2) does not hold. On the other hand, (L2) is shown to hold for commonly

used kernels such as linear kernels, Gaussian kernels, and Matérn kernels with more than one degree of freedom (see

Appendix E for details).

We discuss the multidimensional output setting and the noisy observation setting in the Appendix. Particularly in

noisy situations, two different target functions can be considered. One is to maximize F through noisy observations,

and the other is to maximize the expected final output with respect to the noise at each stage. We also propose the

modified version of CI-based AFs for both target functions and show the theoretical analyses of them in Appendix D.

4 Theoretical Results

In this section, we provide the theoretical guarantee for the CI-based AF. First, we define the estimated solution

x̂
(1)
t , . . . , x̂

(N)
t and regret rt at iteration t as follows:

x̂
(1)
t , . . . , x̂

(N)
t = argmax

x(1:N)∈X ,1≤t̃≤t

LCB
(F )

t̃
(x(1:N)), (12)

rt = F (x
(1)
∗ , . . . ,x

(N)
∗ )− F (x̂

(1)
t , . . . , x̂

(N)
t ).

Then, the following theorem holds.

Theorem 4.1. Under the same assumptions as in Theorem 3.1, define the estimated solution (x̂
(1)
t , . . . , x̂

(N)
t ) by (12).

Then, for any positive number ξ, the following holds:

max
x(1:N)

UCB
(F )
t (x(1:N))− max

x(1:N)
LCB

(F )
t (x(1:N)) < ξ (13)

⇒ F (x
(1)
∗ , . . . ,x

(N)
∗ )− F (x̂

(1)
t , . . . , x̂

(N)
t ) < ξ.
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Theorem 4.1 states that if the credible interval width for F is small, then regret rt is also small. On the contrary,

it does not guarantee whether the credible interval width becomes small or not. Theorem 4.2 shows that the interval

width can be made arbitrarily small when (11) is used as the AF. Let γ
(n)
t be a maximum information gain for f (n) at

iteration t, and let γt = maxn∈[N ] γ
(n)
t . Here, the maximum information gain is a commonly used sample complexity

measure in the context of the GP-based BO (Srinivas et al., 2010). The exact formulation is provided in Appendix A.

The following theorem also holds.

Theorem 4.2. Assume that the same conditions as in Theorem 3.1 hold. Also assume that the Lipschitz continuity

assumption (L2) holds. Let ξ be a positive number, and let ηt = (1 + log t)−1. Then, the following inequality holds

after at most T iterations:

F (x
(1)
∗ , . . . ,x

(N)
∗ )− F (x̂

(1)
T , . . . , x̂

(N)
T ) < ξ,

where T is the smallest positive integer satisfying T ∈ NZ≥0 = {0, N, 2N, . . .} and

8βC2
4N

3

log(1 + σ−2)
γT η

−2N−2
T T−1 < ξ2. (14)

Here, each constant is given by C0 = Lσβ
1/2 + Lf + 1, C1 = max{1, Lf , L

−1
f }, C2 = 4N2C2N−3

0 CN
1 , C3 =

NCN
2 , C4 = (2β1/2 + 2)NCN

3 .

The inequality (14) still has the variable γT . Nevertheless, the order of γT for commonly used kernels such

as the linear and Gaussian kernels is sub-linear under mild conditions (Srinivas et al., 2010). Hence, the integer T

satisfying (14) exists in these cases. This indicates that a solution x̂
(1)
T , . . . , x̂

(N)
T that achieves an arbitrary accuracy ξ

can be obtained in a finite number of observations.

In terms of the stopping criterion, if the accuracy parameter ξ is provided, we can use the condition (13) as the stop-

ping criterion for EI- and CI-based AFs. Although EI-based AF is not necessarily terminated by this stopping criterion,

Theorem 4.2 shows that CI-based AF terminates after at most T iteration that satisfies (14) when all assumptions hold.

5 Extensions

In this section, we consider an extension called suspension setting in which we are allowed to suspend the cascade

process in the middle of the multistage decision-making process. Suspension is beneficial, especially when the output

of a middle stage is significantly different from the prediction, and the output is not expected to be beneficial for the

subsequent stages. For example, if a suspension occurs at stage n, the output y(n−1) of the previous stage remains

unused, and this can be stored as a stock. If a stored stock turns out to be useful later, we can reuse the stock and

resume the cascade process from the middle stage.

Formulation Let S(n)t be the set of stocks at stage n ∈ {0, ..., N − 1} in iteration t 1. Because the process can be

resumed from the middle stage in the suspension setting, the user’s task in each iteration t is to select the best pair

(y(n−1),x(n)) from the set of candidates {S(n)t × X (n)}N−1
n=0 . Because of a user’s choice, the used stock y(n−1) is

removed from the set of stocks, and the newly obtained output y(n) is added to the set of stocks. The difference in the

cost of each stage is important in the suspension setting because, for example, if the costs of the later stages are greater

than those of former stages, then the suspension strategy can be more beneficial. Therefore, we introduce the cost of

each stage λ(n) > 0 for n ∈ [N ]. Figure 2 shows a conceptual diagram of the suspension setting.

1We set S
(0)
t

= {0} for all t.
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Figure 2: Conceptual diagram of the suspension setting. (a) shows the case where the output y(n) is stored as a stock

in stage n, and the observation from the subsequent stage is suspended. (b) shows the case where the observation is

reused from stage two using the stock y
(1)
b .

Acquisition function for suspension setting We propose the following AF for the suspension setting:

nt,y
(n−1)
t ,x

(n)
t = argmax

i∈[N ],

y(i−1)∈S(i−1)
t ,

x(i)∈X (i)

Ũi(y
(i−1),x(i))/

N∑

j=i

λ(j). (15)

There are two differences between the AF in (15) and the EI-based AF in (5c). First, in (15), based on the set of

stocks {S(i−1)
t }i∈[N ], we determine which stage to resume from, which stock to use, and what input to use. Thus, (15)

implicitly determines whether the sequential evaluation in cascade is suspended or not. Second, the utility is divided

by the total cost from stages n to N , which suggests that a cost-effective choice is performed. Resuming from a later

stage has advantages (considering cost) because the goal is to optimize the output of the final stage. The AF in (15)

can be interpreted as an extension of the EI-based AF in (5c) because it handles the two cases of starting from the

first stage and resuming from the middle stage using a stock. It is necessary to compute the utility function for many

candidates when solving the optimization problem in (15). Nonetheless, this can be done efficiently by exploiting the

fact that the evaluation of Ũn in stage n does not depend on the observations in the earlier stages.

Stock Reduction In the suspension setting, having a larger number of stocks provides us a wider choice. However,

practically, it can be costly to store several stocks. In such a situation, it is necessary to be able to decide which stocks

to retain and which ones to discard. A reasonable way is to discard the stocks that are not expected to contribute to the

optimal solution. We implement this based on the credible interval.

For any stock y(n) ∈ S(n) in stage 0 ≤ n ≤ N − 1, let

F (y(n)) = max
x(n+1:N)

F (x(n+1:N)|y(n))

be the maximum function value when the observation is performed until the final stage using y(n). Therefore, the LCB

10



and UCB of F (y(n)) are given as

LCB
(F )
t (y(n)) = max

x(n+1:N)
LCB

(F )
t (x(n+1:N)|y(n)),

UCB
(F )
t (y(n)) = max

x(n+1:N)
UCB

(F )
t (x(n+1:N)|y(n)).

Then, the following theorem holds.

Theorem 5.1. For any n ∈ [N − 1] and y(n) ∈ S(n), under the same assumptions as in Theorem 3.1, assume that the

following holds:

UCB
(F )
t (y(n)) < max

ỹ∈⋃N−1
s=0 S(s)

t

LCB
(F )
t (ỹ(s)). (16)

Then, F (y(n)) < F (x
(1)
∗ , . . . ,x

(N)
∗ ) holds.

The proof of the theorem is presented in Appendix C. From Theorem 5.1, the condition (16) is used to decide

which stocks to discard. Theorem 5.1 only guarantees that the stock will not become the optimal value. Suboptimal

stocks may also be effectively used in the optimization process.

6 Experiments

We demonstrated the optimization performance of the proposed methods in both synthetic functions and a solar

cell simulator. Details of the experimental settings are provided in Appendix F. First, we compared the methods

in the sequential setting. We used CBO, EI-FN and random sampling (Random) as the comparison methods. In

Random, each x(n) ∈ X (n) is randomly and uniformly selected. Regarding CBO, its AF is optimized by con-

sidering the output of the previous stage as the controllable variable. Because the range of the previous output is

unknown, we used a widely estimated range that was twice the actual range. Additionally, we set its hyperparam-

eters κ1, κ2 to one. We also compared the proposed methods to a fully black-box BO that used EI and GP-UCB

under a fully black-box model (FB-EI, FB-UCB). The proposed methods with EI- and CI-based AFs are labeled

as EI-BASED and CI-BASED, respectively. We set the number of Monte Carlo sampling to S = 1000, and we

used ηt = 10−4(1 + log t)−1 to calculate CI-BASED. In all the experiments, we employed a Gaussian kernel

k(n) ((w,x), (w′,x′)) = σ
(n)
f exp

(
− (w−w′)2

2ℓ
2 (n)
w

−∑D(n)

d=1
(xd−x′

d)
2

2ℓ
2 (n)
d

)
and we set the noise variance of the GP model

as σ2 = 10−4. The performance was evaluated by the simple regret F (x
(1)
∗ , . . . ,x

(N)
∗ ) − F (x

(1)
t̄ , . . . ,x

(N)
t̄ ), where

t̄ = argmax1≤t′≤t y
(N)
t′ . Additional results comparing EI-BASED and EI-FN are shown in Appendix G.

6.1 Synthetic Functions

We used sample paths from the GP priors, Rosenbrock function, Sphere function, and Matyas function as the synthetic

functions. Regarding both functions, we constructed three- and five-stage cascade processes, and set D(n) = 2 for

all n. We used Lf = 1, β1/2 = 2 for the calculation (7). In addition, 10 and 20 points for N = 3 and N = 5 were

randomly selected and provided as the initial data.

Sample Paths from GP Priors: We employed the random Fourier feature (Rahimi and Recht, 2008) to sample

f (n) from the GP prior and constructed F using them. Each f (n) was sampled ten times, and the experiments were

conducted with two different random seeds for each. The hyperparameters were set to σ
(n)
f = 15.02, ℓ

(n)
d = 3, ℓ

(n)
w =

3. We also set the domain of the control parameter to X (n) = [−10, 10]D(n)

.
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For the following synthetic functions, we ran experiments with 20 different random seeds. Furthermore, we

scaled f (n) such that the range of the function value is equal to the input domain for numerical stability. The GP

hyperparameters were selected by maximizing the marginal likelihood at every iteration.

Rosenbrock Function: Each f (n) is Rosenbrock function, whose domain of the control parameters were set to

X (n) = [−2, 2]D(n)

. We perform the experiments with the number of stages N = 3 and 5. We set x(1) ∈ R3 and

x(n) ∈ R2 for each n = 2, . . . , N , and output y(n) ∈ R for n ∈ [N ].

Sphere function: Each f (n) is Sphere function, whose domain of the control parameters were set to X (n) =

[−5.12, 5.12]D(n)

. Each output y(n) ∈ R for n ∈ [N ] and the number of stages is N = 3. We set x(1) ∈ R3

and x(2),x(3) ∈ R2.

Matyas function: Each f (n) is Matyas function, whose domain of the control parameters were set to X (n) =

[−10, 10]D(n)

. Each output y(n) ∈ R for n ∈ [N ] and the number of stages is N = 3. We set x(1) ∈ R2 and

x(2), x(3) ∈ R1.

Figure 3 shows the average value of the simple regret. We see that our proposed methods and EI-FN clearly

outperform other baselines including CBO. Although EI-BASED, which can be roughly seen as the adaptive version of

EI-FN, is comparable to EI-FN in most experiments, EI-BASED shows better performance than EI-FN in the Sphere

function. This can be seen as a benefit of adaptive decision-making. Although CI-BASED has superior theoretical

properties, CI-BASED is inferior to EI-BASED except for Rosenbrock (N = 3) and Matyas functions. One of the

reasons for these results is the setting of the hyperparameters, such as β and Lf .

6.2 Solar Cell Simulator

We applied the proposed methods to the solar cell simulator. This simulator consists of three-stage processes. Stages

one and two are two-step annealing processes to diffuse phosphorus into the silicon substrate from the surface, form-

ing a p-n junction near the surface. The controllable parameters of stage one are the phosphorus concentration at the

surface, temperature, and time of the first-step annealing. In addition, the controllable parameters of stage two are the

temperature and time of the second-step annealing. The outputs of stages one and two are the four parameters that

indicate the distribution of phosphorus concentration in the depth direction. In stage three, the solar cell is constructed

using controllable parameters composed of wafer thickness and boron concentration of the substrate, and the perfor-

mance is evaluated under standard measurement conditions. The final output is the power generation efficiency of the

solar cell, and our goal is to maximize this output. Regarding the real-world simulators, the simulators of stages one

and two are based on the physical model (Bentzen, 2006). Moreover, the simulator of stage three was constructed using

the data collected from PC1Dmod6.2 (Haug and Greulich, 2016). In stages one and two, the simulators produce vector

outputs. However, CBO does not support vector outputs, so we calculated its AF by replacing the predictive mean

and variance with the mean vector and covariance matrix, respectively. The domain of the controllable parameters are

X (1) = [700, 1050]× [100, 5000]× [19, 21.18], X (2) = [700, 1050]× [100, 5000], and X (3) = [50, 250]× [14, 17].

We randomly chose 20 points as the initial data. In addition, we set Lf = 0.1, β1/2 = 2 in this setting. Furthermore,

we tuned the hyperparameters by maximizing the marginal likelihood and ran the experiment for 50 iterations using

20 different random seeds.
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Figure 4 shows the average of the best observed value max1≤t′≤t y
(N)
t′ . This result shows that the proposed

method outperforms the existing methods in the simulator experiments. It is also confirmed that the best value found

in 50 iterations in the existing methods is achieved in less than half of the iterations in the proposed method. In a

comparison between EI-BASED and EI-FN, the error bars are not overlapped after the 40 iteration. Thus, EI-BASED

shows a slightly small but substantial improvement by adaptive decision-making.

6.3 Hydrogen Plasma Treatment Process

We applied the proposed method to the hydrogen plasma treatment (HPT) process, which is a part of the production

process of solar cells. In the previous practical study, one of the authors (KK) optimized one-stage HPT process

parameters through real experiments using simple BO (Miyagawa et al., 2021b,a). In this study, we extended this HPT

process to the virtual two-stage cascade process. The first stage is the HPT process with 7 inputs, temperature, pressure,

flow rate, process time, electrode distance, radio frequency power, and cycle time, and 2 outputs, saturation current

density, and contact resistance. The second process is the solar cell production process in which surface electrode

width is the controllable parameter. The final output is the power generation efficiency of the solar cell, and our goal

is to maximize this output as in the case of the solar cell simulation. The domain of the controllable parameters are

X (1) = [50, 300]× [0.25, 4]× [100, 1000]× [10, 100]× [270, 420]× [10, 40]× [15, 60] and X (2) = [0.01, 0.1]. Since

the real dataset is small with respect to the input domain, we used surrogate objectives, which are sample paths of GPs

fitting to the real dataset for each stage. The details of these sample paths are shown in Appendix F. Other experimental

settings are set as with the solar cell simulator experiment.

Figure 5 shows the average of the best observed value max1≤t′≤t y
(N)
t′ . Our proposed methods EI-BASED and

CI-BASED are superior to other baselines including EI-FN and CBO. In particular, the difference between EI-BASED

and EI-FN implies the improvement by adaptive decision-making.

6.4 Suspension Setting

We also conducted experiments in a suspension setting using the proposed method (15) (EI-BASED-SUS). In this

setting, we used the sample path function with N = 3 and 5. For the cost of each stage λ := (λ(1), λ(2), λ(3)),

we consider two settings: λ = (1, 1, 1), λ = (1, 1, 10). Furthermore, we apply the stock reduction rule (16) to

EI-BASED-SUS and executed it in both settings. We refer to this as EI-SUS-R. The results are shown in Figure 6(a)

and 6(b). Comparing EI-BASED and EI-BASED-SUS, we can observe that the performance is improved by incorporat-

ing the suspension. Moreover, the performance did not deteriorate even when the stock reduction rule was applied. In

addition, the stocks are not consumed in the simulator, and once a stock is acquired, it can be used a number of times.

In this case, we can reduce the number of observations in the earlier stages by reusing the stock. We compared the

situation in which stocks are available only once (EI-SUS (1)) and the situation in which stocks can be used a number

of times (EI-SUS (∞)). From Figure 6(c), we confirm that EI-SUS (∞) performs a more efficient optimization.

Conclusion

We proposed a new BO framework for cascade-type multistage processes that often appear in science and engineering.

Moreover, we have designed two AFs based on CIs and EI by handling intractable predictive distributions using

different approaches. From both the theoretical analysis and numerical experiments, it is confirmed that the proposed
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Figure 3: Experimental results of the synthetic functions. The solid line represents the average performance, and the

error bar represents the standard error.
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Figure 4: Results of the solar cell simulator. The right plot is an enlarged version of the left plot.
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Figure 5: Results of the hydrogen plasma treatment.
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Figure 6: Results in extension setting. In the above experiments for sample paths, a solid line implies the methods

with suspension and a dashed line represents a sequential method.
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methods have a superior performance.
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Appendix

A Generalization of Problem Setting

Hereafter, we consider the generalized settings, including vector output and noisy observations. First, we generalize

the problem setting in this section. In Appendix C, we consider the noiseless setting. We also consider the noisy

observation setting in Appendix D and provide the optimization algorithm. Furthermore, we discuss the conditions

of our theorems in Appendix E. Details of our experiments and additional experiments are described in Appendix F

and G, respectively.
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Let Y(n) ⊂ RM(n)

be the M (n)-dimensional output space2, and vector-output black-box function of stage n is

denoted by f (n), and f
(n)
m denotes the m-th function of f (n). Output y(n) corresponding to an input (y(n−1),x(n))

is observed with noise ǫ(n): y(n) = f (n)(y(n−1),x(n)) + ǫ(n). The noiseless settings are the case of ǫ(n) = 0.

Furthermore, we consider that ǫ(n) is uniformly bounded and zero mean noise in Appendix D.

In order to construct a surrogate model of f (n), we set GP(0, k(n)) to the prior for each f
(n)
m , where GP(µ, k(n))

represents the GP with mean function µ and kernel function k(n). Additionally, we assume that k(n) is a positive-

definite kernel and ∀(y(n−1),x(n)) ∈ Y(n−1) × X (n), k(n)
(
(y(n−1),x(n)), (y(n−1),x(n))

)
≤ 1. Let D(n)

t =
{(

(y
(n−1)
i ,x

(n)
i ),y

(n)
i

)}L
(n)
t

i=1
be observed data of stage n at iteration t. As the noise model of GP, we use ǫ(n) ∼

N (0, σ2IM(n)), where IM(n) denotes M (n) ×M (n) identity matrix. Note that this noise model is different from the

actual noise assumption. Given the observation D(n)
t , the posterior of f

(n)
m is also GP, and the predictive distribution

of f
(n)
m (y(n−1),x(n)) is given by:

f (n)
m (y(n−1),x(n)) ∼ N

(
µ
(n)
m,t(y

(n−1),x(n)), σ
(n) 2
m,t (y(n−1),x(n))

)
,

µ
(n)
m,t(y

(n−1),x(n)) = k
(
y(n−1),x(n)

)⊤
(K

(n)
t + σ2I

L
(n)
t

)−1y(n)
m ,

σ
(n) 2
m,t (y(n−1),x(n)) =k(n)

(
(y(n−1),x(n)), (y(n−1),x(n))

)

− k(y(n−1),x(n))⊤(K(n)
t + σ2I

L
(n)
t

)−1k(y(n−1),x(n)).

Here, k(y(n−1),x(n)) =
[
k(n)

(
(y(n−1),x(n)), (y

(n−1)
i ,x

(n)
i )
)]L(n)

t

i=1
, y

(n)
m =

[
y
(n)
1m , . . . , y

(n)
Lm

]⊤
, and K

(n)
t

is a kernel matrix which has k(n)
(
(y

(n−1)
i ,x

(n)
i ), (y

(n−1)
j ,x

(n)
j )
)

in (i, j)-th element. In addition, we define

µ
(n)
t (y(n−1),x(n)) =

[
µ
(n)
m,t(y

(n−1),x(n))
]M(n)

m=1
.

For a GP model of f
(n)
m , we give a definition of the maximum information gain. Let A(n) = {a(n)

1 , . . . ,a
(n)
T } ⊂

Y(n−1) ×X (n) be a finite set of sampling points. We define y
(n)
A,m ∈ RT as observation vector w.r.t. A(n), whose i-th

element is given by y
(n)
ai,m = f

(n)
m (ai) + ε

(n)
ai,m. Then, the maximum information gain γ

(n)
m,T is defined as:

γ
(n)
m,T = max

A(n)⊂Y(n−1)×X (n), |A(n)|=T
I(y

(n)
A,m; f (n)

m ),

where I(y
(n)
A,m; f

(n)
m ) is the mutual information between y

(n)
A,m and f

(n)
m . Furthermore, it is known that this mutual

information can be written in closed form as follows (Srinivas et al., 2010):

I(y
(n)
A,m; f (n)

m ) =
1

2
log det

(
I|A(n)| + σ−2K

(n)

A(n)

)
,

where K
(n)

A(n) =
[
k(n)(a

(n)
i ,a

(n)
j )
]

a
(n)
i

∈A(n), a
(n)
j

∈A(n)
.

Additionally, we define S(n)t as the set of stocks in stage n at iteration t.

A.1 Proofs of Theorems

Theorem 3.1 is a special case of Theorem C.7 with M (n) = 1 for all n. Likewise, Theorems 4.1 and 4.2 are cor-

responding to Theorems C.6 and C.10 with M (n) = 1, respectively. The proofs of these theorems are given in the

generalized problem setting. Moreover, we also provide the proof of Theorem 5.1 in Corollary C.8.

2Since we focus on single-objective optimization, the output of the final stage is assumed to be scalar (i.e., M (N)
= 1).
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B Prediction of Cascade Processes using Bayesian Quadrature

In this section, we consider the cascade process as a Bayesian quadrature (O’Hagan, 1991) framework and introduce

one of its problems. For black-box functions at each stage of the cascade process, we consider a predictive model

using GP. The problem is that it is difficult to predict each stage from the first stage because each stage contains

controllable variables and outputs from the previous stage that are not controllable. Nevertheless, the output from

the previous stage can be predicted using the posterior distribution. Therefore, integrating the black-box function of

each stage with respect to this posterior distribution, i.e., taking the expectation, allows prediction of each stage with

respect to the average case of uncontrollable inputs. This approach is known as Bayesian quadrature, and furthermore,

since each stage follows a GP, it is known that the integration of the black-box function is again a GP (see, e.g.,

(Papoulis and Pillai, 2002)). Therefore, the advantage of this approach is that it is easy to construct credible intervals

based on the properties of GP. However, this modeling has the problem that it cannot always correctly predict the target

it originally wants to predict.

