
1

Unsupervised Learning of Temporal Abstractions
with Slot-based Transformers

Anand Gopalakrishnan 1

Kazuki Irie 1,

Jürgen Schmidhuber 1 2,

Sjoerd van Steenkiste 3 †

1 The Swiss AI Lab (IDSIA), USI & SUPSI. Lugano, Switzerland.

2 AI Initiative, King Abdullah University of Science and Technology (KAUST). Thuwal,

Saudi Arabia.

3 Google Research. Mountain View, USA.

Keywords: unsupervised learning, temporal abstractions, Transformers, objects,

event files

†The majority of this work was done while the author was a Postdoctoral researcher at IDSIA.

ar
X

iv
:2

20
3.

13
57

3v
2

 [
cs

.L
G

]
 2

2
N

ov
 2

02
2

Abstract

The discovery of reusable sub-routines simplifies decision-making and planning

in complex reinforcement learning problems. Previous approaches propose to learn

such temporal abstractions in an unsupervised fashion through observing state-action

trajectories gathered from executing a policy. However, a current limitation is that they

process each trajectory in an entirely sequential manner, which prevents them from

revising earlier decisions about sub-routine boundary points in light of new incoming

information. In this work we propose SloTTAr, a fully parallel approach that integrates

sequence processing Transformers with a Slot Attention module to discover sub-routines

in an unsupervised fashion, while leveraging adaptive computation for learning about the

number of such sub-routines solely based on their empirical distribution. We demonstrate

how SloTTAr is capable of outperforming strong baselines in terms of boundary point

discovery, even for sequences containing variable amounts of sub-routines, while being

up to 7x faster to train on existing benchmarks. 1

1 Introduction

An intelligent goal-seeking agent situated in the real world should make decisions along

various timescales to act and plan efficiently. A natural approach that facilitates this

behavior is via a divide-and-conquer strategy, where goals are decomposed along sub-

goals, and solutions to such sub-goals (i.e. ‘correct’ sequences of actions) are stored as

reusable ‘primitive’ sub-routines (Schmidhuber, 1991; Dayan and Hinton, 1992; Bakker

1Source code used in this paper is available at https://github.com/agopal42/slottar

2

https://github.com/agopal42/slottar

and Schmidhuber, 2004; Schmidhuber, 1990). Viewing complex goal-directed behavior

as (novel) compositions of known sub-routines simplifies both decision-making and

planning (Schmidhuber and Wahnsiedler, 1993; Tadepalli and Dietterich, 1997), while

also benefiting out-of-distribution generalization (Peng et al., 2019).

The options framework (Sutton et al., 1999) introduced a design strategy for the

hierarchical organization of behavior within the context of reinforcement learning. Cru-

cial to its success is the quality of each ‘option’ (or sub-routine) in terms of the level

of modularity and reusability it offers. Consider for example, the task of planning a

travel itinerary to go from London to New York. Useful sub-routines in this context

may include purchasing flight tickets, navigating to the airport, or boarding the flight.

This factorization into sub-routines is desirable as these sub-routines capture mostly

self-contained activities. Thus they are far more likely to apply to other travel plans

between two different cities, which may again involve taking flights, etc.

The primary focus of this work is on discovery of such modular and reusable sub-

routines using a (offline) dataset of state-action trajectories generated from an expert

policy. Prior approaches that address this include (Andreas et al., 2017; Shiarlis et al.,

2018; Kipf et al., 2019; Lu et al., 2021). Of particular interest is the setting where

the model is only given access to state-action trajectories from an (expert) policy and

learns in an unsupervised manner (while the ground-truth number of sub-routines are

assumed to be known). Two relevant works can be distinguished: CompILE (Kipf et al.,

2019) and Ordered Memory Policy Network (OMPN) (Lu et al., 2021). In CompILE,

expert trajectories are modeled using a latent variable model based on a recurrent

neural network (RNN), which infers a pre-determined number of boundary points by

3

iteratively processing the entire trajectory multiple times to recover segments associated

with reusable sub-routines. Alternatively, OMPN equips an RNN with a multi-layer

hierarchical memory, where information processing at different levels in the memory can

be interpreted as belonging to separate segments. While OMPN additionally includes a

strong preference for capturing hierarchical relationships between different sub-routines,

both methods are limited insofar that they process the trajectory in an entirely sequential

manner. This prevents them from revising earlier decisions about boundary points in

light of new information that becomes only accessible at a future stage. Moreover,

iteratively processing the sequence multiple times (as in CompILE) or interfacing with a

deep hierarchical memory (as in OMPN) incurs significant computational costs.

In this paper we propose a novel architecture to learning sub-routines that addresses

these shortcomings, which we call Slot-based Transformer for Temporal Abstraction

(SloTTAr). Central to our approach is the similarity between the spatial grouping of

pixels into visual objects and the temporal grouping of state-action pairs into self-

contained sub-routines. This motivates us to combine a parallel Transformer encoder

with a Slot Attention module (Locatello et al., 2020) (developed for learning object

representations c.f. Greff et al. (2020)), to group learned features at different temporal

positions and recover a modular factorization into ‘slots’ (sub-routines) of the inputs.

A parallel Transformer decoder reconstructs the action sequence from each slot and

outputs an unnormalized distribution over endpoints. From these, the segment belonging

to each sub-routine and a standard reconstruction objective for unsupervised training can

be derived.