Lemma B.1. Suppose that f1 : R → R follows GP(0, k1(x, x′)). Also suppose that f2 : R2 → R follows

GP(0, k2((x1, x2), (x
′
1, x

′
2)). Assume that the first variable of f2 is the output of f1. Then, the stochastic process

f2(f1(x1), x2) is not necessarily the same as

Ef1(x1)∼GP(0,k1(x,x′))[f2(f1(x1), x2)]. (B.1)

.

Proof. Let k1(x, x
′) = exp(−(x − x′)2) and k2(y,y

′) = y⊤y′. Since the expectation of GP with respect to inputs

is again a GP, (B.1) follows GP. Therefore, the probability distribution given by (B.1) at point x1 = x2 = 0 follows

some normal distribution. On the other hand, since f1(x1) ∼ GP(0, k1(x, x′)), from the definition of k1(x, x
′) we

have f1(0) ∼ N(0, 1). Similarly, we get f2(f1(0), 0) ∼ N(0, f2
1 (0))

d
= N(0, χ2

1)
d
=
√
χ2
1N(0, 1), where χ2

1 is

the chi-squared distribution with one degree of freedom. The mean and variance of
√
χ2
1N(0, 1) are zero and one,

respectively. Furthermore, the fourth moment of
√
χ2
1N(0, 1) is given by

E

[(√
χ2
1N(0, 1)

)4
]
= E[(χ2

1)
2]E[N(0, 1))4] = (V[χ2

1] + E[χ2
1]

2)3 = 9.

Hence,
√
χ2
1N(0, 1) does not follow a normal distribution because the fourth moment of the normal distribution with

mean zero and variance one, i.e., the standard normal distribution, is three. Thus, the stochastic process f2(f1(x1), x2)

is not the same as (B.1). �

Although it is possible to construct a GP prediction model as an integral of GP, the final stage does not necessarily

follow GP. Hence, it is not always easy to judge whether the composition of the credible interval or the design of AF

based on the constructed GP prediction model is appropriate or not. Therefore, modeling the final stage of the cascade

process based on the integration of GP is not the most natural approach.

C Cascade Process Optimization Using CI-based AFs under Noiseless Set-

ting

In this section, we consider CI-based cascade process optimization methods without observation noise.
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C.1 Credible Interval

We construct a valid CI for the objective function F (x(1), . . . ,x(N)). First, we assume the following regularity

assumption which is commonly assumed in many BO studies.

Assumption C.1 (Regularity assumption under noiseless setting). For each n ∈ [N ], let Y(n−1)×X (n) be a compact

set, and let Hk(n) be an RKHS corresponding to the kernel k(n). In addition, for each n ∈ [N ] and m ∈ [M (n)],

assume that f
(n)
m ∈ Hk(n) with ‖f (n)

m ‖k(n) ≤ B, where B > 0 is some constant, and ‖ · ‖k(n) denotes the RKHS norm

onHk(n) . Furthermore, assume that the observation noise ǫ
(n)
m is zero.

Under this assumption, it is known that the following lemma holds.

Lemma C.2 (Abbasi-Yadkori 2012, Theorem 3.11). Assume that Assumption C.1 holds. Define β = B2. Then, for

any n ∈ [N ] and m ∈ [M (n)], the following inequality holds:

∣∣∣f (n)
m (w,x)− µ

(n)
m,t(w,x)

∣∣∣ ≤ β1/2σ
(n)
m,t(w,x), ∀w ∈ Y(n−1), ∀x ∈ X (n), ∀t ≥ 1.

Based on Lemma C.2, we construct the valid CI. However, we cannot use Lemma C.2 to construct CIs directly

because the input w ∈ Y(n−1) is the output of the previous stage. In order to avoid this issue, we introduce additional

assumptions for Lipschitz continuity.

Assumption C.3 (Lipschitz continuity for f
(n)
m ). Assume that f

(n)
m is Lf -Lipschitz continuous with respect to L1-

distance for any n ∈ {2, . . . , N} and m ∈ [M (n)], where Lf > 0 is a Lipschitz constant.

Assumption C.4 (Lipschitz continuity for σ
(n)
m ). Assume that σ

(n)
m,t is Lσ-Lipschitz continuous with respect to L1-

distance for any n ∈ {2, . . . , N}, m ∈ [M (n)] and t ≥ 1, where Lσ > 0 is a Lipschitz constant.

Then, the following theorem gives CIs for the N -stage cascade process.

Theorem C.5 (CIs for N -stage cascade process). Assume that Assumptions C.1 and C.3 hold. Define β = B2 and

z(n)(x(1), . . . ,x(n)) =




f (1)(0,x(1)) (n = 1),

f (n)(z(n−1)(x(1:n−1)),x(n)) (2 ≤ n ≤ N),

µ̃
(n)
t (x(1), . . . ,x(n)) =




µ

(1)
t (0,x(1)) (n = 1),

µ
(n)
t (µ̃(n−1)(x(1:n−1)),x(n)) (2 ≤ n ≤ N),

σ̃
(n)
m,t(x

(1), . . . ,x(n)) =





σ
(1)
m,t(0,x

(1)) (n = 1),

σ
(n)
m,t(µ̃

(n−1)
t (x(1:n−1)),x(n))

+ Lf

M(n−1)∑

s=1

σ̃
(n−1)
s,t (x(1:n−1))

(2 ≤ n ≤ N).

Moreover, assume that µ̃
(n)
t (x(1), . . . ,x(n)) ∈ Y(n) for any n ∈ [N ], t ≥ 1 and (x(1), . . . ,x(n)) ∈ X (1)×· · ·×X (n).

Then, it follows that

|z(n)m (x(1), . . . ,x(n))− µ̃
(n)
m,t(x

(1), . . . ,x(n))| ≤ β1/2σ̃
(n)
m,t(x

(1), . . . ,x(n)),
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where m ∈ [M (n)], and z
(n)
m (·) and µ̃

(n)
m,t(·) are the m-th element of z

(n)
m (·) and µ̃

(n)
m,t(·), respectively. In particular,

when n = N , it follows that

|F (x(1), . . . ,x(N))− µ̃
(N)
1,t (x(1), . . . ,x(N))| ≤ β1/2σ̃

(N)
1,t (x(1), . . . ,x(N)).

Proof. Fix x(1), . . . ,x(n), t ≥ 1 and m ∈ [M (n)]. For simplicity, hereafter, we sometimes omit the notation

(x(1), . . . ,x(n)) such as z
(n)
m and µ̃

(n)
m,t. Then, for i ∈ [M (2)], it follows that

|z(2)i − µ̃
(2)
i,t | = |z

(2)
i − f

(2)
i (µ̃

(1)
t ,x(2)) + f

(2)
i (µ̃

(1)
t ,x(2))− µ̃

(2)
i,t |

≤ |z(2)i − f
(2)
i (µ̃

(1)
t ,x(2))|+ |f (2)

i (µ̃
(1)
t ,x(2))− µ̃

(2)
i,t |

= |z(2)i (z(1),x(2))− f
(2)
i (µ̃

(1)
t ,x(2))|+ |f (2)

i (µ̃
(1)
t ,x(2))− µ

(2)
i,t (µ̃

(1)
t ,x(2))|

≤ Lf‖z(1) − µ̃
(1)
t ‖1 + β1/2σ

(2)
i,t (µ̃

(1)
t ,x(2))

= β1/2σ
(2)
i,t (µ̃

(1)
t ,x(2)) + Lf

M(1)∑

m=1

|z(1)m − µ̃
(1)
m,t|

≤ β1/2σ
(2)
i,t (µ̃

(1)
t ,x(2)) + Lf

M(1)∑

m=1

β1/2σ
(1)
m,t(0,x

(1))

= β1/2σ̃
(2)
i,t (x

(1),x(2)). (C.1)

Similarly, z
(3)
j and µ̃

(3)
j,t satisfy that

|z(3)j − µ̃
(3)
j,t | = |z

(3)
j − f

(3)
j (µ̃

(2)
t ,x(3)) + f

(3)
j (µ̃

(2)
t ,x(3))− µ̃

(3)
j,t |

≤ |z(3)j − f
(3)
j (µ̃

(2)
t ,x(3))|+ |f (3)

j (µ̃
(2)
t ,x(3))− µ̃

(3)
j,t |

≤ Lf‖z(2) − µ̃
(2)
t ‖1 + β1/2σ

(3)
j,t (µ̃

(2)
t ,x(3))

= β1/2σ
(3)
j,t (µ̃

(2)
t ,x(3)) + Lf

M(2)∑

i=1

|z(2)i − µ̃
(2)
i,t |. (C.2)

Hence, by substituting (C.1) into (C.2), we get

|z(3)j − µ̃
(3)
j,t | ≤ β1/2


σ

(3)
j,t (µ̃

(2)
t ,x(3)) + Lf

M(2)∑

u=1

σ̃
(2)
u,t(x

(1),x(2))




= β1/2σ̃
(3)
j,t (x

(1),x(2),x(3)).

By repeating this process up to n, we have Theorem C.5. �

From Theorem C.5, we can construct the valid CI Q
(F )
t (x(1), . . . ,x(N)) of F (x(1), . . . ,x(N)) as follows:

Q
(F )
t (x(1), . . . ,x(N)) = [µ̃

(N)
1,t (x(1), . . . ,x(N))± β1/2σ̃

(N)
1,t (x(1), . . . ,x(N))]

= [LCB
(F )
t (x(1), . . . ,x(N)),UCB

(F )
t (x(1), . . . ,x(N))]. (C.3)

Next, we consider the property of estimated solutions based on the proposed CI (C.3). For any t ≥ 1, we define

the estimated solution (x̂
(1)
t , . . . , x̂

(N)
t ) as

(x̂
(1)
t , . . . , x̂

(N)
t ) = argmax

(x(1),...,x(N))∈X ,1≤t̃≤t

LCB
(F )

t̃
(x(1), . . . ,x(N)). (C.4)

Then, the following theorem holds.
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Theorem C.6. Let (x̂
(1)
t , . . . , x̂

(N)
t ) be the estimated solution given by (C.4). Assume that the same assumption as

in Theorem C.5 holds. Then, for any t ≥ 1 and ξ > 0, it follows that

max
x(1:N)∈X

UCB
(F )
t (x(1:N))− max

x(1:N)∈X
LCB

(F )
t (x(1:N)) < ξ

⇒ F (x
(1)
∗ , . . . ,x

(N)
∗ )− F (x̂

(1)
t , . . . , x̂

(N)
t ) < ξ.

Proof. From the definition of CIs, using Theorem C.5 we have

F (x
(1)
∗ , . . . ,x

(N)
∗ ) ≤ UCB

(F )
t (x

(1)
∗ , . . . ,x

(N)
∗ ),

LCB
(F )

t̂
(x̂

(1)
t , . . . , x̂

(N)
t ) ≤ F (x̂

(1)
t , . . . , x̂

(N)
t ),

where t̂ = argmax(x(1),...,x(N))∈X ,1≤t̃≤t LCB
(F )

t̃
(x(1:N)). Similarly, from the definition of (x̂

(1)
t , . . . , x̂

(N)
t ), noting

that

max
x(1:N)∈X

LCB
(F )
t (x(1:N)) ≤ LCB

(F )

t̂
(x̂

(1:N)
t , . . . , x̂

(N)
t ),

we get

F (x
(1)
∗ , . . . ,x

(N)
∗ ) ≤ UCB

(F )
t (x

(1)
∗ , . . . ,x

(N)
∗ ) ≤ max

x(1:N)∈X
UCB

(F )
t (x(1:N)),

max
x(1:N)∈X

LCB
(F )
t (x(1:N)) ≤ LCB

(F )

t̂
(x̂

(1)
t , . . . , x̂

(N)
t ) ≤ F (x̂

(1)
t , . . . , x̂

(N)
t ).

This implies that

F (x
(1)
∗ , . . . ,x

(N)
∗ )− F (x̂

(1)
t , . . . , x̂

(N)
t )

≤ max
x(1:N)∈X

UCB
(F )
t (x(1:N))− max

x(1:N)∈X
LCB

(F )
t (x(1:N)). (C.5)

Therefore, by combining (C.5) and

max
x(1:N)∈X

UCB
(F )
t (x(1:N))− max

(x(1:N))∈X
LCB

(F )
t (x(1:N)) < ξ,

we get Theorem C.6. �

Finally, we consider the construction of CIs when the observations up to the s-th stage are given. Let s be an

integer with 0 ≤ s ≤ N − 1, and let y be an element of Y(s). Then, for each n ∈ {s+ 1, . . . , N}, m ∈ [M (n)], t ≥ 1

and x(s+1), . . . ,x(n), we define z(n)(x(s+1), . . . ,x(n)|y), µ̃(n)
t (x(s+1), . . . ,x(n)|y) and σ̃

(n)
m,t(x

(s+1), . . . ,x(n)|y)
as

z(n)(x(s+1), . . . ,x(n)|y) =





f (s+1)(y,x(s+1)) (n = s+ 1),

f (n)(z(n−1)(x(s+1:n−1)|y),x(n)) (n ≥ s+ 2),

µ̃
(n)
t (x(s+1), . . . ,x(n)|y) =





µ

(s+1)
t (y,x(s+1)) (n = s+ 1),

µ
(n)
t (µ̃(n−1)(x(s+1:n−1)|y),x(n)) (n ≥ s+ 2),

σ̃
(n)
m,t(x

(s+1), . . . ,x(n)|y) =






σ
(s+1)
m,t (y,x(s+1)) (n = s+ 1),

σ
(n)
m,t(µ̃

(n−1)
t (x(s+1:n−1)|y),x(n))

+ Lf

M(n−1)∑

u=1

σ̃
(n−1)
u,t (x(s+1:n−1)|y)

(n ≥ s+ 2).

Moreover, we formally define z(s)(x(s+1),x(s)|y) = µ̃
(s)
t (x(s+1),x(s)|y) = y and σ̃

(s)
m,t(x

(s+1),x(s)|y) = 0. Then,

the following theorem holds.
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Theorem C.7 (CIs for N -stage cascade process under given observation). Assume that Assumptions C.1 and C.3 hold.

Define β = B2, and assume that µ̃
(n)
t (x(s+1), . . . ,x(n)|y) ∈ Y(n) for any s ∈ {0, . . . , N − 1}, n ∈ {s+ 1, . . . , N},

y ∈ Y(s), t ≥ 1 and (x(s+1), . . . ,x(n)) ∈ X (s+1) × · · · × X (n). Then, it follows that

|z(n)m (x(s+1), . . . ,x(n)|y)− µ̃
(n)
m,t(x

(s+1), . . . ,x(n)|y)| ≤ β1/2σ̃
(n)
m,t(x

(s+1), . . . ,x(n)|y),

where m ∈ [M (n)], and z
(n)
m (·|y) and µ̃

(n)
m,t(·|y) are the m-th element of z

(n)
m (·|y) and µ̃

(n)
m,t(·|y), respectively.

Proof. By using the same argument as in the proof of Theorem C.5, we get Theorem C.7. �

Based on Theorem C.7, we give a stock reduction rule. For each t ≥ 1 and y ∈ Y(s) with 0 ≤ s ≤ N − 1, we

define F (y), LCB
(F )
t (y) and UCB

(F )
t (y) as

F (y) = max
x(s+1)···x(N)

z(N)(x(s+1), . . . ,x(N)|y),

LCB
(F )
t (y) = max

x(s+1)···x(N)
(µ̃

(N)
1,t (x(s+1), . . . ,x(N)|y)− β1/2σ̃

(N)
1,t (x(s+1), . . . ,x(N)|y)),

UCB
(F )
t (y) = max

x(s+1)···x(N)
(µ̃

(N)
1,t (x(s+1), . . . ,x(N)|y) + β1/2σ̃

(N)
1,t (x(s+1), . . . ,x(N)|y)),

where µ̃
(N)
1,t (x(s+1), . . . ,x(N)|y) is the first element of µ̃

(N)
t (x(s+1), . . . ,x(N)|y). Then, the following corollary

holds.

Corollary C.8 (Stock reduction). Assume that the same assumption as in Theorem C.7 holds. Let t ≥ 1, and let S(u)t

be a set of stocks at stage u ∈ {0, . . . , N − 1} in iteration t. Assume that an element y in S(s)t satisfies

UCB
(F )
t (y) < max

ỹ∈⋃N−1
u=0 S(u)

t

LCB
(F )
t (ỹ).

Then, it follows that F (y) < F (x
(1)
∗ , . . . ,x

(N)
∗ ).

Proof. From Theorems C.5 and C.7, noting that y ∈ S(u)t is the observed value corresponding to some input, it follows

that

F (y) ≤ UCB
(F )
t (y)

< max
ỹ∈

⋃N−1
u=0 S(u)

t

LCB
(F )
t (ỹ)

≤ max
(x(1),...,x(N))∈X

z(N)(x(1), . . . ,x(N)|0)

= F (x
(1)
∗ , . . . ,x

(N)
∗ ).

�

C.2 Cascade Process Upper Confidence Bound

Here, we consider a UCB-based optimization strategy, and give a cascade process upper confidence bound (cUCB)

AF. For each iteration t ≥ 1 and input (x(1), . . . ,x(N)), we define cUCB as

cUCBt(x
(1), . . . ,x(N)) = µ̃

(N)
1,t (x(1), . . . ,x(N)) + β1/2σ̃

(N)
1,t (x(1), . . . ,x(N)).
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Next, we consider the theoretical property of cUCB. Suppose that the next evaluation point is selected by

(x
(1)
t+1, . . . ,x

(N)
t+1) = argmax

(x(1),...,x(N))∈X
cUCBt(x

(1), . . . ,x(N)). (C.6)

Moreover, in order to evaluate the goodness of the optimization strategy, we introduce the regret rt, cumulative regret

RT and simple regret r
(S)
T as

rt = F (x
(1)
∗ , . . . ,x

(N)
∗ )− F (x

(1)
t , . . . ,x

(N)
t ),

RT =

T∑

t=1

rt, r
(S)
T = min

1≤t≤T
rt.

Then, the following theorem gives regret bounds for RT and r
(S)
T .

Theorem C.9. Assume that Assumptions C.1, C.3 and C.4 hold. Define β = B2, and assume that

µ̃
(n)
t (x(s+1), . . . ,x(n)|y) ∈ Y(n) for any s ∈ {0, . . . , N − 1}, n ∈ {s + 1, . . . , N}, y ∈ Y(s), t ≥ 1 and

(x(s+1), . . . ,x(n)) ∈ X (s+1) × · · · × X (n). Then, when the optimization is performed using cUCB, the following

inequality holds for any T ≥ 1:

RT ≤

√
8βC

2(N−1)
0 M2

prodM
2
sum

log(1 + σ−2)
TγT ,

r
(S)
T ≤ T−1/2

√
8βC

2(N−1)
0 M2

prodM
2
sum

log(1 + σ−2)
γT ,

where C0 = Lσβ
1/2 + Lf + 1, Mprod =

∏N
n=1 M

(n) and Msum =
∑N

n=1 M
(n).

Proof. From the definition of σ̃
(n)
m,t(·), using Lipschitz continuity of σ

(n)
m,t(·) we have

σ̃
(n)
m,t(x

(1), . . . ,x(n))

= σ
(n)
m,t(z

(n−1)(x(1), . . . ,x(n−1)),x(n)) + Lf

M(n−1)∑

s=1

σ̃
(n−1)
s,t (x(1), . . . ,x(n−1))

+ σ
(n)
m,t(µ̃

(n−1)
t (x(1), . . . ,x(n−1)),x(n))− σ

(n)
m,t(z

(n−1)(x(1), . . . ,x(n−1)),x(n))

≤ σ
(n)
m,t(z

(n−1)(x(1), . . . ,x(n−1)),x(n)) + Lf

M(n−1)∑

s=1

σ̃
(n−1)
s,t (x(1), . . . ,x(n−1))

+ |σ(n)
m,t(z

(n−1)(x(1), . . . ,x(n−1)),x(n))− σ
(n)
m,t(µ̃

(n−1)
t (x(1), . . . ,x(n−1)),x(n))|

≤ σ
(n)
m,t(z

(n−1)(x(1), . . . ,x(n−1)),x(n)) + Lf

M(n−1)∑

s=1

σ̃
(n−1)
s,t (x(1), . . . ,x(n−1))

+ Lσ

M(n−1)∑

s=1

|z(n−1)
s (x(1), . . . ,x(n−1))− µ̃

(n−1)
s,t (x(1), . . . ,x(n−1))|

≤ σ
(n)
m,t(z

(n−1)(x(1), . . . ,x(n−1)),x(n)) + Lf

M(n−1)∑

s=1

σ̃
(n−1)
s,t (x(1), . . . ,x(n−1))

+ Lσβ
1/2

M(n−1)∑

s=1

σ̃
(n−1)
s,t (x(1), . . . ,x(n−1))
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= σ
(n)
m,t(z

(n−1)(x(1), . . . ,x(n−1)),x(n)) + (Lσβ
1/2 + Lf)

M(n−1)∑

s=1

σ̃
(n−1)
s,t (x(1), . . . ,x(n−1))

≤ σ
(n)
m,t(z

(n−1)(x(1), . . . ,x(n−1)),x(n)) + C0

M(n−1)∑

s=1

σ̃
(n−1)
s,t (x(1), . . . ,x(n−1)). (C.7)

Thus, by repeating the same argument as (C.7) up to N , we get

σ̃
(N)
1,t (x(1), . . . ,x(N))

≤ σ
(N)
1,t (z(N−1)(x(1), . . . ,x(N−1)),x(N)) + C0

M(N−1)∑

s=1

σ̃
(N−1)
s,t (x(1), . . . ,x(N−1))

≤ σ
(N)
1,t (z(N−1)(x(1), . . . ,x(N−1)),x(N))

+ C0

M(N−1)∑

s=1

σ
(N−1)
s,t (z(N−2)(x(1), . . . ,x(N−2)),x(N−1))

+ C2
0M

(N−1)
M(N−2)∑

u=1

σ̃
(N−2)
u,t (x(1), . . . ,x(N−2))

≤
...

≤ σ
(N)
1,t (z(N−1)(x(1), . . . ,x(N−1)),x(N))

+

N−1∑

n=1

CN−n
0

N∏

s=n+1

M (s)
M(n)∑

m=1

[
σ
(n)
m,t(z

(n−1)(x(1), . . . ,x(n−1)),x(n))
]

≤ CN−1
0 Mprod

N∑

n=1

M(n)∑

m=1

σ
(n)
m,t(z

(n−1)(x(1), . . . ,x(n−1)),x(n)).

In addition, using the Cauchy–Schwarz inequality, it follows that

σ̃
(N)2
1,t (x(1), . . . ,x(N))

≤ C
2(N−1)
0 M2

prod




N∑

n=1

M(n)∑

m=1

1






N∑

n=1

M(n)∑

m=1

σ
(n)2
m,t (z

(n−1)(x(1), . . . ,x(n−1)),x(n))




= C
2(N−1)
0 M2

prodMsum ·
N∑

n=1

M(n)∑

m=1

σ
(n)2
m,t (z

(n−1)(x(1), . . . ,x(n−1)),x(n)). (C.8)

Moreover, from Theorem C.5 and the selection rule (C.6), F (x
(1)
∗ , . . . ,x

(N)
∗ ) can be bounded as follows:

F (x
(1)
∗ , . . . ,x

(N)
∗ ) ≤ cUCBt(x

(1)
∗ , . . . ,x

(N)
∗ )

≤ cUCBt(x
(1)
t+1, . . . ,x

(N)
t+1)

= µ̃
(N)
1,t (x

(1)
t+1, . . . ,x

(N)
t+1) + β1/2σ̃

(N)
1,t (x

(1)
t+1, . . . ,x

(N)
t+1).

Similarly, since F (x
(1)
t+1, . . . ,x

(N)
t+1) can be bounded as

F (x
(1)
t+1, . . . ,x

(N)
t+1) ≥ µ̃

(N)
1,t (x

(1)
t+1, . . . ,x

(N)
t+1)− β1/2σ̃

(N)
1,t (x

(1)
t+1, . . . ,x

(N)
t+1),
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we get

rt = F (x
(1)
∗ , . . . ,x

(N)
∗ )− F (x

(1)
t+1, . . . ,x

(N)
t+1)

≤ 2β1/2σ̃
(N)
1,t (x

(1)
t+1, . . . ,x

(N)
t+1). (C.9)

Here, from the Cauchy–Schwarz inequality, R2
T can be evaluated as

R2
T =

(
T∑

t=1

rt

)2

≤ T
T∑

t=1

r2t . (C.10)

Hence, by combining (C.8) and (C.9) we have

T∑

t=1

r2t ≤ 4

T∑

t=1


βC

2(N−1)
0 M2

prodMsum

N∑

n=1

M(n)∑

m=1

σ
(n)2
m,t (z

(n−1)(x
(1)
t+1, . . . ,x

(n−1)
t+1 ),x

(n)
t+1)




≤ 4βC
2(N−1)
0 M2

prodMsumsum
N
n=1

M(n)∑

m=1

T∑

t=1

[
σ
(n)2
m,t (z

(n−1)(x
(1)
t+1, . . . ,x

(n−1)
t+1 ),x

(n)
t+1)

]
. (C.11)

Furthermore, by using the same argument as in Lemma 5.3 and 5.4 of (Srinivas et al., 2010), under the assumption

k(n)(·, ·) ≤ 1 we get

T∑

t=1

σ
(n)2
m,t (z

(n−1)(x
(1)
t+1, . . . ,x

(n−1)
t+1 ),x

(n)
t+1) ≤

2

log(1 + σ−2)
γ
(n)
m,T ≤

2

log(1 + σ−2)
γT . (C.12)

Thus, from (C.11) and (C.12) we obtain

T∑

t=1

r2t ≤
8βC

2(N−1)
0 M2

prodM
2
sum

log(1 + σ−2)
γT . (C.13)

Hence, by using (C.10) and (C.13), it follows that

Rt ≤

√√√√8βC
2(N−1)
0 M2

prodM
2
sum

log(1 + σ−2)
TγT .

Finally, since r
(S)
T satisfies

Tr
(S)
T ≤

T∑

t=1

rt = RT ≤

√√√√8βC
2(N−1)
0 M2

prodM
2
sum

log(1 + σ−2)
TγT ,

the following inequality holds:

r
(S)
T ≤ T−1/2

√√√√8βC
2(N−1)
0 M2

prodM
2
sum

log(1 + σ−2)
γT .

�

C.3 Optimistic Improvement-based AF

In this subsection, we consider sequential observations of a cascade process from stage 1 to N . For each iteration

t ∈ {0, N, 2N, . . .} ≡ NZ≥0, users determine x
(1)
t+1 and observe y

(1)
t+1 = f (1)(0,x

(1)
t+1). After that, users choose
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x
(2)
t+2 and observe y

(2)
t+2 = f (2)(y

(1)
t+1,x

(2)
t+2). By repeating this operation, users obtain y

(N)
t+N = f (N)(y

(N−1)
t+N−1,x

(N)
t+N )

finally. We design the CI-based AF according to the following strategy: (1) given an observation y(n), we seek the

maximum of F if it is expected to be found; (2) if the maximum is not expected to be found, we collect the information

by using another policy. We use the optimistic improvement for (1), and we adopt uncertainty sampling (US) policy

for (2). First, we define the pessimistic maximum of F (x(1), . . . ,x(N)) as

QT = max
(x(1),...,x(N))

(
µ̃
(N)
1,T (x(1), . . . ,x(N))− β1/2σ̃

(N)
1,T (x(1), . . . ,x(N))

)
.

In addition, given the observation y(n−1) in stage n − 1, we define the pessimistic maximum of F obtained through

y(n−1) as follows:

LCB
(F )
t (y(n−1)) = max

x(n:N)

(
µ̃
(N)
1,t (x(n:N)|y(n−1))− β1/2σ̃

(N)
1,t (x(n:N)|y(n−1))

)
,

where the max operator is not necessary when n = N . Similarly, the optimistic maximum for given the input

(y(n−1),x(n)) is defined as follows:

UCB
(F )
t (x(n)|y(n−1)) = max

x(n+1:N)

(
µ̃
(N)
1,t (x(n:N)|y(n−1)) + β1/2σ̃

(N)
1,t (x(n:N)|y(n−1))

)
.

Then, we define the optimistic improvement w.r.t. (y(n−1),x(n)) as follows:

a
(n)
t (x(n)|y(n−1)) = UCB

(F )
t (x(n)|y(n−1))−max{LCB(F )

t (y(n−1)), Qt+n−1}. (C.14)

Furthermore, we define the maximum uncertainty

b
(n)
t (x(n)|y(n−1)) = max

(x(n+1),...,x(N))
σ̃
(N)
1,t (x(n), . . . ,x(N)|y(n−1)). (C.15)

Using (C.14) and (C.15), optimistic improvement-based AF (presented as CI-based AF in section 3.2)

c
(n)
t (x(n)|y(n−1)) is defined as

c
(n)
t (x(n)|y(n−1)) = max

{
a
(n)
t (x(n)|y(n−1)), ηtb

(n)
t (x(n)|y(n−1))

}
,

where ηt is some learning rate tends to zero. Therefore, given the observationy(n−1) at iteration t, the next observation

point is given by

x
(n)
t+n = argmax

x(n)∈X (n)

c
(n)
t (x(n)|y(n−1)

t+n−1), (C.16)

where y(0) = 0.

Theorem C.10. Assume that Assumptions C.1, C.3 and C.4 hold. Also assume that µ̃
(n)
t (x(s+1), . . . ,x(n)|y) ∈ Y(n)

for any s ∈ {0, . . . , N − 1}, n ∈ {s+ 1, . . . , N}, y ∈ Y(s), t ≥ 1 and (x(s+1), . . . ,x(n)) ∈ X (s+1) × · · · × X (n).

Let ξ be a positive number, and define β = B2 and ηt = (1 + log t)−1. Then, when the optimization is performed

using (C.16), the estimated solution (x̂
(1)
T , . . . , x̂

(N)
T ) satisfies that

F (x
(1)
∗ , . . . ,x

(N)
∗ )− F (x̂

(1)
T , . . . , x̂

(N)
T ) < ξ,

where T is the smallest positive integer satisfying T ∈ NZ≥0 and

8βC2
4M

2
sumN

log(1 + σ−2)
γT η

−2N−2
T T−1 < ξ2.

Here, C4 is the positive constant given by

C1 = max{1, Lf , L
−1
f }, C2 = 4NM2

prodMsumC
2N−3
0 CN

1 , C3 = NCN
2 , C4 = (2β1/2 + 2)NCN

3 .
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In order to prove Theorem C.10, we give four lemmas.

Lemma C.11. Assume that the same condition as in Theorem C.10 holds. Let s ∈ {1, . . . , N − 1} and n ∈ {s +
1, . . . , N}. Then, for any iteration t ≥ 1, element m ∈ [M (n)] and input x(1), . . . ,x(N), the following inequality

holds:

|σ(n)
m,t(µ̃

(n−1)
t (x(s), . . . ,x(n−1)|z(s−1)),x(n))− σ

(n)
m,t(µ̃

(n−1)
t (x(s+1), . . . ,x(n−1)|z(s)),x(n))|

≤ 2MprodC
N−1
0

n−s−1∑

p=0

M(n−1−p)∑

i=1

[
σ
(n−1−p)
i,t (µ̃

(n−2−p)
t (x(s:n−2−p)|z(s−1)),x(n−1−p))

]
.

Proof. From Lipschitz continuity of σ
(n)
m,t(·), the following holds:

|σ(n)
m,t(µ̃

(n−1)
t (x(s), . . . ,x(n−1)|z(s−1)),x(n))− σ

(n)
m,t(µ̃

(n−1)
t (x(s+1), . . . ,x(n−1)|z(s)),x(n))|

≤ Lσ‖µ̃(n−1)
t (x(s), . . . ,x(n−1)|z(s−1))− µ̃

(n−1)
t (x(s+1), . . . ,x(n−1)|z(s))‖1

= Lσ

M(n−1)∑

j=1

|µ̃(n−1)
j,t (x(s), . . . ,x(n−1)|z(s−1))− µ̃

(n−1)
j,t (x(s+1), . . . ,x(n−1)|z(s))|

= Lσ

M(n−1)∑

j=1

|µ(n−1)
j,t (µ̃

(n−2)
t (x(s:n−2)|z(s−1)),x(n−1))− µ

(n−1)
j,t (µ̃

(n−2)
t (x(s+1:n−2)|z(s)),x(n−1))|. (C.17)

Here, noting that

f (k)
m (y,x)− β1/2σ

(k)
m,t(y,x) ≤ µ

(k)
m,t(y,x)

≤ f (k)
m (y,x) + β1/2σ

(k)
m,t(y,x),

we have

|µ(k)
m,t(y,x)− µ

(k)
m,t(y

′,x)|
≤ |f (k)

m (y,x)− f (k)
m (y′,x)|+ β1/2σ

(k)
m,t(y,x) + β1/2σ

(k)
m,t(y

′,x)

≤ |f (k)
m (y,x)− f (k)

m (y′,x)|+ β1/2|σ(k)
m,t(y,x)− σ

(k)
m,t(y

′,x)|+ 2β1/2σ
(k)
m,t(y

′,x)

≤ (Lf + β
1/2
t Lσ)‖y − y′‖1 + 2β1/2σ

(k)
m,t(y

′,x). (C.18)

Therefore, by substituting (C.18) into (C.17), it follows that

|σ(n)
m,t(µ̃

(n−1)
t (x(s), . . . ,x(n−1)|z(s−1)),x(n))− σ

(n)
m,t(µ̃

(n−1)
t (x(s+1), . . . ,x(n−1)|z(s)),x(n))|

≤ 2β1/2Lσ

M(n−1)∑

j=1

σ
(n−1)
j,t

(
µ̃

(n−2)
t (x(s+1), . . . ,x(n−2)|z(s)),x(n−1)) + LσM

(n−1)(Lf + β1/2Lσ)

· ‖µ̃(n−2)
t (x(s), . . . ,x(n−2)|z(s−1))− µ̃

(n−2)
t (x(s+1), . . . ,x(n−2)|z(s))‖1

≤ 2β1/2Lσ

M(n−1)∑

j=1

σ
(n−1)
j,t

(
µ̃

(n−2)
t (x(s+1), . . . ,x(n−2)|z(s)),x(n−1))

+ LσM
(n−1)(Lf + β1/2Lσ)

M(n−2)∑

i=1

|µ̃(n−2)
i,t (x(s:n−2)|z(s−1))− µ̃

(n−2)
i,t (x(s+1:n−2)|z(s))|

≤ 2β1/2Lσ

M(n−1)∑

j=1

σ
(n−1)
j,t (µ̃

(n−2)
t (x(s:n−2)|z(s−1)),x(n−1))
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+ 2β1/2LσM
(n−1)(Lf + β1/2Lσ) ·

M(n−2)∑

i=1

σ
(n−2)
i,t (µ̃

(n−3)
t (x(s), . . . ,x(n−3)|z(s−1)),x(n−2))

+ LσM
(n−1)M (n−2)(Lf + β1/2Lσ)

2
M(n−3)∑

q=1

[
|µ̃(n−3)

q,t (x(s:n−3)|z(s−1))− µ̃
(n−3)
q,t (x(s+1:n−3)|z(s))|

]

≤
...

≤ 2β1/2LσMprod(Lf + β1/2Lσ + 1)N−2

·
n−s−2∑

p=0

M(n−1−p)∑

i=1

[
σ
(n−1−p)
i,t

(
µ̃

(n−2−p)
t (x(s:n−2−p)|z(s−1)),x(n−1−p))

]

+ 2Mprodβ
1/2Lσ(Lf + β1/2Lσ + 1)N−2

M(s)∑

q=1

σ
(s)
q,t (z

(s−1),x(s))

≤ 2Mprod(Lf + β1/2Lσ + 1)N−1
n−s−1∑

p=0

M(n−1−p)∑

i=1

[
σ
(n−1−p)
i,t (µ̃

(n−2−p)
t (x(s:n−2−p)|z(s−1)),x(n−1−p))

]

≤ 2MprodC
N−1
0

n−s−1∑

p=0

M(n−1−p)∑

i=1

[
σ
(n−1−p)
i,t

(
µ̃

(n−2−p)
t (x(s), . . . ,x(n−2−p)|z(s−1)),x(n−1−p)

)]
.

�

Lemma C.12. Assume that the same condition as in Theorem C.10 holds. Let s ∈ {1, . . . , N − 1}, and let j ≥ 0 be

an integer with s+ j ≤ N . Then, for any iteration t ≥ 1, element m ∈ [M (n)] and input x(1), . . . ,x(N), the following

inequality holds:

σ̃
(N−j)
t (x(s), . . . ,x(N−j)|z(s−1)) ≤ C̃2σ̃

(N−j)
t (x(s+1), . . . ,x(N−j)|z(s)) + C̃2

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s))

+ C̃2σ̃
(N−j−1)
t (x(s), . . . ,x(N−j−1)|z(s−1)),

where

σ̃
(N−j)
t (x(s), . . . ,x(N−j)|z(s−1))

=

N−s∑

p=j

p∏

q=1

M (N−q+1)Lp
f

M(N−p)∑

i=1

[
σ
(N−p)
i,t (µ̃

(N−p−1)
t (x(s), . . . ,x(N−p−1)|z(s−1)),x(N−p))

]

and C̃2 = 4NM2
prodMsumC

2N−2
0 CN

1 .

Proof. From the definition of σ̃
(N−j)
t (x(s), . . . ,x(N−j)|z(s−1)), the following inequality holds:

σ̃
(N−j)
t (x(s), . . . ,x(N−j)|z(s−1))

=

N−s∑

p=j

p∏

q=1

M (N−q+1)Lp
f

M(N−p)∑

i=1

[
σ
(N−p)
i,t (µ̃

(N−p−1)
t (x(s), . . . ,x(N−p−1)|z(s−1)),x(N−p))

]

≤MprodC
N−1
0

N−s∑

p=j

M(N−p)∑

i=1

[
σ
(N−p)
i,t (µ̃

(N−p−1)
t (x(s), . . . ,x(N−p−1)|z(s−1)),x(N−p))

]
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= MprodC
N−1
0

N−s−1∑

p=j

M(N−p)∑

i=1

[
σ
(N−p)
i,t (µ̃

(N−p−1)
t (x(s+1), . . . ,x(N−p−1)|z(s)),x(N−p))

]

+MprodC
N−1
0

N−s−1∑

p=j

M(N−p)∑

i=1

(
σ
(N−p)
i,t (µ̃

(N−p−1)
t (x(s), . . . ,x(N−p−1)|z(s−1)),x(N−p))

−σ(N−p)
i,t (µ̃

(N−p−1)
t (x(s+1), . . . ,x(N−p−1)|z(s)),x(N−p))

)
+MprodC

N−1
0

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s)).

Thus, from Lemma C.11 we get

|σ(N−p)
i,t (µ̃

(N−p−1)
t (x(s), . . . ,x(N−p−1)|z(s−1)),x(N−p))

− σ
(N−p)
i,t (µ̃

(N−p−1)
t (x(s+1), . . . ,x(N−p−1)|z(s)),x(N−p))|

≤ 2MprodC
N−1
0

N−p−s−1∑

r=0

·
M(N−p−1−r)∑

j=1

[
σ
(N−p−1−r)
j,t

(
µ̃

(N−p−2−r)
t (x(s), . . . ,x(N−p−2−r)|z(s−1)),x(N−p−1−r)

)]
.

By using this, σ̃
(N−j)
t (x(s), . . . ,x(N−j)|z(s−1)) can be written as

σ̃
(N−j)
t (x(s), . . . ,x(N−j)|z(s−1))

≤MprodC
N−2
0

N−s−1∑

p=j

M(N−p)∑

i=1

σ
(N−p)
i,t

(
µ̃

(N−p−1)
t (x(s+1), . . . ,x(N−p−1)|z(s)),x(N−p)

)

+MprodC
N−2
0

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s)) + 2M2
prodC

2N−2
0 Msum

·
N−s−1∑

p=j

N−p−s−1∑

r=0

M(N−p−1−r)∑

j=1

[
σ
(N−p−1−r)
j,t

(
µ̃

(N−p−2−r)
t (x(s:N−p−2−r)|z(s−1)),x(N−p−1−r)

)]
.

Here, we set v = p+ r. Then, noting that |{(p, r) | p+ r = a}| ≤ 2a, we obtain

σ̃
(N−j)
t (x(s), . . . ,x(N−j)|z(s−1))

≤MprodC
N−2
0

N−s−1∑

p=j

M(N−p)∑

i=1

σ
(N−p)
i,t

(
µ̃

(N−p−1)
t (x(s+1), . . . ,x(N−p−1)|z(s)),x(N−p)

)

+ 2M2
prodC

2N−2
0 Msum

N−s−1∑

v=j

2N

M(N−v−1)∑

j=1

σ
(N−v−1)
j,t

(
µ̃

(N−v−2)
t (x(s), . . . ,x(N−v−2)|z(s−1)),x(N−v−1)

)

+MprodC
N−2
0

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s))

≤ 4NM2
prodC

2N−2
0 Msum

N−s−1∑

p=j

M(N−p)∑

i=1

σ
(N−p)
i,t

(
µ̃

(N−p−1)
t (x(s+1), . . . ,x(N−p−1)|z(s)),x(N−p)

)

+ 4NM2
prodC

2N−2
0 Msum

N−s−1∑

v=j

M(N−v−1)∑

j=1

σ
(N−v−1)
j,t

(
µ̃

(N−v−2)
t (x(s), . . . ,x(N−v−2)|z(s−1)),x(N−v−1)

)
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+ 4NM2
prodC

2N−2
0 MsumC

N
1

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s))

≤ C̃2σ̃
(N−j)
t (x(s+1), . . . ,x(N−j)|z(s)) + C̃2σ̃

(N−j−1)
t (x(s), . . . ,x(N−j−1)|z(s−1))

+ C̃2

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s)).

�

Lemma C.13. Assume that the same condition as in Theorem C.10 holds. Let s ∈ {1, . . . , N − 1} and n ∈ {s +
1, . . . , N}. Then, for any iteration t ≥ 1, element m ∈ [M (n)] and input x(1), . . . ,x(N), the following inequality

holds:

σ̃
(N)
1,t (x(s:N)|z(s−1)) ≤ C3σ̃

(N)
1,t (x(s+1:N)|z(s)) + C3

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s)).

Proof. By repeatedly using Lemma C.12, we obtain

σ̃
(N)
1,t (x(s), . . . ,x(N)|z(s−1))

= σ̃
(N−0)
t (x(s), . . . ,x(N−0)|z(s−1))

≤ C̃2σ̃
(N−0)
t (x(s+1), . . . ,x(N−0)|z(s)) + C̃2

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s)) + C̃2σ̃
(N−1)
t (x(s), . . . ,x(N−1)|z(s−1))

≤ C̃2σ̃
(N−0)
t (x(s+1), . . . ,x(N−0)|z(s)) + C̃2

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s)) + C̃2
2

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s))

+ C̃2
2 σ̃

(N−1)
t (x(s+1), . . . ,x(N−1)|z(s)) + C̃2

2 σ̃
(N−2)
t (x(s), . . . ,x(N−2)|z(s−1))

≤
...

≤ (C̃2 + C̃2
2 + · · ·+ C̃N−1

2 )σ̃
(N−0)
t (x(s+1:N−0)|z(s)) + (C̃2 + C̃2

2 + · · ·+ C̃N−1
2 )

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s))

≤ (N − 1)C̃N−1
2 σ̃

(N)
1,t (x(s+1), . . . ,x(N)|z(s)) + (N − 1)C̃N−1

2

M(s)∑

i=1

σ
(s)
i,t (z

(s−1),x(s)).

In addition, (N − 1)C̃N−1
2 can be bounded by

(N − 1)C̃N−1
2 ≤ NC̃N−1

2

= N(4NM2
prodMsumC

2N−2
0 CN

1 )N−1

≤ N(4NM2
prodMsumC

N
1 )NC2N2−4N+2

0

≤ N(4NM2
prodMsumC

N
1 )NC2N2−4N+N

0

= N(4NM2
prodMsumC

2N−3
0 CN

1 )N

= NCN
2 = C3,

we get Lemma C.13. �
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Lemma C.14. Assume that the same condition as in Theorem C.10 holds. Let n ∈ [N ] and y(n−1) ∈ Y(n−1). Then,

for any iteration t ≥ 1 and input x(n) ∈ X (n), the following inequality holds:

ηtb
(n)
t (x(n)|y(n−1)) ≤ c

(n)
t (x(n)|y(n−1))

≤ (2β1/2 + ηt)b
(n)
t (x(n)|y(n−1)).

Proof. From the definition of c
(n)
t (x(n)|y(n−1)), it is clear that ηtb

(n)
t (x(n)|y(n−1)) ≤ c

(n)
t (x(n)|y(n−1)). On the

other hand, from the definition of UCB
(F )
t (x(n)|y(n−1)), letting

(x̃(n+1), . . . , x̃(N)) = argmax
(x(n+1),...,x(N))

(
µ̃
(N)
1,t (x(n:N)|y(n−1)) + β1/2σ̃

(N)
1,t (x(n:N)|y(n−1)

)

we obtain

UCB
(F )
t (x(n)|y(n−1)) = µ̃

(N)
1,t (x(n), x̃(n+1) . . . , x̃(N)|y(n−1)) + β1/2σ̃

(N)
1,t (x(n), x̃(n+1), . . . , x̃(N)|y(n−1)).

Similarly, LCB
(F )
t (y(n−1)) can be bounded as follows:

LCB
(F )
t (y(n−1)) ≥ µ̃

(N)
1,t (x(n), x̃(n+1) . . . , x̃(N)|y(n−1))− β1/2σ̃

(N)
1,t (x(n), x̃(n+1), . . . , x̃(N)|y(n−1)).

Hence, from the definition of a
(n)
t (x(n)|y(n−1)) and b

(n)
t (x(n)|y(n−1)), we get

a
(n)
t (x(n)|y(n−1)) ≤ UCB

(F )
t (x(n)|y(n−1))− LCB

(F )
t (y(n−1))

≤ 2β1/2σ̃
(N)
1,t (x(n), x̃(n+1), . . . , x̃(N)|y(n−1))

≤ 2β1/2b
(n)
t (x(n)|y(n−1)).

Therefore, c
(n)
t (x(n)|y(n−1)) can be written as

c
(n)
t (x(n)|y(n−1)) = max{a(n)t (x(n)|y(n−1)), ηtb

(n)
t (x(n)|y(n−1))}

≤ max{2β1/2b
(n)
t (x(n)|y(n−1)), ηtb

(n)
t (x(n)|y(n−1))}

≤ (2β1/2 + ηt)b
(n)
t (x(n)|y(n−1)).