In more realistic scenarios, coping with a variable number of sub-routines per tra-

4

jectory adds an additional layer of complexity in order to achieve an ideal “fully un-

supervised” sequence decomposition (i.e. without the knowledge about the number of

sub-routines). In CompILE and OMPN, this issue is not addressed as the number of

sub-routines in each trajectory is assumed to be known in advance, either at training

and/or at test time, which limits their applicability. In contrast, in SloTTAr we cast the

problem of estimating the number of sub-routines as a form of adaptive computation

(where each available slot corresponds to an available computational step), requiring it

to learn to use only some adaptive subset of all the slots available based on an estimated

prior. This motivates us to use the adaptive computation loss introduced in PonderNet

(Banino et al., 2021) as our learning objective. It allows for only an adaptive subset of the

available slots in SloTTAr to be actively involved in the decomposition of any trajectory.

While SloTTAr is still not “fully unsupervised”, it only requires a weak supervision

for the problem of predicting the number of sub-routines in the form of their empirical

distribution during training, and unlike CompILE and OMPN, it does not require any

such information at test time.

We demonstrate the efficacy of our approach on Craft (Lu et al., 2021) and Mini-

grid (Chevalier-Boisvert et al., 2018) where we typically observe significant improve-

ments over CompILE and OMPN in terms of recovering ‘ground-truth’ sub-routines

(Sections 4.1 and 4.2). In this way, we show how general principles of similarity-based

grouping used to segment visual inputs into objects (Spelke, 1990; Köhler, 1929; Koffka,

1935; Greff et al., 2020) are also relevant for grouping other input modalities (Hommel,

1998). Our qualitative and quantitative analysis reveals how SloTTAr leverages global

access to the full trajectory to better capture individual sub-routines (Section 4.4) and

5

→ ↑ ↑ ↑ → u ↓ ↓ ↓ ↓ u → ↓ u ↑ ← ← ← ← ← ↑ u Dactions
observations o1 o2o3o4 oL, . ,

zao

psin

plearn

h

keys, values

→

↑↑→ → u → ↓ ↓ u u D↓ → ↓ ↑ ← ← ↑ ← ← ↑ u

Encoder

Decoder

end position logits

segment masks

Decoding slots in parallelRecurrent update
 for slots

Slots compete
 for input keys

predicted actions

Figure 1: SloTTAr consists of 3 modules, used for: learning spatio-temporal features

of action-observation sequences (Encoder), learning a similarity-based grouping of

actions to their respective sub-routines through computing slot-based representations

(Slot Attention; Locatello et al. (2020)), and for decoding slots to end positions and

action segments of the sub-routine they capture (Decoder).

leads to a substantial speed-up on existing benchmarks (Section 4.5). Finally, we demon-

strate how our model is capable of modeling trajectories, each of which constituted of a

variable number of sub-routines, without requiring access to ground-truth information

about this quantity at test-time (Section 4.3).

2 Method

Given an input sequence of actions a = [a1, a2, ..., aL] : al ∈ {1, .., A} where A is the

size of the action space and observations o = [o1,o2, ...,oL] : ol ∈ RDobs of length L.

Our goal is to infer the unique constituent latent sub-routine to which a pair of (al,ol)

belongs, and learn its associated representation (slot k ∈ RDslots). The input sequence

6

of actions a is assumed to be a composition of at most K sub-routines. Similar to

CompILE (Kipf et al., 2019), we consider an unsupervised reconstruction objective

for training, yet here we strive for a fully parallel approach that employs more general-

purpose modules for grouping inputs based on their internal predictive structure.

Our model, which we call Slot-based Transformer for Temporal Abstraction (SloT-

TAr), consists of three modules, as shown in Figure 1. First, a Transformer encoder

(Vaswani et al., 2017) learns suitable spatio-temporal features from the input sequences

a and o. This encoder benefits from global access to the whole input sequence to learn

suitable context features at each location, unlike prior purely sequential RNN-based

approaches (Kipf et al., 2019; Lu et al., 2021). Subsequently, we adapt the Slot Attention

module (Locatello et al., 2020) to iteratively group the features at each temporal location

in parallel based on their internal predictive structure and obtain K slot representations

slot k for slot k. The slot representations are decoded in parallel by a decoder that

outputs both predicted action logits â(k) and an unnormalized distribution over the end

position of the sub-routine end logits k, modeled by the respective slot k.

Sub-routine segment masks are generated from the unnormalized distributions and

combined with the predicted action logits (across slots) to obtain aggregated action

sequence logits â. For training, we use the PonderNet loss (Banino et al., 2021) as

our learning objective which comprises two terms. The first being a weighted sum

of reconstruction errors of the action sequence, where each term corresponds to the

error obtained when using k slots, and the weight is the probability that the trajectory

contains k ∈ {1, . . . , K} sub-routines. The second is a regularization cost given by

a KL-divergence term between the posterior and prior distributions of the number of

7

sub-routines in a trajectory.

Encoder. We process action tokens a and observations o by Embedding and Lin-

ear layers respectively to acquire separately learned distributed representations for each.

Next, we learn a joint representation of the action and observation representations at each

position using a one-layer MLP with ReLU activation, after which a sinusoidal positional

encoding psin
l ∈ RDenc is added (Vaswani et al., 2017). Finally, we apply a number of

standard Transformer encoder layers to learn suitable spatio-temporal features based on

the content of the entire sequence, and add a learned positional encoding plearn ∈ RDenc

for follow-up processing:

zal , z
o
l =Embedding(al), Linear(ol)

zaol =MLP(concat(zal , z
o
l)) ∀ l ∈ {1, . . . , L}

(1)

h = TransformerEnc(zao + psin) + plearn (2)

Slot Attention. We adapt Slot Attention (Locatello et al., 2020) to group these spatio-

temporal features according to their constituent sub-routines and learn associated rep-

resentations given by the slots. Slot Attention was previously only applied to the visual

setting where pixels are grouped according to constituent visual objects to model images

or videos. Here we hypothesize that sub-routines take on a similar role as modular and

reusable primitives when modeling action sequences, suggesting that they similarly can

be inferred using a grouping mechanism that focuses on their internal predictive structure

(modularity) (Greff et al., 2020).