�

By using these lemmas, we prove Theorem C.10.

Proof. Let t ∈ NZ≥0. Then, from Lemma C.14, x
(1)
t+1 satisfies that

c
(1)
t (x

(1)
t+1|0) ≤ (2β1/2 + ηt)b

(1)
t (x

(1)
t+1|0)

= (2β1/2 + ηt)σ̃
(N)
1,t (x

(1)
t+1, x̃

(2), . . . , x̃(N)|0). (C.19)
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Thus, by combining (C.19) and Lemma C.13, c
(1)
t (x

(1)
t+1|0) can be bounded as follows:

c
(1)
t (x

(1)
t+1|0)

≤ (2β1/2 + ηt)C3

M(1)∑

i=1

σ
(1)
i,t (0,x

(1)
t+1) + (2β1/2 + ηt)C3σ̃

(N)
1,t (x̃(2), . . . , x̃(N)|y(1))

≤ (2β1/2 + ηt)C3

M(1)∑

i=1

σ
(1)
i,t (0,x

(1)
t+1) + (2β1/2 + ηt)C3b

(2)
t (x̃(2)|y(1))

≤ (2β1/2 + ηt)C3

M(1)∑

i=1

σ
(1)
i,t (0,x

(1)
t+1) + (2β1/2 + ηt)C3η

−1
t c

(2)
t (x̃(2)|y(1))

≤ (2β1/2 + ηt)C3

M(1)∑

i=1

σ
(1)
i,t (0,x

(1)
t+1) + (2β1/2 + ηt)C3η

−1
t c

(2)
t (x

(2)
t+2|y(1))

≤ (2β1/2 + ηt)C3

M(1)∑

i=1

σ
(1)
i,t (0,x

(1)
t+1) + (2β1/2 + ηt)

2C3η
−1
t b

(2)
t (x

(2)
t+2|y(1))

≤ (2β1/2 + ηt)C3

M(1)∑

i=1

σ
(1)
i,t (0,x

(1)
t+1) + (2β1/2 + ηt)

2C3η
−1
t · σ̃(N)

1,t (x
(2)
t+2, x̃

(3), . . . , x̃(N)|y(1)).

Hence, by using Lemma C.13 again, we have

c
(1)
t (x

(1)
t+1|0) ≤ (2β1/2 + ηt + 1)NCN

3 η−N
t

N∑

n=1

M(n)∑

i=1

σ
(n)
i,t (y

(n−1),x
(n)
t+n)

≤ (2β1/2 + 1 + 1)NCN
3 η−N

t

N∑

n=1

M(n)∑

i=1

σ
(n)
i,t (y

(n−1),x
(n)
t+n)

= C4η
−N
t

N∑

n=1

M(n)∑

i=1

σ
(n)
i,t (y

(n−1),x
(n)
t+n).

This implies that

c
(1)2
t (x

(1)
t+1|0) ≤ C2

4Msumη
−2N
t

N∑

n=1

M(n)∑

i=1

σ
(n)2
i,t (y(n−1),x

(n)
t+n),

where the inequality is given by the Cauchy–Schwarz inequality. Next, let T ∈ NZ≥0 and K = T/N . Then, the

following inequality holds:

KN∑

t∈NZ≥0

c
(1)2
t (x

(1)
t+1|0) ≤ C2

4Msumη
−2N
T

N∑

n=1

M(n)∑

i=1

T∑

t∈NZ≥0

σ
(n)2
i,t (y(n−1),x

(n)
t+n)

≤ 2

log(1 + σ−2)
C2

4Msumη
−2N
T

N∑

n=1

M(n)∑

i=1

γT

=
2C2

4M
2
sum

log(1 + σ−2)
γT η

−2N
T .
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Similarly, let T ∗ = argmint∈NZ≥0,t≤T c
(1)2
t (x

(1)
t+1|0). Then, we obtain

Kc
(1)2
T∗ (x

(1)
T∗+1|0) ≤

KN∑

t∈NZ≥0

c
(1)2
t (x

(1)
t+1|0)

≤ 2C2
4M

2
sum

log(1 + σ−2)
γT η

−2N
T .

This implies that

c
(1)
T∗ (x

(1)
T∗+1|0) ≤

√
2C2

4M
2
sum

log(1 + σ−2)
γT η

−2N
T K−1. (C.20)

Furthermore, from the property of CIs and the definition of the estimated solution, the following inequalities hold:

F (x
(1)
∗ , . . . ,x

(N)
∗ ) ≤ min

t∈NZ≥0,t≤T
UCB

(F )
t (x

(1)
∗ , . . . ,x

(N)
∗ ) ≤ UCB

(F )
T∗ (x

(1)
∗ , . . . ,x

(N)
∗ ),

F (x̂
(1)
T , . . . , x̂

(N)
T ) ≥ max

t∈NZ≥0,t≤T
LCB

(F )
t (x(1), . . . ,x(N)) ≥ LCB

(F )
T∗ (x

(1)
∗ , . . . ,x

(N)
∗ ).

This implies that

F (x
(1)
∗ , . . . ,x

(N)
∗ )− F (x̂

(1)
T , . . . , x̂

(N)
T ) ≤ 2β1/2σ̃

(N)
1,T∗(x

(1)
∗ , . . . ,x

(N)
∗ )

≤ 2β1/2b
(1)
T∗ (x

(1)
∗ |0)

≤ 2β1/2η−1
T∗ c

(1)
T∗ (x

(1)
∗ |0) ≤ 2β1/2η−1

T c
(1)
T∗ (x

(1)
T∗+1|0).

Finally, noting that K = T/N , from (C.20) we obtain

F (x
(1)
∗ , . . . ,x

(N)
∗ )− F (x̂

(1)
T , . . . , x̂

(N)
T ) ≤ 2β1/2η−1

T

√
2C2

4M
2
sum

log(1 + σ−2)
γT η

−2N
T K−1

=

√
8βC2

4M
2
sumN

log(1 + σ−2)
γT η

−2N−2
T T−1

<
√
ξ2 = ξ.

�

D Cascade Process Optimization Using CI-based AFs under Noisy Setting

In this section, we consider CI-based cascade process optimization methods with observation noise. Hereafter, we

assume that the observation noise ǫ
(n)
m is a random variable with E[ǫ

(n)
m ] = 0 and −A ≤ ǫ

(n)
m ≤ A, where A is some

positive constant. In addition, we assume that ǫ
(1)
1 , . . . , ǫ

(N)

M(N) are mutually independent, and the distribution of the

noise vector ǫ = (ǫ
(1)
1 , . . . , ǫ

(N)

M(N))
⊤ is known. Finally, we also assume that noise vectors with respect to iteration t,

ǫ1, . . . , ǫt, are independent and identically distributed random variables having the same distribution of ǫ.

Next, we define several notations. For each n ∈ [N ], let Ỹ(n)(⊃ Y(n)) be a set satisfying

∀w ∈ Ỹ(n−1), ∀x ∈ X (n), f (n)(w,x) + ǫ(n) ∈ Ỹ(n),

where Ỹ(0) = {0} and ǫ(n) = (ǫ
(n)
1 , . . . , ǫ

(n)

M(n))
⊤. Note that z(n)(x(1), . . . ,x(n)) ∈ Y(n) ⊂ Ỹ(n). In addition, for

any realization ǫ and input x(1), . . . ,x(n), we define z
(n)
ǫ (x(1), . . . ,x(n)) as

z(n)
ǫ (x(1), . . . ,x(n)) =





f (1)(0,x(1)) + ǫ(1) (n = 1),

f (n)(z
(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n)) + ǫ(n) (n ≥ 2).
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Furthermore, we define the function G(x(1), . . . ,x(N)) as

G(x(1), . . . ,x(N)) = Eǫ[z
(N)
ǫ (x(1), . . . ,x(n))].

The functionG(x(1), . . . ,x(N)) is the expected value of the final-stage output with respect to ǫ when (x(1), . . . ,x(N))

is used. We emphasize that F (x(1), . . . ,x(N)) 6= G(x(1), . . . ,x(N)) in general. Similarly, we define the optimal

solution of each function as

(x
(1)
F,∗, . . . ,x

(N)
F,∗ ) = argmax

(x(1),...,x(N))∈X
F (x(1), . . . ,x(N)),

(x
(1)
G,∗, . . . ,x

(N)
G,∗) = argmax

(x(1),...,x(N))∈X
G(x(1), . . . ,x(N)).

By using these, for the selected input x
(1)
t , . . . ,x

(N)
t at iteration t, we define the expected regret rG,t, cumulative

expected regret RG,T and simple expected regret r
(S)
G,T as

rG,t = G(x
(1)
G,∗, . . . ,x

(N)
G,∗)−G(x

(1)
t , . . . ,x

(N)
t ),

RG,t =

T∑

t=1

rGt
, r

(S)
G,T = min

1≤t≤T
rG,t.

We also define the regret rF,t, cumulative regret RF,T and simple regret r
(S)
F,T as

rF,t = F (x
(1)
F,∗, . . . ,x

(N)
F,∗ )− F (x

(1)
t , . . . ,x

(N)
t ),

RF,t =
T∑

t=1

rFt
, r

(S)
F,T = min

1≤t≤T
rF,t.

Finally, let (x̂
(1)
F,t, . . . , x̂

(N)
F,t ) and (x̂

(1)
G,t, . . . , x̂

(N)
G,t ) be respectively estimated solutions of (x

(1)
F,∗, . . . ,x

(N)
F,∗ ) and

(x
(1)
G,∗, . . . ,x

(N)
G,∗) at iteration t. Then, we define the regrets for estimated solutions, r̂F,t and r̂G,t, as

r̂F,t = F (x
(1)
F,∗, . . . ,x

(N)
F,∗ )− F (x̂

(1)
F,t, . . . , x̂

(N)
F,t ),

r̂G,t = G(x
(1)
G,∗, . . . ,x

(N)
G,∗)−G(x̂

(1)
G,t, . . . , x̂

(N)
G,t ).

D.1 Credible Interval

In this section, we construct a valid CI under the noisy setting. First, we introduce the following regularity assumption

instead of Assumption C.1.

Assumption D.1 (Regularity assumption under noisy setting). For each n ∈ [N ], let Ỹ(n−1) × X (n) be a compact

set, and let Hk(n) be an RKHS corresponding to the kernel k(n). In addition, for each n ∈ [N ] and m ∈ [M (n)],

assume that f
(n)
m ∈ Hk(n) with ‖f (n)

m ‖k(n) ≤ B, where B > 0 is some constant. Furthermore, assume that the

observation noise ǫ
(n)
m is a random variable with E[ǫ

(n)
m ] = 0 and−A ≤ ǫ

(n)
m ≤ A, where A is some positive constant.

All elements of ǫ = (ǫ
(1)
1 , . . . , ǫ

(N)

M(N)) are mutually independent, and ǫ1, ǫ2, . . . are i.i.d. random variables having the

same distribution of ǫ.

Then, the following lemma holds under the noisy setting.

Lemma D.2 (Abbasi-Yadkori 2012, Theorem 3.11). Assume that Assumption D.1 holds. Let δ ∈ (0, 1), and define

β
(n)
t =

(
B +

A

σ

√
log det

(
I
L

(n)
t

+ σ−2K
(n)
t

)
+ 2 log(1/δ)

)2
.
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Then, for any n ∈ [N ] and m ∈ [M (n)], the following inequality holds with probability at least 1− δ:
∣∣∣f (n)

m (w,x)− µ
(n)
m,t(w,x)

∣∣∣ ≤ (β
(n)
t )1/2σ

(n)
m,t(w,x), ∀w ∈ Ỹ(n−1), ∀x ∈ X (n), ∀t ≥ 1.

Proof. From Theorem 3.11 of (Abbasi-Yadkori, 2012), it is sufficient to show that ǫ
(n)
m has A-sub-Gaussian property,

i.e.,

E[exp(λǫ(n)m )] ≤ exp(λ2A2/2) ∀λ ∈ R. (D.1)

Noting that ǫ
(n)
m is a zero mean and bounded random variable, using Hoeffding’s lemma (Massart, 2007) we have

E[exp(λǫ(n)m )] ≤ exp(λ2(A− (−A))2/8)
= exp(λ2A2/2) ∀λ ∈ R.

Thus, ǫ
(n)
m has A-sub-Gaussian property (D.1). �

From Lemma D.2, we have the following uniform bound.

Corollary D.3. Assume that Assumption D.1 holds. Let δ ∈ (0, 1), and define

β
(n)
t =

(
B +

A

σ

√
log det

(
I
L

(n)
t

+ σ−2K
(n)
t

)
+ 2 log(Msum/δ)

)2
,

βt = max
1≤n≤N,1≤t̃≤t

β
(n)

t̃
. (D.2)

Then, for any n ∈ [N ] and m ∈ [M (n)], the following inequality holds with probability at least 1− δ:
∣∣∣f (n)

m (w,x)− µ
(n)
m,t(w,x)

∣∣∣ ≤ β
1/2
t σ

(n)
m,t(w,x), ∀w ∈ Ỹ(n−1), ∀x ∈ X (n), ∀t ≥ 1.

From Corollary D.3, we can also construct a valid CI for the N -stage cascade process under the noisy setting.

First, we construct CIs for z
(n)
ǫ (x(1), . . . ,x(n)) and G(x(1), . . . ,x(N)). For any iteration t ≥ 1, realization ǫ and

input (x(1), . . . ,x(n)), we define z̃
(n)
ǫ,t (x

(1), . . . ,x(n)) as

z̃
(n)
ǫ,t (x

(1), . . . ,x(n)) =




ǫ(1) + µ

(1)
t (0,x(1)) (n = 1),

ǫ(n) + µ
(n)
t (z̃

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n)) (n ≥ 2).

Similarly, we define σ̃
(n)
ǫ,m,t(x

(1), . . . ,x(n)) as

σ̃
(n)
ǫ,m,t(x

(1), . . . ,x(n)) = σ
(n)
m,t(z̃

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n))

+ Lf

M(n−1)∑

s=1

σ̃
(n−1)
ǫ,s,t (x(1), . . . ,x(n−1)),

where m ∈ [M (n)] and σ̃
(1)
ǫ,s,t(x

(1)) = σ
(1)
s,t (0,x

(1)). Then, the following holds.

Theorem D.4. Assume that Assumptions C.3 and D.1 hold. Also assume that z̃
(n)
ǫ,t (x

(1), . . . ,x(n)) ∈ Ỹ(n) for any

n ∈ [N ], iteration t ≥ 1, realization ǫ and input (x(1), . . . ,x(n)). Let δ ∈ (0, 1), and define βt by D.2. Then, the

following inequality holds with probability at least 1− δ:

|z(n)ǫ,m(x(1), . . . ,x(n))− z̃
(n)
ǫ,m,t(x

(1), . . . ,x(n))| ≤ β
1/2
t σ̃

(n)
ǫ,m,t(x

(1), . . . ,x(n)),

∀n ∈ [N ],m ∈ [M (n)], t ≥ 1, ǫ, (x(1), . . . ,x(n)),

where z
(n)
ǫ,m and z̃

(n)
ǫ,m,t are the m-th element of z

(n)
ǫ and z̃

(n)
ǫ,t , respectively.
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Proof. By using the same argument as in the proof of Theorem C.5, we get Theorem D.4. �

From Theorem D.4, taking expectation with respect to ǫ, we get the following corollary.

Corollary D.5. Assume that the same condition as in Theorem D.4 holds. Let δ ∈ (0, 1), and define βt by (D.2). Then,

with probability at least 1− δ, the following inequality holds for any n ∈ [N ], m ∈ [M (n)], iteration t ≥ 1 and input

x(1), . . . ,x(n):

Eǫ[z̃
(n)
ǫ,m,t(x

(1), . . . ,x(n))− β
1/2
t σ̃

(n)
ǫ,m,t(x

(1), . . . ,x(n))]

≤ Eǫ[z
(n)
ǫ,m(x(1), . . . ,x(n))]

≤ Eǫ[z̃
(n)
ǫ,m,t(x

(1), . . . ,x(n)) + β
1/2
t σ̃

(n)
ǫ,m,t(x

(1), . . . ,x(n))].

In particular, when n = N and m = 1, it follows that

Eǫ[z̃
(N)
ǫ,1,t(x

(1), . . . ,x(N))− β
1/2
t σ̃

(N)
ǫ,1,t(x

(1), . . . ,x(N))]

≤ G(x(1), . . . ,x(N))

≤ Eǫ[z̃
(N)
ǫ,1,t(x

(1), . . . ,x(N)) + β
1/2
t σ̃

(N)
ǫ,1,t(x

(1), . . . ,x(N))].

D.2 UCB-based Optimization Strategy for Expected Regrets

Here, we give a UCB-based AF and regret bounds for RG,T and r
(S)
G,T . We define an expected cascade process upper

confidence bound (EcUCB) as

EcUCBt(x
(1), . . . ,x(N)) = Eǫ[z̃

(N)
ǫ,1,t(x

(1), . . . ,x(N)) + β
1/2
t σ̃

(N)
ǫ,1,t(x

(1), . . . ,x(N))].

By using this AF, we select the next evaluation point (x
(1)
t+1, . . . ,x

(N)
t+1) by

(x
(1)
t+1, . . . ,x

(N)
t+1) = argmax

(x(1),...,x(N))∈X
EcUCBt(x

(1), . . . ,x(N)). (D.3)

Moreover, let Ã = {ã1, . . . , ãT } be a subset of Ỹ(n−1) × X (n), and let y
(n)

m,Ã
be a random vector, where the i-th

element of y
(n)

m,Ã
is given by y

(n)
m,ãi

= f
(n)
m (ãi) + ε

(n)
ãi

. Then, the maximum information gain γ̃
(n)
m,T at iteration T is

given by

γ̃
(n)
m,T = max

Ã⊂Ỹ(n−1)×X (n),|Ã|=T
I(y

(n)

m,Ã
; f (n)

m ).

Furthermore, we define γ̃T = max1≤n≤N,1≤m≤M(n) γ̃
(n)
m,T . Then, the following theorem gives regret bounds for RG,T

and r
(S)
G,T .

Theorem D.6. Assume that Assumptions C.3, C.4 and D.1 hold. Also assume that z̃
(n)
ǫ,t (x

(1), . . . ,x(n)) ∈ Ỹ(n) for

any n ∈ [N ], iteration t ≥ 1, realization ǫ and input (x(1), . . . ,x(n)). Let δ ∈ (0, 1), and define βt by (D.2). Then,

when the optimization is performed using D.3, the following holds:

P

(
RG,T ≤

√

32M2
prodM

2
sumTC

2N
0,T

(
log(5Msum/δ) +

γ̃T
2 log(1 + σ−2)

)
∀T ≥ 1

)
≥ 1− 2δ,

P

(
r
(S)
G,T ≤ T−1/2

√

32M2
prodM

2
sumC

2N
0,T

(
log(5Msum/δ) +

γ̃T
2 log(1 + σ−2)

)
∀T ≥ 1

)
≥ 1− 2δ,

where C0,t = (1 + Lσ)β
1/2
t + Lf + 1.
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Proof. From Theorem D.4 and the definition of σ̃
(n)
ǫ,m,t(·), noting that σ

(n)
m,t(·) is Lipschitz continuity, the following

inequality holds with probability at least 1− δ:

σ̃
(n)
ǫ,m,t(x

(1), . . . ,x(n))

= σ
(n)
m,t(z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n)) + Lf

M(n−1)∑

s=1

σ̃
(n−1)
ǫ,s,t (x(1), . . . ,x(n−1))

+ σ
(n)
m,t(z̃

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n))− σ

(n)
m,t(z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n))

≤ σ
(n)
m,t(z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n)) + Lf

M(n−1)∑

s=1

σ̃
(n−1)
ǫ,s,t (x(1), . . . ,x(n−1))

+ |σ(n)
m,t(z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n))− σ

(n)
m,t(z̃

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n))|

≤ σ
(n)
m,t(z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n)) + Lf

M(n−1)∑

s=1

σ̃
(n−1)
ǫ,s,t (x(1), . . . ,x(n−1))

+ Lσ

M(n−1)∑

s=1

|z(n−1)
ǫ,s (x(1), . . . ,x(n−1))− z̃

(n−1)
ǫ,s,t (x(1), . . . ,x(n−1))|

≤ σ
(n)
m,t(z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n)) + Lf

M(n−1)∑

s=1

σ̃
(n−1)
ǫ,s,t (x(1), . . . ,x(n−1))

+ Lσβ
1/2
t

M(n−1)∑

s=1

σ̃
(n−1)
ǫ,s,t (x(1), . . . ,x(n−1))

= σ
(n)
m,t(z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n)) + (Lσβ

1/2
t + Lf )

M(n−1)∑

s=1

σ̃
(n−1)
ǫ,s,t (x(1), . . . ,x(n−1))

≤ σ
(n)
m,t(z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n)) + C0,t

M(n−1)∑

s=1

σ̃
(n−1)
ǫ,s,t (x(1), . . . ,x(n−1)). (D.4)

Therefore, by repeating (D.4) we get

σ̃
(N)
ǫ,1,t(x

(1), . . . ,x(N))

≤ σ
(N)
1,t (z(N−1)

ǫ (x(1), . . . ,x(N−1)),x(N)) + C0,t

M(N−1)∑

s=1

σ̃
(N−1)
ǫ,s,t (x(1), . . . ,x(N−1))

≤ σ
(N)
1,t (z(N−1)

ǫ (x(1), . . . ,x(N−1)),x(N)) + C0,t

M(N−1)∑

s=1

σ
(N−1)
s,t (z(N−2)

ǫ (x(1), . . . ,x(N−2)),x(N−1))

+ C2
0,tM

(N−1)
M(N−2)∑

u=1

σ̃
(N−2)
ǫ,u,t (x(1), . . . ,x(N−2))

...

≤ CN−1
0,t Mprod

N∑

n=1

M(n)∑

m=1

σ
(n)
m,t(z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n)),

where z
(0)
ǫ (x(1),x(0)) = 0. Hence, from the Cauchy–Schwarz inequality, it follows that

σ̃
(N)2
ǫ,1,t (x

(1), . . . ,x(N))
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≤ C
2(N−1)
0,t M2

prod




N∑

n=1

M(n)∑

m=1

1




N∑

n=1

M(n)∑

m=1

[
σ
(n)2
m,t (z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n))

]

= C
2(N−1)
0,t M2

prodMsum

N∑

n=1

M(n)∑

m=1

[
σ
(n)2
m,t (z

(n−1)
ǫ (x(1), . . . ,x(n−1)),x(n))

]
. (D.5)

Next, from Corollary D.5 and the selection rule (D.3), the following holds:

G(x
(1)
G,∗, . . . ,x

(N)
G,∗) ≤ EcUCBt(x

(1)
G,∗, . . . ,x

(N)
G,∗)

≤ EcUCBt(x
(1)
t+1, . . . ,x

(N)
t+1)

= Eǫ[z̃
(N)
ǫ,1,t(x

(1)
t+1, . . . ,x

(N)
t+1) + β

1/2
t σ̃

(N)
ǫ,1,t(x

(1)
t+1, . . . ,x

(N)
t+1)].