The iterative grouping mechanism in Slot Attention (reproduced in Algorithm 1) is

8

implemented via key-value attention and a stateful slot update rule using a recurrent

neural network (GRU; Cho et al. (2014), see also the earlier work by Gers et al. (2000)).

The input features are projected to keys and values using linear layers key(·), value(·),

queries are computed from slots using a linear layer query(·), and dot-product attention

between keys and queries is used to distribute value vectors among the slots. Initial

representations for all slots are sampled from a Gaussian N (0, diag(σ)) where σ is a

hyperparameter. Here, unlike in the original Slot Attention formulation, we additionally

use separate shift and scaling parameters (µk and σk) for each slot2. This allows a

slot to differentiate itself from others and thus to focus on a specific part of the input

sequence in the first iteration (e.g. by targeting the positional embedding). Importantly,

slots compete to represent parts of the input sequence via a softmax function (Softmax)

over slots, thereby encouraging a decomposition of the input into modular parts that can

be processed separately and represented efficiently.

Decoder. To decode the slot representations and obtain a correspondence of actions

in a to their constituent sub-routine segments, we adapt the spatial broadcast decoder

architecture (Watters et al., 2019) to the sequential setting using Transformers. The

decoder is based on the Transformer encoder architecture (Vaswani et al., 2017) which

uses non-autoregressive self-attention. While this limits an out-of-the-box application for

an RL setting, this allows the model to access global context (past and future timesteps)

to produce action logits. We further discuss this limitation and potential remedies

in Section 4.6. As in the spatial broadcast decoder (Watters et al., 2019), each slot

representation is decoded in parallel to obtain the predicted action logits â(k) as well as

2A similar modification was explored as an ablation in (Locatello et al., 2020).

9

Algorithm 1 Modified Slot Attention update (Locatello et al., 2020).

Our modification uses separate shift and scale parameters per-slot (highlighted in blue)

to initialize each slot representation slot k.

Inputs: inputs ∈ RL×Din, slots with slot k = µk + σk ∗ z, z ∼

N (0, diag(σ)) ∈ RDslots ∀k ∈ {1, . . . , K}

Params: shift and scale parameters : µk, σk per-slot; Linear projections for attention:

key, query, value; GRU; MLP; LayerNorm x2

1: for t = 0, 1, ..., T do

2: slots prev = slots

3: slots = LayerNorm(slots)

4: attn = Softmax(1√
Dslots

key(inputs)· query(slots)T,

axis=‘slots’) . norm. over K

5: updates = WeightedMean(weights=attn+ε,

values=value(inputs)) . norm attn values over L

6: slots = GRU(state=slots prev, inputs=updates) . GRU

update (per-slot)

7: slots += MLP(LayerNorm(slots)) . residual update (per-slot)

8: end for

9: return slots

an unnormalized distribution over the end position of the sub-routine in the sequence

(end logits k). The latter is used to generate the segment masks corresponding to

each sub-routine as described in Algorithm 2. Algorithm 2 imposes that each slot takes

responsibility for modeling a contiguous sub-sequence of the input. This is because mask

10

generated by slot k+1 is active (value of 1) for all the time steps from the endpoint

of that of slot k to its own predicted end point. This is in contrast to the standard

mixture formulation adopted by prior work on discovering visual objects (Greff et al.,

2017,0; Locatello et al., 2020). This has a similar effect to the sequential decoding in

CompILE (Kipf et al., 2019) and provides a useful inductive bias for treating sub-routines

as contiguous chunks in time that can be ordered along the temporal axis, while keeping

all other computations parallel.

1

0
1

0
1

0
1

0
1

0

end_dist_k

end_cdf_k

1-mask_upto_km1

mask_k

mask_upto_k

mask_upto_k

Figure 2: Panels 1-5 show a representative visualization of the outputs of computational

steps 2-5 of Algorithm 2 respectively. In panel 4, curve in red shows the negation of the

variable mask upto km1 and curve in blue shows the variable mask upto k.

Objective Function. We adopt the PonderNet (Banino et al., 2021) adaptive computa-

tion loss formulation to model the variable number of sub-routines contained in different

trajectories. We define a Bernoulli random variable Λk which represents a Markov pro-

cess for halting with two states “continue” (Λk = 0) and “halt” (Λk = 1). The decision

process always starts from the “continue” state and the transition probability is given by:

P (Λk = 1|Λk−1 = 0) = λk, ∀1 ≤ k ≤ K. (3)

11

where λk is the probability of halting at the kth slot, which is computed by applying

a sigmoid activation to the last dimension of its respective slot representation slot k.

Then, the total probability that halting occurs in step k ∈ {1, . . . , K} (and the induced

distribution phalt) is given by:

pk = λk

k−1∏
j=1

(
1− λj

)
, phalt(k) =

pk
K∑
k′=1

pk′

, (4)

where the normalization on the right ensures that phalt is a valid probability distribution.

At test time, we determine the number of ‘active’ slots by sampling for the kth slot

from a Bernoulli distribution B(λk) and proceeding until we receive a halting signal.

The entire system is trained end-to-end to minimize the following objective function:

L =
K∑
k=1

phalt(k)LCE
(
â(≤k); a

)
+ βDKL

[
phalt||pe

]
, (5)

where LCE refers to the standard cross-entropy loss between the reconstruction â(≤k)

obtained by using up to k slots (i.e., â(≤k) =
∑k

k′=1 mask k′∗â(k′)) and the ground-truth

action sequence a, and β is a hyperparameter that weights the influence of the second

term. The second term is a KL-divergence between the probability distribution induced

by phalt (Equation (4)) and a prior distribution pe governing the expected number of sub-

routines. The empirical prior distribution pe is derived from the histogram of the number

of sub-routines in each trajectory across the training dataset. Note that this requires

only a weaker form of ground-truth information about the distribution of the number

of sub-routines in the training data (compared to CompILE), while no such information

is needed at test-time (compared to OMPN). Please refer to Section 6.3 for additional

details about the model architecture and the estimated empirical prior distribution.

12

Algorithm 2 Mask Generation

CumSum() is a function that computes the cumulative sum of the input array it re-

ceives along the specified dimension (here the time-axis ‘L’). Further, mask upto k

is a variable that is a union over masks generated by all slots up to the kth while

mask upto km1 is an analogous quantity except that is up to the k − 1th slot. For a

visualization of the mask generation process, we refer the reader to Figure 2.

Inputs: end logits ∈ RK×L, masks = [], end cdf k = 1, mask -

upto km1 = 0

1: for k = 1, . . . , K do

2: end dist k = Softmax(end logits k, axis=‘L’) . norm. over

L

3: end cdf k = CumSum(end dist k, axis=‘L’) . end position CDF

4: mask upto k = 1 - end cdf k . union of all masks upto k

5: mask k = mask upto k * (1 - mask upto km1) . compute kth

mask

6: mask upto km1 = mask upto k . update

7: masks = Append(masks, mask k) . append kth mask

8: end for

9: return masks

3 Related Work

Imitation Learning of Temporal Abstractions. The Craft environment was origi-

nally introduced to evaluate the method of Andreas et al. (2017), however they rely on

annotations of sub-routine sequences (‘policy sketches’) as additional supervision to the

13

model. In a similar way, TACO (Shiarlis et al., 2018) treats this setting as a sequence

alignment and classification problem using an LSTM (Hochreiter and Schmidhuber,

1997) trained with a CTC loss (Graves et al., 2006). In a recent work of Ajay et al. (2021),

the primitives are learned directly from offline data for continuous control. However,

these methods learn a continuous (low-dimensional) space of primitives whereas our

method represents primitives as a discrete set. Our focus on learning useful sub-routines

can also be viewed as an instance of learning temporal abstractions more broadly, such

as event segments in video. Relevant approaches propose to use recurrent latent variable

models for this task (Gregor et al., 2019; Kim et al., 2019), while making stronger

assumptions regarding prior knowledge about boundary locations and the existence of

hierarchical structure between latent states and across time.

Option Discovery. In the context of the options framework (Sutton et al., 1999), sev-

eral methods have been proposed for option and/or sub-goal discovery (Bacon et al., 2017;

Machado et al., 2017; McGovern and Barto, 2001; Stolle and Precup, 2002; Şimşek and

Barto, 2004; Şimşek et al., 2005; Şimşek and Barto, 2008). However, these algorithms

are not easily extendable to the case with nonlinear function approximation as needed in

our case. Alternatively, other methods using nonlinear function approximation propose

to maximize coverage (diversity) of learned skills by maximizing the mutual information

between options and terminal states achieved by their execution (Gregor et al., 2017;

Eysenbach et al., 2019). It remains difficult to precisely evaluate the level of semantically

independent modes of behavior that options discovered in this way afford. In contrast,

here we explicitly optimize and evaluate the sub-routines with regards to their modularity.

14

Transformer-based Sequence Modeling Beyond Language. Many recent works

have applied Transformers beyond the domain of natural language, such as to images

(Dosovitskiy et al., 2021; Zhu et al., 2021; Singh et al., 2022), and other high-dimensional

data (Jaegle et al., 2021b,0). Transformers were successfully applied to reason about

visual primitives, such as object representations (Ding et al., 2021), and have recently

gained a lot of interest in reinforcement learning settings (Parisotto et al., 2020; Rae et al.,

2020; Fan et al., 2020; Irie et al., 2021; Chen et al., 2021a; Zeng et al., 2022). Especially

in the offline setting (Janner et al., 2021; Chen et al., 2021b), which closely relates to

the setting explored here, Transformers have shown promise in predicting actions from

certain input commands in a supervised manner (Schmidhuber, 2019; Srivastava et al.,

2019).

Adaptive Computation. The idea of allowing dynamic program halting behavior in

recurrent neural networks was initially explored in Schmidhuber (2012). Here, a special

‘halting’ unit, when activated, resulted in termination of the program and emission of

program outputs. Similarly, the Adaptive Computation Time (ACT) algorithm (Graves,

2016) uses a sigmoidal ‘halting unit’ (and associated weights) for halting program ex-

ecution, which is regularized to penalize the amount of computation used. The ACT

algorithm for halting has later been adapted to the Transformer family of models as well

(Dehghani et al., 2019). PonderNet (Banino et al., 2021) builds on ACT but crucially dif-

fers in its use of a probabilistic halting strategy. It defines a probability distribution over

all possible computation steps available and weights the output prediction loss at each

step with their associated halting probability. Further, PonderNet uses a KL-divergence

15

between the posterior distribution over the number of computation steps and a prior

distribution as a regularizer.