Similarly, since G(x
(1)
t+1, . . . ,x

(N)
t+1) satisfies that

G(x
(1)
t+1, . . . ,x

(N)
t+1) ≥ Eǫ[z̃

(N)
ǫ,1,t(x

(1)
t+1, . . . ,x

(N)
t+1)β

1/2
t σ̃

(N)
ǫ,1,t(x

(1)
t+1, . . . ,x

(N)
t+1)],

the regret rG,t can be bounded as follows:

rG,t = G(x
(1)
G,∗, . . . ,x

(N)
G,∗)−G(x

(1)
t+1, . . . ,x

(N)
t+1)

≤ 2β
1/2
t Eǫ[σ̃

(N)
ǫ,1,t(x

(1)
t+1, . . . ,x

(N)
t+1)]. (D.6)

Therefore, by using (D.6), R2
G,T can be written as

R2
G,T =

(
T∑

t=1

rG,t

)2

≤ T

T∑

t=1

r2G,t

≤ T

T∑

t=1

4βt(Eǫ[σ̃
(N)
ǫ,1,t(x

(1)
t+1, . . . ,x

(N)
t+1)])

2

≤ T

T∑

t=1

4βtEǫ[σ̃
(N)2
ǫ,1,t (x

(1)
t+1, . . . ,x

(N)
t+1)], (D.7)

where the first inequality is given by the Cauchy–Schwarz inequality, and the last inequality is given by Jensen’s

inequality. Thus, by substituting (D.5) into (D.7), we obtain

R2
G,T ≤ 4TβT C̃

2(N−1)
T M2

prodMsum

T∑

t=1

Eǫ[Sǫ,t], (D.8)

where Sǫ,t is given by

Sǫ,t =
N∑

n=1

M(n)∑

m=1

σ
(n)2
m,t (z

(n−1)
ǫ (x

(1)
t+1, . . . ,x

(n−1)
t+1 ),x

(n)
t+1).

Here, since k(n)(·, ·) ≤ 1, the random variable Sǫ,t satisfies 0 ≤ Sǫ,t ≤ Msum. Hence, from Lemma 3
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of (Kirschner and Krause, 2018), the following holds with probability at least 1− δ:

T∑

t=1

Eǫ[Sǫ,t] ≤ 2

T∑

t=1

Sǫt+1,t + 4Msum log(1/δ) + 8Msum log(4Msum) + 1

≤ 2
T∑

t=1

Sǫt+1,t + 8Msum log(1/δ) + 8Msum log(4Msum) + 8Msum log 1.25

= 2

T∑

t=1

Sǫt+1,t + 8Msum log(5Msum/δ). (D.9)

Therefore, by combining (D.8) and (D.9), we have

R2
G,T ≤ 32TβTC

2(N−1)
T,0 M2

prodM
2
sum log(5Msum/δ)

+ 8TβTC
2(N−1)
0,T M2

prodMsum

T∑

t=1

N∑

n=1

M(n)∑

m=1

[
σ
(n)2
m,t (z

(n−1)
ǫt+1

(x
(1)
t+1, . . . ,x

(n−1)
t+1 ),x

(n)
t+1)

]
. (D.10)

Furthermore, by using the same argument as in Lemma 5.3 and 5.4 of (Srinivas et al., 2010), we get

T∑

t=1

σ
(n)2
m,t (z

(n−1)
ǫt+1

(x
(1)
t+1, . . . ,x

(n−1)
t+1 ),x

(n)
t+1) ≤

2

log(1 + σ−2)
γ̃
(n)
m,T

≤ 2

log(1 + σ−2)
γ̃T . (D.11)

Hence, from (D.10) and (D.11), noting that βT ≤ C2
0,T we obtain

R2
G,T ≤ 32TβTC

2(N−1)
0,T M2

prodM
2
sum log(5Msum/δ) +

16

log(1 + σ−2)
TβTC

2(N−1)
0,T M2

prodM
2
sumγ̃T

= 32TβTC
2(N−1)
0,T M2

prodM
2
sum

(
log(5Msum/δ) +

γ̃T
2 log(1 + σ−2)

)

≤ 32TC2N
0,TM

2
prodM

2
sum

(
log(5Msum/δ) +

γ̃T
2 log(1 + σ−2)

)
.

Therefore, with probability at least 1− 2δ, RG,T can be bounded as follows:

RG,T ≤
√

32M2
prodM

2
sumTC

2N
0,T

(
log(5Msum/δ) +

γ̃T
2 log(1 + σ−2)

)
.

Similarly, from the definition of r
(S)
G,T , it follows that

Tr
(S)
G,T ≤

T∑

t=1

rG,t = RG,T

≤
√

32M2
prodM

2
sumTC

2N
0,T

(
log(5Msum/δ) +

γ̃T
2 log(1 + σ−2)

)
.

�
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D.3 Optimistic Improvement-based AF for the Expectation of the Final Stage Output

We give an optimistic improvement-based AF for G under the noisy setting. Let s ∈ {0, . . . , N − 1} and y ∈ Ỹ(s).

Then, we define z
(n)
ǫ (·|y), z̃(n)

ǫ,t (·|y) and σ̃
(n)
ǫ,m,t(·|y) as

z(n)
ǫ (x(s+1), . . . ,x(n)|y) =




ǫ(s+1) + f (s+1)(y,x(s+1)) (n = s+ 1),

ǫ(n) + f (n)(z
(n−1)
ǫ (x(s+1:n−1)|y),x(n)) (n ≥ s+ 2),

z̃
(n)
ǫ,t (x

(s+1), . . . ,x(n)|y) =




ǫ(s+1) + µ

(s+1)
t (y,x(s+1)) (n = s+ 1),

ǫ(n) + µ
(n)
t (z̃

(n−1)
ǫ,t (x(s+1:n−1)|y),x(n)) (n ≥ s+ 2),

σ̃
(n)
ǫ,m,t(x

(s+1), . . . ,x(n)|y) = σ
(n)
m,t(z̃

(n−1)
ǫ,t (x(s+1), . . . ,x(n−1)|y),x(n))

+ Lf

M(n−1)∑

s=1

σ̃
(n−1)
ǫ,s,t (x(s+1), . . . ,x(n−1)|y),

where σ̃
(s)
ǫ,m,t(x

(s+1), . . . ,x(s)|y) = 0 and z
(s)
ǫ (x(s+1), . . . ,x(s)|y) = z̃

(s)
ǫ,t (x

(s+1), . . . ,x(s)|y) = y. Then, the

following theorem holds.

Theorem D.7. Assume that Assumptions C.3 and D.1 hold. Also assume that z̃
(n)
ǫ,t (x

(s+1), . . . ,x(n)|y) ∈ Ỹ(n) for any

s ∈ {0, . . . , N − 1}, n ∈ {s+1, . . . , N}, iteration t ≥ 1, realization ǫ, given y ∈ Ỹ(s) and input (x(s+1), . . . ,x(n)).

Let δ ∈ (0, 1), and define βt by (D.2). Then, the following inequality holds with probability at least 1− δ:

|z(n)ǫ,m(x(s+1), . . . ,x(n)|y)− z̃
(n)
ǫ,m,t(x

(s+1), . . . ,x(n)|y)| ≤ β
1/2
t σ̃

(n)
ǫ,m,t(x

(s+1), . . . ,x(n)|y),

where m ∈ [M (n)], and z
(n)
ǫ,m(·|y) and z̃

(n)
ǫ,m,t(·|y) are the m-th element of z

(n)
ǫ (·|y) and z̃

(n)
ǫ,t (·|y), respectively.

Proof. By using the same argument as in the proof of Theorem C.5, we have Theorem D.7. �

From Theorem D.7, taking expectation with respect to ǫ, we get the following corollary.

Corollary D.8. Assume that the same condition as in Theorem D.7 holds. Let δ ∈ (0, 1), and define βt by (D.2). Then,

the following inequality holds with probability at least 1− δ:

Eǫ|y[z̃
(n)
ǫ,m,t(x

(s+1), . . . ,x(n)|y)− β
1/2
t σ̃

(n)
ǫ,m,t(x

(s+1), . . . ,x(n)|y)]
≤ Eǫ|y[z

(n)
ǫ,m(x(s+1), . . . ,x(n)|y)]

≤ Eǫ|y[z̃
(n)
ǫ,m,t(x

(s+1), . . . ,x(n)|y) + β
1/2
t σ̃

(n)
ǫ,m,t(x

(s+1), . . . ,x(n)|y)],

where Eǫ|y[·] is the conditional expectation of (·) given y.

Based on this lemma, we give valid AFs. Let n ∈ [N ] and y(n−1) ∈ Ỹ(n−1). Then, for any x(n) ∈ X (n) and

iteration t ≥ 1, we define the optimistic maximum value at the final stage under given y(n−1), UCB
(G)
t (x(n)|y(n−1)),

as

UCB
(G)
t (x(n)|y(n−1)) =

max
(x(n+1),...,x(N))

Eǫ|y(n−1)

[
(z̃

(N)
ǫ,1,t(x

(n), . . . ,x(N)|y(n−1)) + β
1/2
t σ̃

(N)
ǫ,1,t(x

(n), . . . ,x(N)|y(n−1)))
]
,
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where the max operator is ignored when n = N . Similarly, we define the pessimistic maximum value at the final stage

under given y(n−1), LCB
(G)
t (x(n)|y(n−1)), as

LCB
(G)
t (y(n−1))

= max
(x(n),...,x(N))

Eǫ|y(n−1)

[
(z̃

(N)
ǫ,1,t(x

(n), . . . ,x(N)|y(n−1))− β
1/2
t σ̃

(N)
ǫ,1,t(x

(n), . . . ,x(N)|y(n−1)))
]
.

Moreover, for each T ≥ 1, we define the pessimistic maximum value at the final stage as

QT = max
(x(1),...,x(N))

Eǫ

[
(z̃

(N)
ǫ,1,T (x

(1), . . . ,x(N))− β
1/2
T σ̃

(N)
ǫ,1,T (x

(1), . . . ,x(N)))
]
.

Then, we define the pessimistic improvement for the final stage with respect to x(n) by

ã
(n)
t (x(n)|y(n−1)) = UCB

(G)
t (x(n)|y(n−1))−max{LCB(G)

t (y(n−1)), Qt+n−1}.

We also define the maximum uncertainty for the final stage with respect to x(n) as

b̃
(n)
t (x(n)|y(n−1)) = max

(x(n+1),...,x(N))
Eǫ|y(n−1) [σ̃

(N)
ǫ,1,t(x

(n), . . . ,x(N)|y(n−1))].

Then, we give the AF c̃
(n)
t (x(n)|y(n−1)) by

c̃
(n)
t (x(n)|y(n−1)) = max

{
ã
(n)
t (x(n)|y(n−1)), ηtb̃

(n)
t (x(n)|y(n−1))

}
,

where ηt is a given learning rate. Furthermore, we select the next point x
(n)
t+n by

x
(n)
t+n = argmax

x(n)∈X (n)

c̃
(n)
t (x(n)|y(n−1)

t+n−1),

y
(n)
t+n = f (n)(y

(n−1)
t+n−1,x

(n)
t+n) + ǫ

(n)
t+n, (D.12)

where y
(0)
t = 0. Finally, we define the estimated solution (x̂

(1)
G,T , . . . , x̂

(N)
G,T ) by using the pessimistic maximum value

as follows:

(x̂
(1)
G,T , . . . , x̂

(N)
G,T ) =

argmax
(x(1),...,x(N))∈X ,1≤t≤T

Eǫ

[
(z̃

(N)
ǫ,1,t(x

(1), . . . ,x(N))− β
1/2
t σ̃

(N)
ǫ,1,t(x

(1), . . . ,x(N)))
]
.

Then, the following theorem holds.

Theorem D.9. Assume that Assumptions C.3, C.4 and D.1 hold. Also assume that z̃
(n)
ǫ,t (x

(s+1), . . . ,x(n)|y) ∈ Ỹ(n)

for any s ∈ {0, . . . , N − 1}, n ∈ {s + 1, . . . , N}, iteration t ≥ 1, realization ǫ, given y ∈ Ỹ(s) and input

(x(s+1), . . . ,x(n)). Let δ ∈ (0, 1) and ξ > 0, and define βt by (D.2) and ηt = (1 + log t)−1. Then, when the

optimization is performed using (D.12), the following inequality holds with probability at least 1− (N + 1)δ:

G(x
(1)
G,∗, . . . ,x

(N)
G,∗)−G(x̂

(1)
G,T , . . . , x̂

(N)
G,T ) < ξ,

where T is the smallest positive integer satisfying T ∈ NZ≥0 and

N

T

√
C

2(N+2)
6,T (C7 + C8T γ̃T ) < ξ.

Here, C6,t, C7 and C8 are given by C2,t = 4NM2
prodMsumC

2N−2
0,t CN

1 , C3,t = NCN
2,t, C6,t = 2C3,tη

−1
t (2β

1/2
t +

2), C5 = (1 + Lf )
NMprodMsum, C7 = 2

(
8C5 log

5C5

δ N
)2

, C8 =
4M2

sum

log(1+σ−2) .
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In order to prove Theorem D.9, we give two lemmas.

Lemma D.10. Assume that the same condition as in Theorem D.4 holds. Then, the following holds with probability

at least 1− δ:

σ̃
(N)
ǫ,1,t(x

(s), . . . ,x(N)|z(s−1)
ǫ ) ≤ C3,tσ̃

(N)
ǫ,1,t(x

(s+1), . . . ,x(N)|z(s)
ǫ ) + C3,t

M(s)∑

i=1

σ
(s)
ǫ,i,t(z

(s−1)
ǫ ,x(s)).

Proof. By using the same argument as in Lemma C.13, we have Lemma D.10. �

Lemma D.11. Assume that the same condition as in Theorem D.4 holds. Then, the following inequality holds:

ηtb̃
(n)
t (x(n)|y(n−1)) ≤ c̃

(n)
t (x(n)|y(n−1)) ≤ (2β

1/2
t + ηt)b̃

(n)
t (x(n)|y(n−1)).

Proof. By using the same argument as in Lemma C.14, we get Lemma D.11. �

By using these lemmas, we prove Theorem D.9.

Proof. From Lemma D.11, the following holds:

c̃
(1)
t (x

(1)
t+1|0) ≤ (2β

1/2
t + ηt)b̃

(1)
t (x

(1)
t+1 0)

= (2β
1/2
t + ηt)Eǫ[σ̃

(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)].

In addition, for the positive integer NK ≡ T ∈ NZ≥0 satisfying the theorem’s inequality, c̃
(1)
t (x

(1)
t+1|0) satisfies that

T∑

t∈NZ≥0

c̃
(1)
t (x

(1)
t+1|0) ≤ (2β

1/2
T + 2)

T∑

t∈NZ≥0

Eǫ[σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)]

= (2β
1/2
T + 2)

T∑

t∈NZ≥0

Eǫ(1) [Eǫ|ǫ(1)
[
σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ(1)]

]
.

Here, the conditional expectation Eǫ|ǫ(1) [σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ(1)] is a non-negative random variable with

respect to ǫ(1), and satisfies that

Eǫ|ǫ(1) [σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ(1)] ≤ (1 + Lf )

NMprodMsum = C5,

where the inequality is given by k(n)(·, ·) ≤ 1. Hence, from Lemma 3 of (Kirschner and Krause, 2018), the following

holds with probability at least 1− δ:

T∑

t∈NZ≥0

Eǫ(1) [Eǫ|ǫ(1) [σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ(1)]]

≤ 4C5 log
1

δ
+ 8C5 log(4C5) + 1 + 2

T∑

t∈NZ≥0

E
ǫ|ǫ(1)t

[σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ

(1)
t ]

≤ 8C5 log
5C5

δ
+ 2

T∑

t∈NZ≥0

E
ǫ|ǫ(1)t

[σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ

(1)
t ].
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Moreover, from Lemma D.10, with probability at least 1− δ the following inequality holds uniformly:

E
ǫ|ǫ(1)t

[σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ

(1)
t ]

≤ E
ǫ|ǫ(1)t

[C3,T σ̃
(N)
ǫ,1,t(x̂

(2)
t+1, . . . , x̂

(N)
t+1|y

(1)
t+1)] + C3,T

M(1)∑

i=1

σ
(1)
ǫ,1,t(0,x

(1)
t+1).

Therefore, it follows that

T∑

t∈NZ≥0

Eǫ(1) [Eǫ|ǫ(1) [σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ(1)]]

≤ 8C5 log
5C5

δ
+ 2

T∑

t∈NZ≥0

E
ǫ|ǫ(1)t

[σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ

(1)
t ]

≤ 8C5 log
5C5

δ
+ 2C3,T

T∑

t∈NZ≥0

M(1)∑

i=1

σ
(1)
ǫ,1,t(0,x

(1)
t+1) + 2C3,T

T∑

t∈NZ≥0

E
ǫ|ǫ(1)t

[σ̃
(N)
ǫ,1,t(x̂

(2)
t+1, . . . , x̂

(N)
t+1|y

(1)
t+1)]

≤ 8C5 log
5C5

δ
+ 2C3,T

T∑

t∈NZ≥0

M(1)∑

i=1

σ
(1)
ǫ,1,t(0,x

(1)
t+1) + 2C3,T η

−1
T

T∑

t∈NZ≥0

ηtb̃
(2)
t (x̂

(2)
t+1|y

(1)
t+1)

≤ 8C5 log
5C5

δ
+ 2C3,T

T∑

t∈NZ≥0

M(1)∑

i=1

σ
(1)
ǫ,1,t(0,x

(1)
t+1) + 2C3,T η

−1
T

T∑

t∈NZ≥0

c̃
(2)
t (x̂

(2)
t+1|y

(1)
t+1)

≤ 8C5 log
5C5

δ
+ 2C3,T

T∑

t∈NZ≥0

M(1)∑

i=1

σ
(1)
ǫ,1,t(0,x

(1)
t+1) + 2C3,T η

−1
T

T∑

t∈NZ≥0

c̃
(2)
t (x

(2)
t+2|y

(1)
t+1)

≤ 8C5 log
5C5

δ
+ 2C3,T

T∑

t∈NZ≥0

M(1)∑

i=1

σ
(1)
ǫ,1,t(0,x

(1)
t+1) + 2C3,T η

−1
T (2β

1/2
t + 2)

T∑

t∈NZ≥0

b̃
(2)
t (x

(2)
t+2|y

(1)
t+1)

≤ 8C5 log
5C5

δ
+ 2C3,T

T∑

t∈NZ≥0

M(1)∑

i=1

σ
(1)
ǫ,1,t(0,x

(1)
t+1) + 2C3,T η

−1
T (2β

1/2
t + 2)

·
T∑

t∈NZ≥0

Eǫ(2)

[
E
ǫ|y(1)

t+1,ǫ
(2)

[
σ̃
(N)
ǫ,1,t(x

(2)
t+2, x̂

(3)
t+2, . . . , x̂

(N)
t+2|y

(1)
t+1)|ǫ(2)

]]

≤ 8C5 log
5C5

δ
+ C6,T

T∑

t∈NZ≥0

M(1)∑

i=1

σ
(1)
ǫ,1,t(0,x

(1)
t+1)

+ C6,T

T∑

t∈NZ≥0

Eǫ(2)

[
E
ǫ|y(1)

t+1,ǫ
(2)

[
σ̃
(N)
ǫ,1,t(x

(2)
t+2, x̂

(3)
t+2, . . . , x̂

(N)
t+2|y

(1)
t+1)|ǫ(2)

]]
.

By repeating this process, with probability at least 1− (N + 1)δ, the following holds:

T∑

t∈NZ≥0

Eǫ(1) [Eǫ|ǫ(1) [σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ(1)]]

≤ 8C5 log
5C5

δ
NCN

6,T + CN
6,T

T∑

t∈NZ≥0

N∑

n=1

M(n)∑

i=1

σ
(n)
ǫ,i,t(y

(n−1)
t+n−1,x

(n)
t+n).
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By combining this and

T∑

t∈NZ≥0

c̃
(1)
t (x

(1)
t+1|0) ≤ (2β

1/2
T + 2)

T∑

t∈NZ≥0

Eǫ(1) [Eǫ|ǫ(1)
[
σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ(1)]

]

≤ C6,T

T∑

t∈NZ≥0

Eǫ(1) [Eǫ|ǫ(1)
[
σ̃
(N)
ǫ,1,t(x

(1)
t+1, x̂

(2)
t+1, . . . , x̂

(N)
t+1|0)|ǫ(1)]

]
,

we get

T∑

t∈NZ≥0

c̃
(1)
t (x

(1)
t+1|0) ≤ 8C5 log

5C5

δ
NCN+1

6,T + CN+1
6,T

T∑

t∈NZ≥0

N∑

n=1

M(n)∑

i=1

σ
(n)
ǫ,i,t(y

(n−1)
t+n−1,x

(n)
t+n).

Thus, noting that (a+ b)2 ≤ 2a2 + 2b2, using the Cauchy–Schwarz inequality and γ̃T we have




T∑

t∈NZ≥0

c̃
(1)
t (x

(1)
t+1|0)




2

≤ 2

(
8C5 log

5C5

δ
NCN+1

6,T

)2

+ 2C
2(N+1)
6,T TMsum

N∑

n=1

M(n)∑

i=1

σ
(n)2
ǫ,i,t (y

(n−1)
t+n−1,x

(n)
t+n)

≤ 2

(
8C5 log

5C5

δ
NCN+1

6,T

)2

+ 2C
2(N+1)
6,T TMsum

2Msumγ̃T
log(1 + σ−2)

= C
2(N+1)
6,T (C7 + C8T γ̃T ).

This implies that

T∑

t∈NZ≥0

c̃
(1)
t (x

(1)
t+1|0) ≤

√
C

2(N+1)
6,T (C7 + C8T γ̃T ).

Furthermore, letting t̃ = argmaxt∈NZ≥0,t≤T c̃
(1)
t (x

(1)
t+1|0) we get

Kc̃
(1)

t̃
(x

(1)

t̃+1
|0) ≤

T∑

t∈NZ≥0

c̃
(1)
t (x

(1)
t+1|0)

≤
√
C

2(N+1)
6,T (C7 + C8T γ̃T ).

By dividing both sides by K , we obtain

c̃
(1)

t̃
(x

(1)

t̃+1
|0) ≤ K−1

√
C

2(N+1)
6,T (C7 + C8T γ̃T )

=
N

T

√
C

2(N+1)
6,T (C7 + C8T γ̃T ). (D.13)

Finally, from the definition of the estimated solution and CIs, we get

G(x
(1)
G,∗, . . . ,x

(N)
G,∗) ≤ min

t∈NZ≥0,t≤T
UCB

(G)
t (x

(1)
G,∗, . . . ,x

(N)
G,∗) ≤ UCB

(G)

t̃
(x

(1)
G,∗, . . . ,x

(N)
G,∗),

G(x̂
(1)
G,T , . . . , x̂

(N)
G,T ) ≥ max

t∈NZ≥0,t≤T
LCB

(G)
t (x(1), . . . ,x(N)) ≥ LCB

(G)

t̃
(x

(1)
G,∗, . . . ,x

(N)
G,∗).

Thus, it follows that

G(x
(1)
G,∗, . . . ,x

(N)
G,∗)−G(x̂

(1)
G,T , . . . , x̂

(N)
G,T ) ≤ 2β

1/2
T Eǫ[σ̃

(N)

ǫ,1,t̃
(x

(1)
G,∗, . . . ,x

(N)
G,∗)]

≤ 2β
1/2
T b̃

(1)

t̃
(x

(1)
G,∗|0)

≤ 2β
1/2
T η−1

t̃
c̃
(1)

t̃
(x

(1)
G,∗|0) ≤ 2β

1/2
T η−1

T c̃
(1)

t̃
(x

(1)

t̃+1
|0).
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Hence, by combining this and (D.13), we have

G(x
(1)
G,∗, . . . ,x

(N)
G,∗)−G(x̂

(1)
G,T , . . . , x̂

(N)
G,T ) ≤ 2β

1/2
T η−1

T

N

T

√
C

2(N+1)
6,T (C7 + C8T γ̃T )

≤ C6,T
N

T

√
C

2(N+1)
6,T (C7 + C8T γ̃T )

=
N

T

√
C

2(N+2)
6,T (C7 + C8T γ̃T ) < ξ.

�

D.4 Optimistic Improvement-based AF for the Final Stage Output

We give an optimistic improvement-based AF for F under the noisy setting. First, we define the sum of the squares of

the observation noise ǫsum as

ǫsum =

N∑

n=1

M(n)∑

m=1

ǫ(n)2m .

Note that ǫsum is bounded by MsumA
2 under Assumption D.1. Moreover, we assume the following assumption for

ǫsum.

Assumption D.12. Under Assumption D.1, there exists a positive constant C such that P(ǫsum < V ) > CV for any

V with 0 < V ≤MsumA
2.

For example, if ǫsum is a discrete random variable with P(ǫsum = 0) > 0, then Assumption D.12 holds. Similarly, if

ǫsum is a continuous random variable whose probability density function pǫsum
(x) satisfies pǫsum

(x) > K > 0, where x

is an arbitrary element of some interval [0, U ]. Then, Assumption D.12 also holds. Thus, Assumption D.12 guarantees

that ǫsum can take values within an arbitrary neighborhood of zero. Next, we define the variable C9,t as

C9,t = 2β
1/2
t η−1

t (2β
1/2
t + 2)NCN

3,tη
−N
t ,

where ηt = (1 + log t)−1. Then, we assume the following assumption.

Assumption D.13. For any T ≥ 1, C9,t satisfies that

t′∑

t=T

C−2
9,t →∞ (as t′ →∞).

Note that C9,t is a polynomial function on βt. Furthermore, by considering the definition of βt, the closed form

of the mutual information, and γ̃t, we can show that the order of C9,t is expressed as the polynomial function of γ̃t.

Here, under certain conditions, it is known that the order of γ̃t for commonly used kernels such as Gaussian kernels

and linear kernels is a logarithmic order (Srinivas et al., 2010). Then, Assumption D.13 holds if we use such kernels.

Under this setting, we propose an algorithm to the regret r
(S)
F,T .

First, for each t ≥ 1, we define the estimated solution x̂
(1)
F,t, . . . , x̂

(N)
F,t as follows:

x̂
(1)
F,t, . . . , x̂

(N)
F,t = argmax

1≤t′≤t

(x(1),...,x(N))∈X

(z̃
(N)
0,1,t′(x

(1), . . . ,x(N))− β
1/2
t σ̃

(N)
0,1,t′(x

(1), . . . ,x(N))).

48



Then, we give the optimistic improvement-based AF. For any n ∈ [N ], given an observation y(n−1) of stage n − 1,

optimistic maximum estimator ÛCB
(F )

t (x(n)|y(n−1)) w.r.t. x(n) is defined as:

ÛCB
(F )

t (x(n)|y(n−1))

= max
(x(n+1),...,x(N))

(
z̃
(N)
0,1,t(x

(n), . . . ,x(N)|y(n−1)) + β
1/2
t σ̃

(N)
0,1,t(x

(n), . . . ,x(N)|y(n−1))
)
,

where the max operator is not needed when n = N . Similarly, pessimistic maximum estimator L̂CB
(F )

t (y(n−1))

under given an observation y(n−1) is defined as follows:

L̂CB
(F )

t (y(n−1))

= max
(x(n),...,x(N))

(
z̃
(N)
0,1,t(x

(n), . . . ,x(N)|y(n−1))− β
1/2
t σ̃

(N)
0,1,t(x

(n), . . . ,x(N)|y(n−1))
)
.

Moreover, pessimistic maximum estimator of F is given by:

Q̂T = max
(x(1),...,x(N))

(
z̃
(N)
0,1,T (x

(1), . . . ,x(N))− β
1/2
t σ̃

(N)
0,1,T (x

(1), . . . ,x(N))
)
.

Then, we define the optimistic improvement with w.r.t. x(n) as:

â
(n)
t (x(n)|y(n−1)) = ÛCB

(F )

t (x(n)|y(n−1))−max{L̂CB
(F )

t (y(n−1)), Q̂t+n−1}. (D.14)

Furthermore, we define the maximum uncertainty w.r.t. (y(n−1),x(n)) as:

b̂
(n)
t (x(n)|y(n−1)) = max

(x(n+1),...,x(N))
σ̃
(N)
0,1,t(x

(n), . . . ,x(N)|y(n−1)). (D.15)

From (D.14) and (D.15), the AF ĉ
(n)
t (x(n)|y(n−1)) for this setting is given by:

ĉ
(n)
t (x(n)|y(n−1)) = max{â(n)t (x(n)|y(n−1)), ηtb̂

(n)
t (x(n)|y(n−1))},

where ηt is some learning rate tends to zero. Using this AF ĉ
(n)
t , we propose the following selection rule:

x
(n)
t+n = argmax

x(n)∈X (n)

ĉ
(n)
t (x(n)|y(n−1)

t+n−1),

y
(n)
t+n = f (n)(y

(n−1)
t+n−1,x

(n)
t+n) + ǫ

(n)
t+n, (D.16)

where y
(0)
t = 0. Then, the following theorem holds.

Theorem D.14. Assume that Assumptions C.3, C.4, D.1, D.12 and D.13 hold. Also assume that

z̃
(n)
ǫ,t (x

(s+1), . . . ,x(n)|y) ∈ Ỹ(n) for any s ∈ {0, . . . , N − 1}, n ∈ {s + 1, . . . , N}, iteration t ≥ 1, realization ǫ,

given y ∈ Ỹ(s) and input (x(s+1), . . . ,x(n)). Let δ ∈ (0, 1) and ξ > 0, and define βt by (D.2) and ηt = (1+log t)−1.

Then, there exists a sequence 0 = T0 < T1 < T2 < · · · such that Tk ∈ NZ≥0 and

P(∃t ∈ NZ≥0 s.t. Tk−1 ≤ t ≤ Tk, 2C
2
9,tMsumǫsum,t < ξ2/2) > 1− 6δ

π2k2
. (D.17)

Moreover, when the optimization is performed using (D.16), the following inequality holds with probability at least

1− 2δ:

F (x
(1)
F,∗, . . . ,x

(N)
F,∗ )− F (x̂

(1)
F,TK

, . . . , x̂
(N)
F,TK

) < ξ,

where TK is an element of the sequence {Tk}∞k=0 satisfying

4C2
9,TK

M2
sum

log(1 + σ−2)
γ̃TK

K−1 < ξ2/2.
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In order to prove Theorem D.14, we first give four lemmas.

Lemma D.15. Assume that the same condition as in Theorem D.14 holds. Then, for any s ∈ {1, . . . , N − 1},
n ∈ {s + 1, . . . , N}, m ∈ [M (n)], iteration t ≥ 1, realization ǫ and input x(1), . . . ,x(N), the following holds with

probability at least 1− δ:

|σ(n)
m,t(z̃

(n−1)
0,t (x(s), . . . ,x(n−1)|z(s−1)

ǫ ),x(n))− σ
(n)
m,t(z̃

(n−1)
0,t (x(s+1), . . . ,x(n−1)|z(s)

ǫ ),x(n))|

≤ 2MprodC
N−1
0,t

n−s−1∑

p=0

M(n−1−p)∑

i=1

σ
(n−1−p)
i,t

(
z̃
(n−2−p)
0,t (x(s), . . . ,x(n−2−p)|z(s−1)

ǫ ),x(n−1−p)
)

+ 2MprodC
N−1
0,t

M(s)∑

q=1

|ǫ(s)q |.

Proof. By using the same argument as in the proof of Lemma C.11, the following holds with probability at least 1− δ:

|σ(n)
m,t(z̃

(n−1)
0,t (x(s), . . . ,x(n−1)|z(s−1)

ǫ ),x(n))− σ
(n)
m,t(z̃

(n−1)
0,t (x(s+1), . . . ,x(n−1)|z(s)

ǫ ),x(n))|

≤ 2β
1/2
t Lσ

M(n−1)∑

j=1

σ
(n−1)
j,t

(
z̃
(n−2)
0,t (x(s+1), . . . ,x(n−2)|z(s)

ǫ ),x(n−1)
)
+ LσM

(n−1)(Lf + β
1/2
t Lσ)

·
M(n−2)∑

i=1

[
|z̃(n−2)

0,i,t (x(s), . . . ,x(n−2)|z(s−1)
ǫ )− z̃

(n−2)
0,i,t (x(s+1), . . . ,x(n−2)|z(s)

ǫ )|
]

≤ 2β
1/2
t Lσ

M(n−1)∑

j=1

σ
(n−1)
j,t (z̃

(n−2)
0,t (x(s), . . . ,x(n−2)|z(s−1)

ǫ ),x(n−1))

+ 2β
1/2
t LσM

(n−1)(Lf + β
1/2
t Lσ)

M(n−2)∑

i=1

σ
(n−2)
i,t (z̃

(n−3)
0,t (x(s), . . . ,x(n−3)|z(s−1)

ǫ ),x(n−2))

+ LσM
(n−1)M (n−2)(Lf + β

1/2
t Lσ)

2

·
M(n−3)∑

q=1

[
|z̃(n−3)

0,q,t (x(s), . . . ,x(n−3)|z(s−1)
ǫ )− z̃

(n−3)
0,q,t (x(s+1), . . . ,x(n−3)|z(s)

ǫ )|
]

≤
...

≤ 2β
1/2
t LσMprod(Lf + β

1/2
t Lσ + 1)N−2

·
n−s−2∑

p=0

M(n−1−p)∑

i=1

[
σ
(n−1−p)
i,t (z̃

(n−2−p)
0,t (x(s), . . . ,x(n−2−p)|z(s−1)

ǫ ),x(n−1−p))
]

+ 2MprodLσ(Lf + β
1/2
t Lσ + 1)N−2

M(s)∑

q=1

[
|µ(s)

q,t (z
(s−1)
ǫ ,x(s))− f (s)

q (z(s−1)
ǫ ,x(s))− ǫ(s)q |

]

≤ 2Mprod(Lf + β
1/2
t Lσ + 1)N−1

·
n−s−1∑

p=0

M(n−1−p)∑

i=1

[
σ
(n−1−p)
i,t (z̃

(n−2−p)
0,t (x(s), . . . ,x(n−2−p)|z(s−1)

ǫ ),x(n−1−p))
]

+ 2Mprod(Lf + β
1/2
t Lσ + 1)N−1

M(s)∑

q=1

|ǫ(s)q |
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= 2MprodC
N−1
0,t

n−s−1∑

p=0

M(n−1−p)∑

i=1

[
σ
(n−1−p)
i,t (z̃

(n−2−p)
0,t (x(s), . . . ,x(n−2−p)|z(s−1)

ǫ ),x(n−1−p))
]

+ 2MprodC
N−1
0,t

M(s)∑

q=1

|ǫ(s)q |.

�

Lemma D.16. Assume that the same condition as in Theorem D.14 holds. Then, for any s ∈ {1, . . . , N − 1}, j ≥ 0

with s + j ≤ N , iteration t ≥ 1, realization ǫ and input x(1), . . . ,x(N), the following holds with probability at least

1− δ:

σ̃
(N−j)
0,t (x(s), . . . ,x(N−j)|z(s−1)

ǫ )

≤ C2,tσ̃
(N−j)
0,t (x(s+1), . . . ,x(N−j)|z(s)

ǫ ) + C2,tσ̃
(N−j−1)
0,t (x(s), . . . ,x(N−j−1)|z(s−1)

ǫ )

+ C2,t

M(s)∑

i=1

σ
(s)
i,t (z

(s−1)
ǫ ,x(s)) + C2,t

M(s)∑

i=1

|ǫ(s)i |,

where

σ̃
(N−j)
0,t (x(s), . . . ,x(N−j)|z(s−1)

ǫ )

=

N−s∑

p=j

p∏

q=1

M (N−q+1)Lp
f

M(N−p)∑

i=1

[
σ
(N−p)
i,t (z̃

(N−p−1)
0,t (x(s), . . . ,x(N−p−1)|z(s−1)

ǫ ),x(N−p))
]
.

Proof. From the definition of σ̃
(N−j)
0,t (x(s), . . . ,x(N−j)|z(s−1)

ǫ ), the following inequality holds with probability at

least 1− δ:

σ̃
(N−j)
0,t (x(s), . . . ,x(N−j)|z(s−1)

ǫ )

=

N−s∑

p=j

p∏

q=1

M (N−q+1)Lp
f

M(N−p)∑

i=1

[
σ
(N−p)
i,t (z̃

(N−p−1)
0,t (x(s), . . . ,x(N−p−1)|z(s−1)

ǫ ),x(N−p))
]

≤MprodC
N−1
0

N−s∑

p=j

M(N−p)∑

i=1

[
σ
(N−p)
i,t (z̃

(N−p−1)
0,t (x(s), . . . ,x(N−p−1)|z(s−1)

ǫ ),x(N−p))
]

= MprodC
N−1
0

N−s−1∑

p=j

M(N−p)∑

i=1

[
σ
(N−p)
i,t (z̃

(N−p−1)
0,t (x(s+1), . . . ,x(N−p−1)|z(s)

ǫ ),x(N−p))
]

+MprodC
N−1
0

N−s−1∑

p=j

M(N−p)∑

i=1

[(
σ
(N−p)
i,t

(
z̃
(N−p−1)
0,t (x(s), . . . ,x(N−p−1)|z(s−1)

ǫ ),x(N−p)
)]

−σ(N−p)
i,t (z̃

(N−p−1)
0,t (x(s+1), . . . ,x(N−p−1)|z(s)

ǫ ),x(N−p))
)
+MprodC

N−1
0

M(s)∑

i=1

σ
(s)
i,t (z

(s−1)
ǫ ,x(s)).
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Hence, from Lemma D.15, it follows that

|σ(N−p)
i,t (z̃

(N−p−1)
0,t (x(s:N−p−1)|z(s−1)

ǫ ),x(N−p))− σ
(N−p)
i,t (z̃

(N−p−1)
0,t (x(s+1:N−p−1)|z(s)

ǫ ),x(N−p))|

≤ 2MprodC
N−1
0

N−p−s−1∑

r=0

M(N−p−1−r)∑

j=1

[
σ
(N−p−1−r)
j,t

(
z̃
(N−p−2−r)
0,t (x(s:N−p−2−r)|z(s−1)

ǫ ),x(N−p−1−r)
)]

+ 2MprodC
N−1
0

M(s)∑

q=1

|ǫ(s)q |.

Hence, using the same argument as in the proof of Lemma C.12, we have the desired result. �

Lemma D.17. Assume that the same condition as in Theorem D.14 holds. Then, for any s ∈ {1, . . . , N−1}, iteration

t ≥ 1, realization ǫ and input x(1), . . . ,x(N), the following holds with probability at least 1− δ:

σ̃
(N)
0,1,t(x

(s), . . . ,x(N)|z(s−1)
ǫ )

≤ C3,tσ̃
(N)
0,1,t(x

(s+1), . . . ,x(N)|z(s)
ǫ ) + C3,t

M(s)∑

i=1

σ
(s)
i,t (z

(s−1)
ǫ ,x(s)) + C3,t

M(s)∑

i=1

|ǫ(s)i |.

Proof. By repeating Lemma D.16, the following holds with probability at least 1− δ:

σ̃
(N)
0,1,t(x

(s), . . . ,x(N)|z(s−1)
ǫ )

= σ̃
(N−0)
0,t (x(s), . . . ,x(N−0)|z(s−1)

ǫ )

≤ C2,tσ̃
(N−0)
0,t (x(s+1), . . . ,x(N−0)|z(s)

ǫ ) + C2,t

M(s)∑

i=1

σ
(s)
i,t (z

(s−1)
ǫ ,x(s)) + C2,t

M(s)∑

i=1

|ǫ(s)i |

+ C2,tσ̃
(N−1)
0,t (x(s), . . . ,x(N−1)|z(s−1)

ǫ )

≤ C2,tσ̃
(N−0)
0,t (x(s+1), . . . ,x(N−0)|z(s)

ǫ ) + C2,t

M(s)∑

i=1

σ
(s)
i,t (z

(s−1)
ǫ ,x(s)) + C2,t

M(s)∑

i=1

|ǫ(s)i |

+ C2
2,tσ̃

(N−1)
0,t (x(s+1), . . . ,x(N−1)|z(s)

ǫ ) + C2
2,t

M(s)∑

i=1

σ
(s)
i,t (z

(s−1)
ǫ ,x(s)) + C2

2,t

M(s)∑

i=1

|ǫ(s)i |

+ C2
2,tσ̃

(N−2)
0,t (x(s), . . . ,x(N−2)|z(s−1)

ǫ )

≤
...

≤ (C2,t + C2
2,t + · · ·+ CN

2,t)σ̃
(N−0)
0,t (x(s+1), . . . ,x(N−0)|z(s)

ǫ )

+ (C2,t + C2
2,t + · · ·+ CN

2,t)

M(s)∑

i=1

σ
(s)
i,t (z

(s−1)
ǫ ,x(s)) + (C2,t + C2

2,t + · · ·+ CN
2,t)

M(s)∑

i=1

|ǫ(s)i |

≤ NCN
2,tσ̃

(N)
0,1,t(x

(s+1), . . . ,x(N)|z(s)
ǫ ) +NCN

2,t

M(s)∑

i=1

σ
(s)
i,t (z

(s−1)
ǫ ,x(s)) +NCN

2,t

M(s)∑

i=1

|ǫ(s)i |.

�

Lemma D.18. Assume that the same condition as in Theorem D.14 holds. Then, for any n ∈ [N ], iteration t ≥ 1,

y(n−1) ∈ Ỹ(n−1) and input x(n) ∈ X (n), the following holds:

ηtb̂
(n)
t (x(n)|y(n−1)) ≤ ĉ

(n)
t (x(n)|y(n−1)) ≤ (2β

1/2
t + ηt)b̂

(n)
t (x(n)|y(n−1)).
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Proof. By using the same argument as in the proof of Lemma C.14, we get Lemma D.18. �

Using these lemmas we prove Theorem D.14.

Proof. Let t ∈ NZ≥0. Then, from Lemma D.18, x
(1)
t+1 satisfies that

ĉ
(1)
t (x

(1)
t+1|0) ≤ (2β

1/2
t + ηt)b̂

(1)
t (x

(1)
t+1|0) = (2β

1/2
t + ηt)σ̃

(N)
0,1,t(x

(1)
t+1, x̃

(2), . . . , x̃(N)|0). (D.18)

In addition, from (D.18) and Lemma D.17, using the same argument as in the proof of Theorem C.10, with probability

at least 1− δ, ĉ
(1)
t (x

(1)
t+1|0) can be bounded as follows:

ĉ
(1)
t (x

(1)
t+1|0) ≤ (2β

1/2
t + ηt)C3,t

M(1)∑

i=1

σ
(1)
0,i,t(0,x

(1)
t+1) + (2β

1/2
t + ηt)C3,t

M(1)∑

i=1

|ǫ(1)i |

+ (2β
1/2
t + ηt)C3,tσ̃

(N)
0,1,t(x̃

(2), . . . , x̃(N)|y(1)
t+1)

≤ (2β
1/2
t + ηt)C3,t

M(1)∑

i=1

σ
(1)
0,i,t(0,x

(1)
t+1) + (2β

1/2
t + ηt)C3,t

M(1)∑

i=1

|ǫ(1)i |

+ (2β
1/2
t + ηt)

2C3,tη
−1
t σ̃

(N)
0,1,t(x

(2)
t+2, . . . , x̃

(N)|y(1)
t+1).

By using Lemma D.17 again, it follows that

ĉ
(1)
t (x

(1)
t+1|0) ≤ (2β

1/2
t + ηt + 1)NCN

3,tη
−N
t

N∑

n=1

M(n)∑

i=1

σ
(n)
0,i,t(y

(n−1),x
(n)
t+n)

+ (2β
1/2
t + ηt + 1)NCN

3,tη
−N
t

N∑

n=1

M(n)∑

i=1

|ǫ(n)i |

≤ (2β
1/2
t + 1 + 1)NCN

3,tη
−N
t

N∑

n=1

M(n)∑

i=1

σ
(n)
0,i,t(y

(n−1),x
(n)
t+n)

+ (2β
1/2
t + 1 + 1)NCN

3,tη
−N
t

N∑

n=1

M(n)∑

i=1

|ǫ(n)i |.

Thus, multiplying both sides by 2β
1/2
t η−1

t , we get

2β
1/2
t η−1

t ĉ
(1)
t (x

(1)
t+1|0) ≤ 2β

1/2
t η−1

t (2β
1/2
t + 2)NCN

3,tη
−N
t

N∑

n=1

M(n)∑

i=1

σ
(n)
0,i,t(y

(n−1),x
(n)
t+n)

+ 2β
1/2
t η−1

t (2β
1/2
t + 2)NCN

3,tη
−N
t

N∑

n=1

M(n)∑

i=1

|ǫ(n)i |

= C9,t

N∑

n=1

M(n)∑

i=1

σ
(n)
0,i,t(y

(n−1),x
(n)
t+n) + C9,t

N∑

n=1

M(n)∑

i=1

|ǫ(n)i |.

Here, using (a+ b)2 ≤ 2a2 + 2b2 and the Cauchy–Schwarz inequality, we obtain

(2β
1/2
t η−1

t ĉ
(1)
t (x

(1)
t+1|0))2 ≤ 2C2

9,tMsum

N∑

n=1

M(n)∑

i=1

σ
(n)2
0,i,t(y

(n−1),x
(n)
t+n) + 2C2

9,tMsumǫsum.

Next, we show the existence of the sequence T0 < T1 < · · · satisfying

P(∃t ∈ NZ≥0 s.t. Tk−1 ≤ t ≤ Tk, 2C
2
9,tMsumǫsum,t < ξ2/2) > 1− 6δ

π2k2
.
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From Assumption D.12, we have

P(2C2
9,tMsumǫsum,t < ξ2/2) = P(ǫsum,t < M−1

sumC
−2
9,t ξ

2/4) >
Cξ2

4MsumC2
9,t

.

This implies that

1− P(2C2
9,tMsumǫsum,t < ξ2/2) ≤ 1− Cξ2

4MsumC2
9,t

.

Therefore, using 1 + x ≤ ex we get

t′∏

q=t

(1 − P(2C2
9,qMsumǫsum,q < ξ2/2)) ≤

t′∏

q=t

(
1− Cξ2

4MsumC2
9,q

)

≤
t′∏

q=t

exp

(
− Cξ2

4MsumC2
9,q

)

= exp



− Cξ2

4Msum

t′∑

q=t

C−2
9,q



 . (D.19)

Moreover, from Assumption D.13, the right hand side of (D.19) tends to zero when t′ → ∞. Thus, we can construct

the sequence T1, T2, . . . satisfying (D.17). Then, with probability at least 1− δ, the following holds:

∀k ∈ N, ∃T̃k s.t. Tk−1 ≤ T̃k ≤ Tk, 2C
2
9,T̃k

Msumǫsum,T̃k
< ξ2/2.