Event Cognition. Influential work from cognitive psychology on object perception in

humans (Kahneman et al., 1992) posit that the brain integrates distributed representations

of perceptual (visual) stimuli into object files. Further studies have suggested that such

a feature integration mechanism extends beyond just the visual stimuli and include

associated behavioral responses (actions) as well (Hommel, 1998, 2004,0). These works

suggest that the definition of an object files could be extended to include a notion of event

files which store aggregated information of action-perception stimuli. More specifically,

our ability to chunk up a continuous stream of activity into a set of semantically meaning-

ful event entities depends on both bottom-up sensory cues of color, sound, movement etc.

as well as top-down cues like goals and beliefs (Radvansky and Zacks, 2014). Further,

these events tend to have hierarchical organization (Zacks et al., 2001; Hard et al., 2006)

and play an important role in decision-making and planning (Radvansky and Zacks,

2014). The Slot Attention module in SloTTAr analogously integrates information by at-

tending to bottom-up features of both perceptual (observations) and behavioral (actions)

stimuli to learn the appropriate slot representations for sequence decomposition.

4 Experiments

We compare SloTTAr to CompILE (Kipf et al., 2019) and OMPN (Lu et al., 2021) on

the partially and fully observable versions of environments in Craft (Lu et al., 2021) and

on partially observable environments in Minigrid (Chevalier-Boisvert et al., 2018). Here

16

Figure 3: Environments in Craft (Lu et al., 2021) and Minigrid (Chevalier-Boisvert et al.,

2018) used for sequence decomposition. Ground-truth sub-routine action sequences are

represented with coloured arrows.

our focus is on the unsupervised setting without the use of task sketches as an auxiliary

supervision signal (Andreas et al., 2017; Shiarlis et al., 2018).

4.1 Datasets

We use 3 tasks in the Craft environment namely, MakeAxe, MakeBed, MakeShears

consistent with prior work (Lu et al., 2021). We also compare models on 4 tasks in Mini-

grid suite of environments namely DoorKey-8x8, UnlockPickup-v0, Blocke-

dUnlockPickup and KeyCorridor-S4R3. Episodes in this Minigrid are procedu-

rally generated, leading to far greater variability for the actions and observations that

constitute a sub-routine compared to in Craft. Further, in Minigrid environments, two

actions (PICKUP or TOGGLE) typically indicate the presence of sub-routine boundaries

as opposed to in Craft where this is marked by only a single USE action. In Figure 3,

we can see some representative trajectories from these environments with the coloured

arrows indicating the various ground-truth sub-routines.

17

4.2 Evaluation Metrics

To quantitatively measure the quality of the action sequence decomposition, we use the

F1 score (with a tolerance of 1 consistent with Lu et al. (2021)) based on the accuracy of

the boundary index predictions with respect to ground-truth. Further, we also report the

alignment accuracy between the predicted and ground-truth sub-routines consistent with

prior work (Lu et al., 2021). Please refer to Section 6.1 for further details on how ground

truth sub-routine boundaries are computed.

4.3 Hyperparameter Search

We report results after conducting an extensive hyperparameter search (up to 300 config-

urations) for each method. We include training parameters like batch size and learning

rate, capacity parameters like layer sizes, and model-specific parameters such as the

number of Slot Attention iterations in case of SloTTAr.

General trends we encountered as part of this search for SloTTAr are that (1) using

only a single Transformer layer (for the Transformer Encoder and Decoder modules) was

necessary to limit the tendency of the self-attention layer to aggregate information across

non-contiguous temporal blocks; (2) that the capacity of the slots must be sufficiently

bottlenecked since otherwise the model tends to only use a single slot to model the entire

sequence; and (3) that often a single iteration of Slot Attention was sufficient to learn the

decomposition for all the environments. In fact, performance usually degraded slightly

with additional iterations, as is consistent with prior work (Locatello et al., 2020; Kipf

et al., 2022).

Below we report results only for the best configurations of SloTTAr and the baseline

18

Table 1: F1 scores and alignment accuracies on Craft (Lu et al., 2021) (fully and partially

observable).

Craft (fully) Craft (partial)

F1 score Align. acc. F1 score Align. acc.

CompILE 83.10 (3.07) 85.77 (0.51) 70.74 (14.14) 67.71 (16.81)

OMPN 98.49 (0.16) 97.32 (0.33) 95.84 (0.71) 93.68 (0.96)

OMPN-2 97.04 (1.03) 94.58 (2.44) 91.20 (2.13) 85.04 (3.82)

SloTTAr 99.84 (0.02) 99.41 (0.25) 80.51 (4.47) 83.14 (3.87)

models (CompILE, OMPN) with mean and standard deviation computed over 5 seeds.

Details about the search parameters for each method and the best configurations can be

found in Section 6.3.

4.4 Results

4.1 Craft

Table 1 shows the results of comparing SloTTAr to the baseline models on environments

in Craft. All trajectories in these environments have 4 sub-routines executed. On the

fully observable Craft tasks, it can be seen how SloTTAr outperforms both CompILE and

OMPN. Similarly, on the partially observable settings in Craft, it can be seen how SloT-

TAr outperforms CompILE, although this time it performs worse compared to OMPN.

We note that the best configuration for OMPN in Table 1 was obtained when using 3

levels of hierarchy depth (Table 17), and speculate how the strong hierarchical inductive

19

Table 2: F1 scores and alignment accuracies on partially observable versions of Minigrid

environments – DoorKey-8x8 and UnlockPickup-v0.

DoorKey-8x8 (partial) UnlockPickup-v0 (partial)

F1 score Align. acc. F1 score Align. acc.