On the other hand, for the positive number K satisfying the theorem’s inequality, we define

T̂ = argmin
1≤k≤K

(2β
1/2

T̃k

η−1

T̃k

ĉ
(1)

T̃k

(x
(1)

T̃k+1
|0))2.

Then, it follows that

K(2β
1/2

T̂
η−1

T̂
ĉ
(1)

T̂
(x

(1)

T̂+1
|0))2 ≤

K∑

k=1

(2β
1/2

T̃k

η−1

T̃k

ĉ
(1)

T̃k

(x
(1)

T̃k+1
|0))2

≤ Kξ2/2 + 2C2
9,TK

Msum

TK∑

t=1

N∑

n=1

M(n)∑

i=1

σ
(n)2
0,i,t(y

(n−1),x
(n)
t+n)

≤ Kξ2/2 +
4C2

9,TK
M2

sum

log(1 + σ−2)
γ̃TK

.

By dividing both sides by K , we obtain

(2β
1/2

T̂
η−1

T̂
ĉ
(1)

T̂
(x

(1)

T̂+1
|0))2 ≤ ξ2/2 +

4C2
9,TK

M2
sum

log(1 + σ−2)
γ̃TK

K−1

< ξ2/2 + ξ2/2 = ξ2.

This implies that

2β
1/2

T̂
η−1

T̂
ĉ
(1)

T̂
(x

(1)

T̂+1
|0) < ξ. (D.20)
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Finally, from the definition of the estimated solution and CIs, F (·) can be bounded as follows:

F (x
(1)
F,∗, . . . ,x

(N)
F,∗ ) ≤ min

t∈NZ≥0,t≤TK

ÛCB
(F )

t (x
(1)
F,∗, . . . ,x

(N)
F,∗ )

≤ ÛCB
(F )

T̂ (x
(1)
F,∗, . . . ,x

(N)
F,∗ ),

F (x̂
(1)
F,TK

, . . . , x̂
(N)
F,TK

) ≥ max
t∈NZ≥0,t≤TK

L̂CB
(F )

t (x(1), . . . ,x(N))

≥ L̂CB
(F )

T̂ (x
(1)
F,∗, . . . ,x

(N)
F,∗ ).

Therefore, the following holds with probability at least 1− 2δ:

F (x
(1)
F,∗, . . . ,x

(N)
F,∗ )− F (x̂

(1)
F,TK

, . . . , x̂
(N)
F,TK

) ≤ 2β
1/2

T̂
σ̃
(N)

0,1,T̂
(x

(1)
F,∗, . . . ,x

(N)
F,∗ )

≤ 2β
1/2

T̂
b̂
(1)

T̂
(x

(1)
F,∗|0)

≤ 2β
1/2

T̂
η−1

T̂
ĉ
(1)

T̂
(x

(1)
F,∗|0) ≤ 2β

1/2

T̂
η−1

T̂
ĉ
(1)

T̂
(x

(1)

T̂+1
|0). (D.21)

Hence, by substituting (D.20) into (D.21), we have Theorem D.14. �

E Sufficient Conditions and Modifications for the Proposed Method

In this section, we consider theorem’s conditions and its modifications. First, in the noiseless setting, we assume

that µ̃
(m)
t (x(n), . . . ,x(m)|y(n−1)) ∈ Y(m) to construct the valid CI . For this assumption, the following sufficient

condition exists.

Theorem E.1. Assume that each X (n) is a compact set, and each observation is noiseless. Also assume that each

f
(n)
m is a function defined on [−2Bn−1, 2Bn−1]

M(n−1) ×X (n) and satisfies f
(n)
m ∈ Hk(n) , where Bn is some positive

constant satisfying ‖f (n)
m ‖H

k(n)
≤ Bn and B0 = 0. Then, µ̃

(n)
t (x(1), . . . ,x(n)) ∈ [−2Bn, 2Bn]

M(n)

for any n ∈ [N ],

t ≥ 1 and x(1), . . . ,x(n).

Proof. From the reproducing property of k(n), noting that k(n)(a,a) ≤ 1 we have

|f (1)
m (a)| = |〈f (1)

m (·), k(1)(·,a)〉H
k(1)
|

≤ ‖f (1)
m ‖Hk(1)

k(1)(a,a)1/2 ≤ B1.

In addition, since X (1) is the compact set, [−2B0, 2B0]
M(0) × X (1) is also the compact set. Hence, from Lemma C.2

the following holds for any m ∈ [M (1)], t ≥ 1 and (w,x) ∈ [−2B0, 2B0]
M(0) ×X (1):

|µ(1)
m,t(w,x)| = |µ(1)

m,t(w,x)− f (n)
m (w,x) + f (n)

m (w,x)|
≤ |µ(1)

m,t(w,x)− f (n)
m (w,x)|+ |f (n)

m (w,x)|
≤ B1 +B1 = 2B1.

This implies that µ
(1)
t (0,x(1)) = µ̃

(1)
t (x(1)) ∈ [−2B1, 2B1]

M(1)

. By repeating this process, we get

µ
(n)
t (µ̃

(n−1)
t (x(1), . . . ,x(n−1)),x(n)) = µ̃(n)(x(1), . . . ,x(n)) ∈ [−2Bn, 2Bn]

M(n)

.

�
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Theorem E.1 implies that by defining Y(n) as [−2Bn, 2Bn]
M(n)

and B = max1≤n≤N Bn, we ob-

tain Assumption C.1 and µ̃
(n)
t (x(1), . . . ,x(n)) ∈ Y(n). Similarly, under the same assumption we have

µ̃
(m)
t (x(n), . . . ,x(m)|y(n−1)) ∈ Y(m).

Next, we consider the condition z̃
(n)
ǫ,t (x

(1), . . . ,x(n)) ∈ Ỹ(n) for the noisy observation setting. In the noisy setting,

it is not easy to give a sufficient condition for this condition to be satisfied. Nevertheless, we can avoid this condition

by modifying the definition of z̃
(n)
ǫ,t (x

(1), . . . ,x(n)). Let L = [−L,L]d be a d-dimensional hypercube. For each

a = (a1, . . . , ad) ∈ Rd, suppose that P(M,a) is a projection of a onto M, where the i-th element of P(M,a),

Pi(M,a), is given by

Pi(M,a) = argmin
l∈[−L,L]

|ai − l|.

Then, the following theorem holds.

Theorem E.2. Assume that each X (n) is a compact set, and each observation noise ǫ
(n)
m is a zero mean random

variable with −A ≤ ǫ
(n)
m ≤ A. Also assume that each f

(n)
m is a function defined on [−An−1 − Bn−1, An−1 +

Bn−1]
M(n−1) × X (n) and satisfies f

(n)
m ∈ Hk(n) , where A0 = B0 = 0, An = A and Bn is some positive constant

satisfying ‖f (n)
m ‖H

k(n)
≤ Bn. For each t ≥ 1 and (x(1), . . . ,x(n)), define

ẑ
(n)
ǫ,t (x

(1), . . . ,x(n)) =




ǫ(1) + P(Y(1),µ

(1)
t (0,x(1))) (n = 1),

ǫ(n) + P(Y(n),µ
(n)
t (ẑ

(n−1)
ǫ,t (x(1:n−1)),x(n))) (n ≥ 2),

where Y(n) = [−Bn, Bn]
M(n)

. Then, ẑ
(n)
ǫ,t (x

(1), . . . ,x(n)) ∈ [−An − Bn, An + Bn]
M(n)

= Ỹ(n) for all n ∈ [N ],

t ≥ 1, ǫ and (x(1), . . . ,x(n)). Moreover, f (n) satisfies f (n)(w,x) + ǫ(n) ∈ Ỹ(n) for all w ∈ Ỹ(n−1), x ∈ X (n) and

ǫ(n).

Proof. From the reproducing property of k(n)(·, ·), and the assumptions k(n)(·, ·) ≤ 1 and ‖f (n)
m ‖H

k(n)
≤ Bn, we have

f
(n)
m (w,x) ∈ [−Bn, Bn]. Therefore, noting that −A ≤ ǫ

(n)
m ≤ A, we get f (n) satisfies f (n)(w,x) + ǫ(n) ∈ Ỹ(n).

Similarly, from the definition of P(Y(n),a), it follows that

P(Y(n),µ
(n)
t (ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n))) ∈ Y(n) = [−Bn, Bn]

M(n)

.

Thus, we obtain ẑ
(n)
ǫ,t (x

(1), . . . ,x(n)) ∈ ˜Y(n). �

In this modified ẑ
(n)
ǫ,t (x

(1), . . . ,x(n)), similar results given in Theorem D.4 hold.

Theorem E.3. Assume that the same condition as in Theorem E.2 holds. Given δ ∈ (0, 1), define B = max1≤n≤N Bn

and βt as in (D.2). Moreover, assume that Assumptions C.3 and C.4 hold. Then, with probability at least 1 − δ, the

following holds for any realization of ǫ:

|z(n)ǫ,m(x(1), . . . ,x(n))− ẑ
(n)
ǫ,m,t(x

(1), . . . ,x(n))| ≤β1/2
t σ̂

(n)
ǫ,m,t(x

(1), . . . ,x(n))

∀n ∈ [N ],m ∈ [M (n)], t ≥ 1,

where ẑ
(n)
ǫ,m,t is the m-th element of ẑ

(n)
ǫ,t , and σ̂

(n)
ǫ,m,t(x

(1), . . . ,x(n)) is given by

σ̂
(n)
ǫ,m,t(x

(1), . . . ,x(n)) =

σ
(n)
m,t(ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n)) + Lf

M(n−1)∑

s=1

σ̂
(n−1)
ǫ,s,t (x(1), . . . ,x(n−1)),

and σ̂
(1)
ǫ,s,t(x

(1)) = σ
(1)
s,t (0,x

(1)).
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Proof. For any t ≥ 1, n ∈ [N ], m ∈ [M (n)], x(1), . . . ,x(n) and realization of ǫ, it follows that

|f (n)
m (ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n))− µ

(n)
m,t(ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n))|

= |f (n)
m (ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n))− Pm(Y(n),µ

(n)
t (ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n)))|

+ |Pm(Y(n),µ
(n)
t (ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n)))− µ

(n)
m,t(ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n))|

≥ |f (n)
m (ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n))− Pm(Y(n),µ

(n)
t (ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n)))|,

where the first equality is derived by f
(n)
m (ẑ

(n−1)
ǫ,t (x(1), . . . ,x(n−1)),x(n)) ∈ Y(n) and the definition of P(Y(n),a).

Thus, for i ∈ [M (2)] and (x(1),x(2)), the following inequality holds with probability at least 1− δ:

|z(2)ǫ,i (x
(1),x(2))− ẑ

(2)
ǫ,i,t(x

(1),x(2))|
≤ |f (2)

i (z(1)
ǫ (x(1)),x(2))− f

(2)
i (ẑ

(1)
ǫ,t (x

(1)),x(2))|
+ |f (2)

i (ẑ
(1)
ǫ,t (x

(1)),x(2))− Pi(Y(2),µ
(2)
t (ẑ

(1)
ǫ,t (x

(1)),x(2)))|
≤ Lf‖f (1)(0,x(1))− P(Y(1),µ

(1)
t (0,x(1)))‖1

+ |f (2)
i (ẑ

(1)
ǫ,t (x

(1)),x(2))− Pi(Y(2),µ
(2)
t (ẑ

(1)
ǫ,t (x

(1)),x(2)))|

≤ Lf

M(1)∑

j=1

|f (1)
j (0,x(1))− Pj(Y(1),µ

(1)
t (0,x(1)))|

+ |f (2)
i (ẑ

(1)
ǫ,t (x

(1)),x(2))− Pi(Y(2),µ
(2)
t (ẑ

(1)
ǫ,t (x

(1)),x(2)))|

≤ Lf

M(1)∑

j=1

|f (1)
j (0,x(1))− µ

(1)
j,t (0,x

(1))|

+ |f (2)
i (ẑ

(1)
ǫ,t (x

(1)),x(2))− µ
(2)
i,t (ẑ

(1)
ǫ,t (x

(1)),x(2))|

≤ β
1/2
t σ

(2)
i,t (ẑ

(1)
ǫ,t (x

(1)),x(2)) + Lfβ
1/2
t

M(1)∑

j=1

σ
(1)
j,t (0,x

(1))

= β
1/2
t σ̂

(2)
ǫ,i,t(x

(1),x(2)).

Therefore, by repeating this process up to n, we get the desired inequality. �

We emphasize that by using the same technique as used in this proof, it can also be shown that Theorems D.6, D.9

and D.14 hold when using ẑ
(n)
ǫ,t (x

(1), . . . ,x(n)) instead of z̃
(n)
ǫ,t (x

(1), . . . ,x(n)).

Finally, we provide the sufficient condition for the Lipschitz continuity assumption (L2).

Theorem E.4. Let k(x,y) : Rd × Rd → R be one of the following kernel functions:

Linear kernel: k(x,y) = a2x⊤y, where a is a positive parameter.

Gaussian kernel: k(x,y) = a2 exp(−‖x− y‖2/(2ρ2)), where a and ρ are positive parameters.

Matérn kernel:

k(x,y) = a2
21−ν

Γ(ν)

(√
2ν
‖x− y‖

ρ

)ν

Kν

(√
2ν
‖x− y‖

ρ

)
,

where a and ρ are positive parameters, ν is a degree of freedom with ν > 1, Γ is the gamma function, and Kν

is the modified Bessel function of the second kind.
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Moreover, assume that a user-specified variance parameter σ2 is positive. Then, for any t ≥ 1 and observed points

x1, . . . ,xt, the posterior standard deviation σt(x) satisfies that

∀x,y ∈ Rd, |σt(x)− σt(y)| ≤ C‖x− y‖1, (E.1)

where C is a positive constant given by

C =






a if k(x,y) is the linear kernel,
√
2a
ρ if k(x,y) is the Gaussian kernel,

√
2a
ρ

√
ν

ν−1 if k(x,y) is the Matérn kernel.

Proof. First, we show the case of the linear kernel. Let the matrix Xt be Xt = (x1, . . . ,xt)
⊤. Then, σ2

t (x) is given

by

σ2
t (x) = a2x⊤x− a4x⊤X⊤

t (a2XtX
⊤
t + σ2It)

−1Xtx

= a2x⊤x− a2x⊤X⊤
t (XtX

⊤
t + a−2σ2It)

−1Xtx

= a2x⊤(Id −X⊤
t (XtX

⊤
t + a−2σ2It)

−1Xt)x.

The matrix Xt can be decomposed as

Xt = H ′
ΛH⊤,

where H ′ = (h′
1, . . . ,h

′
t)

⊤ and H = (h1, . . . ,hd)
⊤ are orthogonal matrices, and Λ is the t× d rectangular diagonal

matrix whose (j, j) element is the jth singular value sj ≥ 0 of Xt. Thus, Id −X⊤
t (XtX

⊤
t + a−2σ2It)

−1Xt can be

rewritten as follows:

Id −X⊤
t (XtX

⊤
t + a−2σ2It)

−1Xt = HΘH⊤,

where Θ is the diagonal matrix whose (j, j) element is 1 − s2j/(s
2
j + a−2σ2). Thus, the posterior standard deviation

σt(x) can be expressed as

σt(x) =
√
a2x⊤HΘH⊤x = a‖Θ1/2H⊤x‖.

Hence, using the triangle inequality we have

|σt(x)− σt(y)| = a|‖Θ1/2H⊤x‖ − ‖Θ1/2H⊤y‖|
≤ a‖Θ1/2H⊤x−Θ

1/2H⊤y‖
= a‖Θ1/2H⊤(x− y)‖. (E.2)

Noting that the diagonal element θj of Θ satisfies 0 ≤ θj ≤ 1, from ‖x− y‖ ≤ ‖x− y‖1 we get

‖Θ1/2H⊤(x− y)‖ =
√
(x− y)⊤HΘH⊤(x− y)

≤
√
(x− y)⊤HIdH⊤(x− y) = ‖x− y‖ ≤ ‖x− y‖1. (E.3)

Therefore, by substituting (E.3) into (E.2), we have the desired result.

Next, we show the case of the Gaussian kernel. From Bochner’s theorem, the Gaussian kernel can be rewritten as

follows (see, e.g., section 4.2.1 in (Rasmussen and Williams, 2005)):

k(x,y) = a2
∫

Rd

e2πi(x−y)⊤λ(2πρ2)d/2e−2π2ρ2‖λ‖2

dλ,
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where i is the imaginary unit. Furthermore, for each natural number s ∈ N, let Is and Cs be families of sets given by

Is =
{[
−s+ j − 1

2s
,−s+ j

2s

)
| j = 1, . . . , 2s2s

}
,

Cs = {I1 × · · · × Id | I1, . . . , Id ∈ Is}.

In addition, for each element Cs,k = [a
(1)
s,k, b

(1)
s,k)× · · · [a

(d)
s,k, b

(d)
s,k) of Cs, (k = 1, . . . , (2s2s)d), we define the represen-

tative point λs,k of Cs,k as

λs,k =

(
a
(1)
s,k + b

(1)
s,k

2
, . . . ,

a
(d)
s,k + b

(d)
s,k

2

)⊤

= (λ
(1)
s,k, . . . , λ

(d)
s,k)

⊤.

Moreover, let φs(x) be the (2s2s)d-dimensional vector whose kth element φs,k(x) is given by

φs,k(x) = ae2πix
⊤λs,k(2πρ2)d/4e−π2ρ2‖λs,k‖2

(
1

2s

)d/2

.

Then, the inner product 〈φs(x),φs(y)〉 ≡ φs(x)
⊤
φs(y) satisfies

lim
s→∞
〈φs(x),φs(y)〉 = lim

s→∞

(2s2s)d∑

k=1

a2e2πi(−x+y)⊤λs,k(2πρ2)d/2e−2π2ρ2‖λs,k‖2

(
1

2s

)d

= a2
∫

Rd

e2πi(−x+y)⊤λ(2πρ2)d/2e−2π2ρ2‖λ‖2

dλ

= a2
∫

Rd

e2πi(x−y)⊤λ(2πρ2)d/2e−2π2ρ2‖λ‖2

dλ = k(x,y).

Furthermore, we define σ̌2
t,s(x) and ǫt,s(x) as

σ̌2
t,s(x) = 〈φs(x),φs(x)〉 − (〈φs(x),φs(x1)〉, . . . , 〈φs(x),φs(xt)〉)

(Kt,s + σ2It)
−1(〈φs(x),φs(x1)〉, . . . , 〈φs(x),φs(xt)〉)⊤,

ǫt,s(x) = k(x,x)− (k(x,x1), . . . , k(x,xt))(Kt + σ2It)
−1(k(x,x1), . . . , k(x,xt))

⊤

− σ̌2
t,s(x)

= σ2
t (x)− σ̌2

t,s(x),

where Kt,s and Kt are t × t matrices whose (i, j) elements are given by 〈φs(xi),φs(xj)〉 and 〈φs(xi),φs(xj)〉,
respectively. Then, noting that lims→∞〈φs(x),φs(y)〉 = k(x,y) we get

lim
s→∞

σ̌2
t,s(x) = σ2

t (x), lim
s→∞

ǫt,s(x) = 0.

We now consider σt(x) and σt(y). Without loss of generality, we can assume that σt(x) ≥ σt(y). Then, we have

|σt(x)− σt(y)| = σt(x)− σt(y). (E.4)

In addition, the following inequality holds:

σt(x) =
√
σ2
t (x) =

√
σ̌2
t,s(x) + ǫt,s(x) ≤

√
σ̌2
t,s(x) + |ǫt,s(x)|

≤
√
σ̌2
t,s(x) +

√
|ǫt,s(x)|. (E.5)
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Similarly, if ǫt,s(y) > 0, then σt(y) satisfies

σt(y) =
√
σ̌2
t,s(y) + ǫt,s(y) ≥

√
σ̌2
t,s(y) ≥

√
σ̌2
t,s(y)−

√
|ǫt,s(y)|.

On the other hand, if ǫt,s(y) ≤ 0, then σt(y) satisfies

σt(y) =
√
σ̌2
t,s(y) + ǫt,s(y) =

√
σ̌2
t,s(y)− |ǫt,s(y)| ≥

√
σ̌2
t,s(y)−

√
|ǫt,s(y)|,

where the last inequality is given by
√
u−√v ≤ √u− v, (u ≥ v ≥ 0). Hence, for both cases, the following holds:

σt(y) ≥
√
σ̌2
t,s(y)−

√
|ǫt,s(y)|. (E.6)

Thus, by substituting (E.5) and (E.6) into (E.4), we obtain

|σt(x)− σt(y)| ≤
√
σ̌2
t,s(x)−

√
σ̌2
t,s(y) +

√
|ǫt,s(x)|+

√
|ǫt,s(y)|. (E.7)

Furthermore, we define the matrix Xt,s as Xt,s = (φs(x1), . . . ,φs(xt))
∗, where A∗ is the conjugate transpose of

A. Then, σ̌2
t,s(x) can be rewritten as follows:

σ̌2
t,s(x) = φs(x)

⊤
(I(2s2s)d −X∗

t,s(Xt,sX
∗
t,s + σ2It)

−1Xt,s)φs(x).

Therefore, by using the singular decomposition of Xt,s, we have

σ̌2
t,s(x) = φs(x)

⊤
UΘU∗φs(x),

where U and Θ are unitary and diagonal matrices, respectively. By using the same argument as in the case of the

linear kernel, it can be shown that the (k, k) element θk of Θ satisfies 0 ≤ θk ≤ 1. Hence, noting that

σ̌t,s(x) =
√
σ̌2
t,s(x) = ‖Θ1/2U∗φs(x)‖

and (E.7), from the triangle inequality we get

|σt(x)− σt(y)| ≤ ‖Θ1/2U∗φs(x)‖ − ‖Θ1/2U∗φs(y)‖ +
√
|ǫt,s(x)|+

√
|ǫt,s(y)|

≤ ‖Θ1/2U∗φs(x)−Θ
1/2U∗φs(y)‖ +

√
|ǫt,s(x)|+

√
|ǫt,s(y)|

= ‖Θ1/2U∗(φs(x)− φs(y))‖ +
√
|ǫt,s(x)|+

√
|ǫt,s(y)|

≤ ‖φs(x)− φs(y)‖+
√
|ǫt,s(x)|+

√
|ǫt,s(y)|, (E.8)

where the last inequality is given by 0 ≤ θk ≤ 1. Moreover, for each j with 1 ≤ j ≤ d − 1, let x[j] =

(y1, . . . , yj, xj+1, . . . , xd)
⊤, and let x[0] ≡ x and x[d] ≡ y. Then, the following inequality holds:

‖φs(x)− φs(y)‖ =

∥∥∥∥∥∥

d∑

j=1

{φs(x[j − 1])− φs(x[j])}

∥∥∥∥∥∥

≤
d∑

j=1

‖φs(x[j − 1])− φs(x[j])‖. (E.9)

Thus, by substituting (E.9) into (E.8), we obtain

|σt(x)− σt(y)| ≤
d∑

j=1

‖φs(x[j − 1])− φs(x[j])‖ +
√
|ǫt,s(x)|+

√
|ǫt,s(y)|. (E.10)
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In addition, for any j and k with 1 ≤ j ≤ d and 1 ≤ k ≤ (2s2s)d, from the definition of φs,k(x) we have

φs,k(x[j − 1])− φs,k(x[j]) = aD(2πρ2)d/4e−π2ρ2‖λs,k‖2

(
1

2s

)d/2

(e2πixjλ
(j)
s,k − e2πiyjλ

(j)
s,k),

D = e2πi(y1,...,yj−1,xj+1,...,xd)(λ
(1)
s,k

,...,λ
(j−1)
s,k

,λ
(j+1)
s,k

,...,λ
(d)
s,k

)⊤ .