CompILE 73.92 (3.18) 68.10 (3.01) 66.02 (2.43) 64.09 (2.07)

OMPN 45.03 (14.04) 57.20 (4.35) 55.27 (5.76) 62.08 (7.78)

OMPN-2 48.08 (10.48) 60.29 (8.47) 48.47 (14.39) 46.25 (6.84)

SloTTAr (β=0) 72.19 (9.87) 63.93 (16.14) 75.08 (8.78) 76.64 (7.14)

SloTTAr 91.73 (3.75) 93.96 (0.96) 92.70 (4.66) 92.61 (2.25)

bias in OMPN gives it an edge in this setting as it closely reflects the hierarchical sub-

routine structure in Craft. Indeed, when we only consider OMPN configurations having

two levels of memory (OMPN-2) it can be observed how the difference in alignment

accuracy to the best performing configuration greatly reduces.

4.2 Minigrid – DoorKey-8x8 and UnlockPickup

All trajectories from these environments involve executing 3 sub-routines. Table 2 shows

that on these harder DoorKey-8x8 and UnlockPickup-v0 partially observable

Minigrid environments, SloTTAr significantly outperforms both CompILE and OMPN

in terms of both F1 and alignment accuracy. We also show results from an ablation where

the KL term is removed from the loss by setting β = 0 (in Equation (5)) to emphasize

the role of the empirical prior in ascertaining the correct number of “active” slots to be

used.

20

We investigated whether the reduced performance for OMPN on the Minigrid envi-

ronments is due to these datasets using multiple delimiting tokens. Table 19 in Section 6.6

reports the performance for synthetic versions of the DoorKey-8x8 and Unlock-

Pickup datasets with a single delimiting token (TOGGLE) instead of the default two i.e.,

TOGGLE and PICKUP. We see that the quality of decomposition by OMPN improves

modestly but a significant gap to SloTTAr remains.

4.3 Minigrid – BlockedUnlockPickup and KeyCorridor

All trajectories in BlockedUnlockPickup involve executing either 4 or 5 sub-

routines and in KeyCorridor-S4R3 between 4 to 9 sub-routines. Table 3 shows

the performance of SloTTAr against baselines on BlockedUnlockPickup and

KeyCorridor-S4R3 environments which have variable number of sub-routines. The

baseline models (i.e., CompILE and OMPN) receive supervision on the number of

sub-routines in every trajectory during training and/or evaluation. In contrast, SloTTAr

performs the decomposition in a mostly unsupervised manner and only uses the empirical

distribution of the number of sub-routines across the training dataset as a prior during

training.

We can see that despite this advantage given to the baseline models, SloTTAr still

significantly outperforms CompILE on both environments and remains competitive with

OMPN. The decomposition quality of all these models on the KeyCorridor-S4R3

environment is rather poor. This result partially serves to highlight the limits of current

state-of-the-art approaches to decompose action trajectories and recover semantically

meaningful sub-routine parts in a mostly unsupervised manner.

21

Table 3: F1 scores and alignment accuracies on Minigrid environments with variable num-

ber of sub-routines per-trajectory – BlockedUnlockPickup and KeyCorridor-

S4R3. CompILE and OMPN receive supervision on the number of sub-routines in every

trajectory during training and/or evaluation (denoted by “oracle”).

BlockedUnlockPickup (partial) KeyCorridor-S4R3 (partial)

F1 score Align. acc. F1 score Align. acc.

CompILE (oracle) 9.16 (3.33) 19.94 (0.31) 0.00 (0.00) 44.75 (0.01)

OMPN (oracle) 55.80 (11.31) 45.83 (8.73) 48.86 (18.34) 41.58 (2.64)

SloTTAr 41.44 (3.54) 63.48 (0.13) 48.81 (5.81) 37.98 (6.04)

4.4 Analysis

To better understand the performance of SloTTAr and verify that global access to

input sequence is beneficial, we quantitatively measure the extent to which slots access

information from past and future sequence tokens when modeling a particular sub-routine.

We introduce two metrics we call “Backward Access” (BA) and “Forward Access” (FA),

which are computed for a single trajectory as follows:

BA =
1

K

K∑
k=1

αmin−1∑
l=1

1(slot attn kl > ton)

αmin − 1

where αmin = min
{

1 ≤ l ≤ L : mask kl > ton
}

FA =
1

K

K∑
k=1

L∑
l=αmax+1

1(slot attn kl > ton)

L− αmax + 1

where αmax = max
{

1 ≤ l ≤ L : mask kl > ton
}

(6)

22

Table 4: Forward Access Backward Access metrics (mean and standard deviation over 5

seeds) for SloTTAr on 4 datasets – Craft (fully and partially observable), DoorKey-8x8

and UnlockPickup-v0.

Forward Access Backward Access

Craft (fully) 16.94 (6.63) 9.93 (6.76)

Craft (partial) 21.17 (1.75) 9.44 (2.97)

DoorKey-8x8 26.85 (8.69) 8.10 (8.77)

UnlockPickup-v0 17.87 (4.95) 16.00 (11.10)

where 1() is an indicator function and ton ∈ (0, 1) denotes a threshold for activation

(here ton = 0.8). For the degenerate case where αmin = 1 or it is an empty set, the BA is

set to zero. Likewise, when αmax = L or is an empty set the FA is set to zero. Intuitively,

these metrics measure the fraction of total timesteps accessed by each slot slot k

that lie in the past or future as indicated by the corresponding slot attention weights

over the input sequence (slot attn k) exceeding the threshold ton. To determine the

boundary start (αmin) and end (αmax) indices of the segment modeled by slot k, we

binarize its associated decoder mask mask k and threshold it in the same way.

Table 4 shows these metrics for SloTTAr on the test split of 4 environments namely —

fully and partially observable variants of Craft, DoorKey-8x8 and UnlockPickup-

v0. It can be seen how the slots in our fully parallel model learn to effectively utilize

information from past and future sequence tokens to solve the sequence decomposition

task.