Hence, it follows that

(φs,k(x[j − 1])− φs,k(x[j]))(φs,k(x[j − 1])− φs,k(x[j]))

= |φs,k(x[j − 1])− φs,k(x[j])|2

≤ a2(2πρ2)d/2e−2π2ρ2‖λs,k‖2

(
1

2s

)d

|e2πixjλ
(j)
s,k − e2πiyjλ

(j)
s,k |2. (E.11)

Thus, noting that | cos(u)− cos(v)| ≤ |u− v| and | sin(u)− sin(v)| ≤ |u− v| for any u, v ∈ R, we get

|e2πixjλ
(j)
s,k − e2πiyjλ

(j)
s,k |

= | cos(2πxjλ
(j)
s,k) + i sin(2πxjλ

(j)
s,k)− cos(2πyjλ

(j)
s,k)− i sin(2πyjλ

(j)
s,k)|

=

√
| cos(2πxjλ

(j)
s,k)− cos(2πyjλ

(j)
s,k)|2 + | sin(2πxjλ

(j)
s,k)− sin(2πyjλ

(j)
s,k)|2

≤
√
8π2λ

(j)2
s,k (xj − yj)2. (E.12)

Therefore, by substituting (E.12) into (E.11), we obtain

(φs,k(x[j − 1])− φs,k(x[j]))(φs,k(x[j − 1])− φs,k(x[j]))

≤ a2(2πρ2)d/2e−2π2ρ2‖λs,k‖2

(
1

2s

)d

8π2λ
(j)2
s,k (xj − yj)

2.

This implies that

‖φs(x[j − 1])− φs(x[j])‖2 ≤
(2s2s)d∑

k=1

a2(2πρ2)d/2e−2π2ρ2‖λs,k‖2

(
1

2s

)d

8π2λ
(j)2
s,k (xj − yj)

2. (E.13)

Moreover, the following holds when s→∞:

lim
s→∞

(2s2s)d∑

k=1

a2(2πρ2)d/2e−2π2ρ2‖λs,k‖2

(
1

2s

)d

8π2λ
(j)2
s,k (xj − yj)

2

= a2(2πρ2)d/28π2(xj − yj)
2

∫

Rd

e−2π2ρ2λ⊤λλ2
jdλ

= a28π2(xj − yj)
2

(∫

R

(2πρ2)1/2λ2
je

−2π2ρ2λ2
j dλj

) d∏

i6=j

(∫

R

(2πρ2)1/2e−2π2ρ2λ2
i dλi

)
.

By putting 2πρλi = ui for each i with 1 ≤ i ≤ d, we have

a28π2(xj − yj)
2

(∫

R

(2πρ2)1/2λ2
je

−2π2ρ2λ2
j dλj

) d∏

i6=j

(∫

R

(2πρ2)1/2e−2π2ρ2λ2
i dλi

)

= a22ρ−2(xj − yj)
2

∫

R

(2π)−1/2u2
je

−u2
j/2duj

d∏

i6=j

(∫

R

(2π)−1/2e−u2
i/2dui

)

=
2a2

ρ2
(xj − yj)

2. (E.14)
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Thus, (E.13) can be rewritten as follows:

‖φs(x[j − 1])− φs(x[j])‖2

≤ 2a2

ρ2
(xj − yj)

2

+

(2s2s)d∑

k=1

a2(2πρ2)d/2e−2π2ρ2‖λs,k‖2

(
1

2s

)d

8π2λ
(j)2
s,k (xj − yj)

2 − 2a2

ρ2
(xj − yj)

2

≤ 2a2

ρ2
(xj − yj)

2

+

∣∣∣∣∣∣

(2s2s)d∑

k=1

a2(2πρ2)d/2e−2π2ρ2‖λs,k‖2

(
1

2s

)d

8π2λ
(j)2
s,k (xj − yj)

2 − 2a2

ρ2
(xj − yj)

2

∣∣∣∣∣∣

≡ 2a2

ρ2
(xj − yj)

2 + ǫ̃s,j,

where ǫ̃s,j satisfies that lims→∞ |ǫ̃s,j | = 0 from (E.14). Hence, we get

‖φs(x[j − 1])− φs(x[j])‖ ≤
√

2a2

ρ2
(xj − yj)2 + ǫ̃s,j ≤

√
2a

ρ
|xj − yj |+

√
ǫ̃s,j . (E.15)

By substituting (E.15) into (E.10), we obtain

|σt(x)− σt(y)| ≤
√
2a

ρ
‖x− y‖1 +

d∑

j=1

√
ǫ̃s,j +

√
|ǫt,s(x)|+

√
|ǫt,s(y)|.

Furthermore, because the number s is an arbitrary natural number, and

lim
s→∞




d∑

j=1

√
ǫ̃s,j +

√
|ǫt,s(x)|+

√
|ǫt,s(y)|


 = 0,

we have

|σt(x)− σt(y)| ≤
√
2a

ρ
‖x− y‖1.

Finally, we show the case of the Matérn kernel. From Bochner’s theorem, the Matérn kernel can be rewritten as

follows (see, section 4.2.1 in (Rasmussen and Williams, 2005)):

k(x,y) = a2
∫

Rd

e2πi(x−y)⊤λ 2
dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λ‖2

)−(ν+d/2)

dλ.

For each s ∈ N and k with k = 1, . . . , (2s2s)d, we define Is, Cs, the element Cs,k = [a
(1)
s,k, b

(1)
s,k) × · · · [a

(d)
s,k, b

(d)
s,k)

of Cs, and the representative point λs,k of Cs,k as in the case of the Gaussian kernel. Similarly, let φs(x) be the

(2s2s)d-dimensional vector whose kth element φs,k(x) is given by

φs,k(x)

= ae2πix
⊤λs,k

(
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λs,k‖2

)−(ν+d/2)
)1/2(

1

2s

)d/2

.
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Then, by using the same argument as in the case of the Gaussian kernel, we obtain the following inequality similar to

(E.10):

|σt(x)− σt(y)| ≤
d∑

j=1

‖φs(x[j − 1])− φs(x[j])‖+ |ǫt,s(x,y)|, (E.16)

where lims→∞ |ǫt,s(x,y)| = 0. Moreover, for any j and k with 1 ≤ j ≤ d and 1 ≤ k ≤ (2s2s)d, from the definition

of φs,k(x) we get

φs,k(x[j − 1])− φs,k(x[j])

= aD

(
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λs,k‖2

)−(ν+d/2)
)1/2(

1

2s

)d/2

(e2πixjλ
(j)
s,k − e2πiyjλ

(j)
s,k),

D = e2πi(y1,...,yj−1,xj+1,...,xd)(λ
(1)
s,k

,...,λ
(j−1)
s,k

,λ
(j+1)
s,k

,...,λ
(d)
s,k

)⊤ .

It follows that

(φs,k(x[j − 1])− φs,k(x[j]))(φs,k(x[j − 1])− φs,k(x[j]))

= |φs,k(x[j − 1])− φs,k(x[j])|2

≤ a2
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λs,k‖2

)−(ν+d/2)(
1

2s

)d

|e2πixjλ
(j)
s,k − e2πiyjλ

(j)
s,k |2. (E.17)

By substituting (E.12) into (E.17), we have

(φs,k(x[j − 1])− φs,k(x[j]))(φs,k(x[j − 1])− φs,k(x[j]))

≤ a2
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λs,k‖2

)−(ν+d/2)(
1

2s

)d

8π2λ
(j)2
s,k (xj − yj)

2.

This implies that

‖φs(x[j − 1])− φs(x[j])‖2

≤
(2s2s)d∑

k=1

a2
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λs,k‖2

)−(ν+d/2)(
1

2s

)d

8π2λ
(j)2
s,k (xj − yj)

2.

Furthermore, the following holds when s→∞:

lim
s→∞

(2s2s)d∑

k=1

a2
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λs,k‖2

)−(ν+d/2)(
1

2s

)d

8π2λ
(j)2
s,k (xj − yj)

2

= a28π2(xj − yj)
2

∫

Rd

2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λ‖2

)−(ν+d/2)

λ2
jdλ.

In addition, by putting 2ν = ν̃ and Σ = (4π2ρ2)−1Id, we obtain

2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λ‖2

)−(ν+d/2)

=
Γ((ν̃ + d)/2)

Γ(ν̃/2)ν̃d/2πd/2|Σ|1/2
(
1 +

1

ν̃
λ⊤

Σ
−1λ

)−(ν̃+d)/2

≡ f(λ; ν̃,Σ).
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Note that f(λ; ν̃,Σ) is the probability density function of Tν̃(0,Σ), where Tν̃(0,Σ) is the multivariate t-distribution

with location parameter 0, scale matrix Σ and ν̃ degrees of freedom. It is known that the mean vector and covariance

matrix of Tν̃(0,Σ) are respectively given by 0 and ν̃
ν̃−2Σ when ν̃ > 2 (see, e.g., (Kotz and Nadarajah, 2004)). From

the assumption ν > 1, noting that ν̃ = 2ν > 2 we have

∫

Rd

2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λ‖2

)−(ν+d/2)

λ2
jdλ

=

∫

Rd

f(λ; ν̃,Σ)λ2
jdλ

=
ν̃

ν̃ − 2

1

4π2ρ2
=

ν

ν − 1

1

4π2ρ2
.

This implies that

lim
s→∞

(2s2s)d∑

k=1

a2
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖λs,k‖2

)−(ν+d/2)(
1

2s

)d

2λ
(j)2
s,k (xj − yj)

2

=
2a2

ρ2
(xj − yj)

2 ν

ν − 1
.

Therefore, by using the same argument as in the case of the Gaussian kernel, we obtain

‖φs(x[j − 1])− φs(x[j])‖ ≤
√
2a

ρ

√
ν

ν − 1
|xj − yj |+ |ǫ̂s,j|, (E.18)

where lims→∞ |ǫ̂s,j| = 0. Hence, by substituting (E.18) into (E.16), and taking s→∞ we get

|σt(x)− σt(y)| ≤
√
2a

ρ

√
ν

ν − 1
‖x− y‖1.

�

The condition that σ2 in Theorem E.4 is positive is necessary only for the inverse matrix calculation. Note that

σ2 is a user-specified variance parameter of a formal GP model, and is different from the true noise variance. That

is, Theorem E.4 holds even when the variance of the true noise is zero, i.e., in the noiseless setting. Also note that

C in Theorem E.4 is a constant independent of σ2. The result for the Matérn kernel is for the case of ν > 1 degrees

of freedom, and it is a future work to clarify whether the same result holds for ν ≤ 1 as well. On the other hand,

unfortunately, it can be shown that (E.1) does not hold for ν = 1/2, which is often used in practice for Matérn kernels.

Theorem E.5. In the setting of Theorem E.4, the Matérn kernel with ν = 1/2 does not satisfy (E.1).

Proof. Let C be an arbitrary positive number. The Matérn kernel with ν = 1/2 is given by

k(x,y) = a2 exp(−‖x− y‖/ρ).

In addition, suppose that x1 = · · · = xt = 0. Moreover, we define Kt as

Kt = a21t1
⊤
t + σ2It.

Then, the inverse matrix K−1
t can be expressed as

K−1
t = σ−2It −

a2

σ4 1t1
⊤
t

1 + a2

σ2 t
.
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Therefore, the posterior variance at point 0 is given by

σ2
t (0) = a2 − a41⊤

t K
−1
t 1t = a2 − a4

t

σ2 + a2t
=

a2σ2

σ2 + a2t
.

Next, let s be a number with 0 < s < ρ/2, and let x = (s, 0, . . . , 0)⊤. Then, we have

σ2
t (x) = a2 − a4 exp(−2s/ρ)1⊤

t K
−1
t 1t

= a2 − a4 exp(−2s/ρ) t

σ2 + a2t

= a2 − a4(1 + exp(−2s/ρ)− 1)
t

σ2 + a2t

= σ2
t (0) +

a4t

σ2 + a2t
(1− exp(−2s/ρ))

= σ2
t (0)

{
1 +

a4t

σ2
t (0)(σ

2 + a2t)
(1− exp(−2s/ρ))

}
≡ σ2

t (0)(1 + u).

Thus, from u ≥ 0 we get

|σt(x)− σt(0)| = σt(x)− σt(0) = σt(0)
√
1 + u− σt(0).

Furthermore, by using Taylor’s expansion of f(u) =
√
1 + u at point u = 0, we obtain

√
1 + u ≥ 1 +

1

2
u− 1

8
u2.

Moreover, for each t, there exists a number s such that 0 < s < ρ/2 and u ≤ 1. Therefore, it follows that

√
1 + u ≥ 1 +

1

2
u− 1

8
u2 ≥ 1 +

1

2
u− 1

8
u = 1 +

3

8
u.

By using this, we have

|σt(x)− σt(0)| ≥
3

8
uσt(0) =

3

8

a4t

σt(0)(σ2 + a2t)
(1− exp(−2s/ρ)).

In addition, noting that exp(−2s/ρ) ≤ 1− 2s/ρ+ (2s/ρ)2/2 and 1− s/ρ ≥ 1/2, we get

1− exp(−2s/ρ) ≥ 2s/ρ− (2s/ρ)2/2 = 2s/ρ(1− s/ρ) ≥ s/ρ.

Therefore, the following inequality holds:

|σt(x)− σt(0)| ≥
3

8

a4t/ρ

σt(0)(σ2 + a2t)
s =

3

8

a4/ρ

σt(0)(σ2/t+ a2)
‖x− 0‖1.

Hence, since limt→∞ σt(0) = 0, the following inequality holds for sufficiently large t:

|σt(x)− σt(0)| ≥
3

8

a4/ρ

σt(0)(σ2/t+ a2)
‖x− 0‖1 > C‖x− 0‖1.

�

F Details of the Experimental Settings and Pseudo-codes

In this section, we describe the experimental settings.
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F.1 Common Settings

We used a multi-start L-BFGS-B method (Byrd et al., 1995) (SciPy (Virtanen et al., 2020) implementation) to perform

various optimization such as optimizing AFs, finding the optimal value of synthetic functions. First, we sample 1000

initial points using Latin hypercube sampling (LHS) (McKay et al., 2000). Then, we run L-BFGS-B with parameter

ftol = 10−3, gtol = 10−3 for each initial point and pick the top 5 results. Finally, we run L-BFGS-B with

default parameters for these five results and return the best result. We implemented GP models and all the comparison

methods mainly using PyTorch (Paszke et al., 2019) and GPyTorch (Gardner et al., 2018). By utilizing the automatic

differentiation of PyTorch, we can easily apply gradient methods to optimize AFs.

F.2 Comparison Methods

CBO In CBO, a scalar output is assumed for each stage. For each iteration t, it first chooses the controllable

parameter of the final stage x
(N)
t and desired output of previous stage y

(N−1)
desire by maximizing EI:

(y
(N−1)
desire ,x

(N)
t ) = argmax

y(N−1),x(N)

σ
(N)
t−1(y

(N−1),x(N))(ZΦ(Z) + φ(Z)),

where Φ, φ are the cumulative distribution function and probability density function of the standard normal distribu-

tion, respectively, Z = 0 if σ
(N)
t−1(y

(N−1),x(N)) = 0 and be Z = (µ
(N)
t−1(y

(N−1),x(N))−Fbest)/σ
(N)
t−1(y

(N−1),x(N))

otherwise. We could not find any description about the range of optimization parameters in (Dai Nguyen et al., 2016).

We used X (N) for the range of x(N), and we used the range twice as wide as the actual range for the range of y(N−1),

which is supposed to be unknown. Then, CBO chooses (y
(N−2)
desire ,x

(N−1)
t ) of stage N − 1 as follows:

(y
(N−2)
desire ,x

(N−1)
t ) = argmin

y(N−2),x(N−1)

(
κ1v

−1 + κ2v
)
‖m− y

(N−1)
desire ‖22 + cost(y(N−2),x(N−1)), (F.1)

where m = µ
(N−1)
t−1 (y(N−2),x(N−1)), v = σ

(N−1) 2
t−1 (y(N−2),x(N−1)), cost(·) is the cost function, and κ1, κ2 are

hyperparameters. By repeating this operation, a controllable parameter of stage 1 x
(1)
t is determined finally. We used

cost(·) = 0 for simplicity and set κ1 = 1, κ2 = 1.

In the solar cell simulator experiments, output of stage 1 and stage 2 are vectors. To deal with vector output, we

replace a predictive mean and variance in (F.1) with a mean vector and covariance matrix. Therefore, for the vector

output setting, the following AF was used instead of (F.1):

(y
(n−1)
desire ,x

(n)
t ) = argmin

y(n−1),x(x)

[(
m− y

(n)
desire

)⊤ (
κ1Σ

−1 + κ2Σ
) (

m− y
(n)
desire

)]
,

where m = µ
(n)
t−1(y

(n−1),x(n)) and Σ is a diagonal matrix whose (i, i)-th element is defined as

σ
(n) 2
m,t−1(y

(n−1),x(n)).

FB-EI, FB-UCB In FB-EI and FB-UCB, the next sampling point is determined by using a fully black-box GP

model. To construct this model, we employed an ARD Gaussian kernel and set the noise variance of GP to 10−4.

The kernel parameters were estimated by maximizing the marginal likelihood. In particular, FB-UCB used GP-UCB

method (Srinivas et al., 2010), and we set its exploration parameter β
1/2
GP−UCB = 2.

EI-based Since EI-based AF is computed through sampling, we have to use stochastic gradient methods to op-

timize it in a naive implementation. However, L-BFGS-B can also be applied by utilizing reparameterization-

trick (Kingma and Welling, 2014). At the beginning of the optimization, we draw base-samples ω(n) ∈ RS from
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standard multivariate Gaussian distribution for each middle stage. Then, instead of sampling each {y(n)s }Ss=1 directly

from Gaussian distribution, we sample it as follows:

y(n)s = µ
y
(n)
s

+ σ
y
(n)
s

ω(n)
s .

Here, µ
y
(n)
s

, σ
y
(n)
s

are the mean and standard deviation of the Gaussian distribution that follows y
(n)
s , respectively. The

EI-based AF becomes a deterministic and differentiable function with the above modifications, and the L-BFGS-B

method can be applied. Moreover, EI-based AF can also be applied to the vector output setting. We only need to

change it to sample y
(n)
s instead of y

(n)
s in the middle stage.

In EI-SUS-R for the suspension setting experiments, we applied the stock reduction rule (13) except for the stock

obtained in the last iteration.

F.3 Synthetic functions and Solar Cell Simulator

Sample Paths: In the sample path experiments, we used random Fourier features (RFFs) to draw continuous func-

tions from GP priors. We first sampled 1000 RFFs and built Bayesian linear regression (BLR) model. From the BLR

model, we sampled weight parameters and constructed functions.

Rosenbrock Function: For any d ≥ 2, d-dimensional Rosenbrock function is defined as follows:

f(x) =
d∑

i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
.

In our experiments, we used negative Rosenbrock functions, which are multiplied by −1.

Sphere Function: For any d ≥ 2, d-dimensional Sphere function is defined as follows:

f(x) =

d∑

i=1

x2
i .

In our experiments, we used negative Sphere functions, which are multiplied by −1.

Matyas Function: Matyas function (d = 2) is defined as follows:

f(x) = 0.26(x2
1 + x2

2)− 0.48x1x2.

In our experiments, we used negative Matyas functions, which are multiplied by −1.

Solar Cell Simulator: The simulators for stages one and two are Python implementations of the physical models

described in Section 4 of (Bentzen, 2006). The simulator of stage three is based on PC1Dmod 6.2 (Haug and Greulich,

2016), which is the software for simulating solar cells. We confirmed that PC1D sometimes caused errors due to

convergence failure of the internal calculations. However, standard BO frameworks cannot handle the situation where

the observation fails. Thus, we used a kernel ridge regression model constructed using the data collected from PC1D

as the simulator of stage 3. To create this simulator, we ran PC1D on each of the 2000 input points sampled using the

LHS, and used the 1935 data points among them that could be run without error.
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Algorithm 1: Cascade process optimization in sequential observation

Input: Initial data {D(n)
0 }Nn=1, β, ηt

1 for t = 0, N, 2N, . . . , T do

2 Fit GP models using {D(n)
t−1}Nn=1

3 for n = 1, . . . , N do

4 Select x
(n)
t+n by maximizing (5c) or (11)

5 Observe output y
(n)
t+n corresponding input (y

(n−1)
t+n−1,x

(n)
t+n)

6 D(n)
t+n ← D(n)

t+n−1 ∪ {((y
(n−1)
t+n−1,x

(n)
t+n),y

(n)
t+n)}

7 end

8 t← t+N

9 end

Output: Estimated solution x̂
(1)
t , . . . , x̂

(N)
t

Algorithm 2: Cascade process optimization in suspension setting

Input: {D(n)
0 }Nn=1, β, ηt, stage cost {λ(n)}Nn=1, budget λmax

1 t← 1, S(0)t ← {0}, {S(n)t ← ∅}N−1
n=1 , spend cost λ← 0

2 while λ ≤ λmax do

3 Fit GP models using {D(n)
t−1}Nn=1

4 Select nt,y
(nt−1)
t ,x

(n)
t by (15)

5 Observe y
(nt)
t

6 D(nt)
t ← D(nt)

t−1 ∪ {((y
(nt−1)
t ,x

(nt)
t ),y

(nt)
t )}

7 Remove stock S(nt−1)
t ← S(nt−1)

t \ y(nt−1)
t

8 if nt 6= N then

9 Add observed stock S(nt)
t ← S(nt)

t ∪ {y(nt)
t }

10 λ← λ+ λ(nt), t← t+ 1

11 end

Output: Estimated solution x̂
(1)
t , . . . , x̂

(N)
t

Hydrogen plasma treatment process: The real-world datasets for the first

and second stages are from (Miyagawa et al., 2021a) and the simulator in

https://www.pvlighthouse.com.au/equivalent-circuit, respectively. For both stages, we

fitted the GPs with a Gaussian kernel, in which hyperparameters are selected by the marginal likelihood maximization.

Then, as with sample paths, we sampled 1000 RFFs, built BLR models, and generate continuous sample paths once.

We used these sample paths as the surrogate objectives.

F.4 Pseudo-codes of the proposed methods

We describe the proposed method of section 3 in algorithm 1. Additionally, we also describe the proposed method of

extension setting in algorithm 2.
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Figure 7: Results of comparison between EI-BASED and EI-FN

.

G Additional Experimental Results

We additionally show the comparison between EI-BASED AF and EI-FN (Astudillo and Frazier, 2021). In this experi-

ment, we used a three- and five-stage cascade consisting of GP pre-distributed sample paths. We set ℓ
(n)
d = 1, ℓ

(n)
w = 1,

and the other experimental settings are the same as those described in Section 6. Figure 7 shows the results of 20 runs

with different random seeds. Since the parameters ℓ
(n)
d and ℓ

(n)
w are relatively small, the sample paths can be sensitive

to the input uncertainty. Therefore, in this experiment, EI-BASED AF that performs adaptive decision-making using

intermediate observations clearly outperforms EI-FN, which is nonadaptive.
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