Qualitatively, in Figure 4 we show a representative visualization of the slot attention

23

Figure 4: Within each subplot, the bottom panel shows thresholded alpha mask (in solid

lines) and the top panel shows the thresholded slot attention weights (in dotted lines)

on the y-axis for a sample trajectory from fully observable Craft environment against

actions on the x-axis. Different subplots correspond to different slots (colour coded). We

can see how each slot learns (via attention over the entire sequence) to gather contextual

information (from both the left and right neighbourhood) in order to model its respective

sub-sequence.

weights and alpha masks (mask k) on a sample trajectory from the Craft fully observable

environment (delimiters are the USE action ‘u’). It can be seen that the ‘active’ slots (first

four rows) have learned to gather information to the left (past) and to the right (future) of

the sub-routine segment it models to acquire the necessary contextual information needed

to perform this decomposition. Please refer to Section 6.5 for additional visualizations

of sample trajectories from other environments.

24

4.5 Computational Efficiency

A further advantage of using a fully parallel architecture as in SloTTAr is the potential

gain in speed. While, the use of Transformers yields a computational complexity that is

quadratic in sequence length, all these computations can be performed in parallel. In

Table 5 we report the number of tokens processed per-second for each model during

training (forward and backward pass) and at testing time (forward pass). Additionally,

we report the total wall clock time for training each model. It can be seen how SloTTAr

is about 3x faster to train compared to CompILE and upto 7x faster to train compared to

the OMPN model.

4.6 Limitations

The focus of this work is on the fundamental problem of learning “meaningful” sub-

routines with an emphasis on modularity and compositionality as the desirable properties

used to learn these temporal abstractions. As we noted in Section 2, our current model

design is aimed at solving only this task and does not allow for an out-of-the-box applica-

tion to the RL setting. However, there are several possible downstream applications of the

discovered sub-routines to improve actual online decision making (e.g., in hierarchical

reinforcement learning). For example, one approach could be to train specialist ‘sub-

policies’ on the state-action sequences associated with a particular subroutine, and train

a hierarchical controller for decision making to determine which of these sub-policies to

activate when. Such applications are left for future work.

25

Table 5: First and second columns show the number of tokens (in thousand) processed

per-second during training and testing on a single Nvidia GTX 1080Ti GPU card

respectively. While, the third column shows the wall clock time for the model training to

converge. These numbers are computed on the fully observable Craft task using a batch

size of 64 and sequence length of 65 tokens. SloTTAr uses both hidden size and slot size

of 128 units and 8 attention heads. The number of segments is 4. OMPN and OMPN-2

use 3 and 2 levels of memory hierarchy respectively. The hidden size of OMPN models

is 128 and batch size of 128.

Train Test Wall clock

CompILE 14 36 0h 47m

OMPN 3 7 1h 46m

OMPN-2 4 10 1h 18m

SloTTAr 46 114 0h 14m

5 Conclusion

We have proposed SloTTAr, a novel approach to learning action segments belonging

to modular sub-routines along with the number of such sub-routines in a mostly unsu-

pervised fashion. Our approach draws insight from prior literature on learning about

visual objects (Locatello et al., 2020), Transformers (Vaswani et al., 2017) and adaptive

computation (Banino et al., 2021) to improve over existing purely sequential approaches.

We found that SloTTAr outperforms CompILE and OMPN in terms of recovering ground-

truth sub-routine segments across a wide range environments in Craft (Lu et al., 2021)

and Minigrid (Chevalier-Boisvert et al., 2018) that have a fixed number of sub-routines.

26

On more sophisticated environments with trajectories containing varying numbers of

sub-routines, it could also be observed how SloTTAr outperforms CompILE and re-

mains competitive with OMPN, despite these baseline models requiring ground-truth

information about the number of sub-routines at the level of individual trajectories. At

the same time, these results also indicated how current state-of-the-art approaches are

still limited in their ability to decompose action sequences into semantically meaningful

modular sub-routines. Our analysis revealed how SloTTAr leverages parallel access to

the full sequence to perform sequence decomposition, which further leads to a substantial

speed-up through leveraging parallel computation. In this way, we demonstrated how

general principles of similarity-based grouping used to segment visual inputs are also

relevant for grouping other input modalities, suggesting many additional avenues for

future research.

Acknowledgments

We thank Aditya Ramesh, Aleksandar Stanić and Klaus Greff for useful discussions and

valuable feedback. The large majority of this research was funded by Swiss National

Science Foundation grant: 200021 192356, project NEUSYM. This work was also

supported by a grant from the Swiss National Supercomputing Centre (CSCS) under

project ID s1023 and s1154. We also thank NVIDIA Corporation for donating DGX

machines as part of the Pioneers of AI Research Award.

27

References

Ajay, A., Kumar, A., Agrawal, P., Levine, S., and Nachum, O. (2021). OPAL: Offline

primitive discovery for accelerating offline reinforcement learning. In Int. Conf. on

Learning Representations (ICLR), Virtual only.

Andreas, J., Klein, D., and Levine, S. (2017). Modular multitask reinforcement learning

with policy sketches. In Proc. Int. Conf. on Machine Learning (ICML), pages 166–175,

Sydney, Australia.

Bacon, P.-L., Harb, J., and Precup, D. (2017). The option-critic architecture. In Proc.

AAAI Conf. on Artificial Intelligence, pages 1726–1734, San Francisco, CA, USA.

Bakker, B. and Schmidhuber, J. (2004). Hierarchical reinforcement learning based

on subgoal discovery and subpolicy specialization. In Proc. Conf. on Intelligent

Autonomous Systems, pages 438–445, Amsterdam, Netherlands.

Banino, A., Balaguer, J., and Blundell, C. (2021). Pondernet: Learning to ponder. In

ICML Workshop on Automated Reasoning, Virtual only.

Chen, C., Wu, Y.-F., Yoon, J., and Ahn, S. (2021a). Transdreamer: Reinforcement

learning with transformer world models. In NeurIPS Workshop on Deep Reinforcement

Learning, Virtual only.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas,

A., and Mordatch, I. (2021b). Decision transformer: Reinforcement learning via

sequence modeling. In Proc. Advances in Neural Information Processing Systems

(NeurIPS), Virtual only.

28

Chevalier-Boisvert, M., Willems, L., and Pal, S. (2018). Minimalistic gridworld environ-

ment for openai gym. https://github.com/maximecb/gym-minigrid.

Cho, K., Gülçehre, Ç., van Merriënboer, B., Bahdanau, D., Schwenk, F. B. H., and

Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder

for statistical machine translation. In Proc. Conf. on Empirical Methods in Natural

Language Processing (EMNLP), pages 1724–1734, Doha, Qatar.

Dayan, P. and Hinton, G. E. (1992). Feudal reinforcement learning. In Proc. Advances

in Neural Information Processing Systems (NIPS), pages 271–278, Denver, CO, USA.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser, L. (2019). Universal

transformers. In Int. Conf. on Learning Representations (ICLR), New Orleans, LA,

USA.

Ding, D., Hill, F., Santoro, A., Reynolds, M., and Botvinick, M. (2021). Attention over

learned object embeddings enables complex visual reasoning. In Proc. Advances in

Neural Information Processing Systems (NeurIPS), Virtual only.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,

Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.

(2021). An image is worth 16x16 words: Transformers for image recognition at scale.

In Int. Conf. on Learning Representations (ICLR), Virtual only.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2019). Diversity is all you need:

Learning skills without a reward function. In Int. Conf. on Learning Representations

(ICLR), New Orleans, LA, USA.

29

https://github.com/maximecb/gym-minigrid

Fan, A., Lavril, T., Grave, E., Joulin, A., and Sukhbaatar, S. (2020). Addressing some

limitations of Transformers with feedback memory. Preprint arXiv:2002.09402.

Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget: Continual

prediction with lstm. Neural computation, 12(10):2451–2471.

Graves, A. (2016). Adaptive computation time for recurrent neural networks. Preprint

arXiv:1603.08983.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist

temporal classification: labelling unsegmented sequence data with recurrent neural

networks. In Proc. Int. Conf. on Machine Learning (ICML), pages 369–376, Pittsburgh,

PA, USA.

Greff, K., Kaufman, R. L., Kabra, R., Watters, N., Burgess, C., Zoran, D., Matthey, L.,

Botvinick, M., and Lerchner, A. (2019). Multi-object representation learning with

iterative variational inference. In Proc. Int. Conf. on Machine Learning (ICML), pages

2424–2433, Long Beach, CA, USA.

Greff, K., van Steenkiste, S., and Schmidhuber, J. (2017). Neural expectation maxi-

mization. In Proc. Advances in Neural Information Processing Systems (NIPS), pages

6691–6701, Long Beach, CA, USA.

Greff, K., van Steenkiste, S., and Schmidhuber, J. (2020). On the binding problem in

artificial neural networks. Preprint arXiv:2012.05208.

Gregor, K., Papamakarios, G., Besse, F., Buesing, L., and Weber, T. (2019). Temporal

30

difference variational auto-encoder. In Int. Conf. on Learning Representations (ICLR),

New Orleans, LA, USA.

Gregor, K., Rezende, D. J., and Wierstra, D. (2017). Variational intrinsic control. In

ICLR Workshop track, Toulon, France.

Hard, B. M., Tversky, B., and Lang, D. S. (2006). Making sense of abstract events:

Building event schemas. Memory & cognition, 34(6):1221–1235.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-

tion, 9(8):1735–1780.

Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus-response

episodes. Visual Cognition, 5(1-2):183–216.

Hommel, B. (2004). Event files: feature binding in and across perception and action.

Trends in Cognitive Sciences, 8(11):494–500.

Hommel, B. (2007). Feature integration across perception and action: Event files affect

response choice. Psychological research, 71:42–63.

Irie, K., Schlag, I., Csordás, R., and Schmidhuber, J. (2021). Going beyond linear

transformers with recurrent fast weight programmers. In Proc. Advances in Neural

Information Processing Systems (NeurIPS), Virtual only.

Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., Koppula,

S., Zoran, D., Brock, A., Shelhamer, E., et al. (2021a). Perceiver IO: A general

architecture for structured inputs & outputs. Preprint arXiv:2107.14795.

31

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., and Carreira, J. (2021b).

Perceiver: General perception with iterative attention. In Proc. Int. Conf. on Machine

Learning (ICML), pages 4651–4664, Virtual only.

Janner, M., Li, Q., and Levine, S. (2021). Reinforcement learning as one big sequence

modeling problem. In Proc. Advances in Neural Information Processing Systems

(NeurIPS), Virtual only.

Kahneman, D., Treisman, A., and Gibbs, B. J. (1992). The reviewing of object files:

Object-specific integration of information. Cognitive psychology, 24(2):175–219.

Kim, T., Ahn, S., and Bengio, Y. (2019). Variational temporal abstraction. In Proc.

Advances in Neural Information Processing Systems (NeurIPS), pages 11566–11575,

Vancouver, Canada.

Kipf, T., Elsayed, G. F., Mahendran, A., Stone, A., Sabour, S., Heigold, G., Jonschkowski,

R., Dosovitskiy, A., and Greff, K. (2022). Conditional object-centric learning from

video. In Int. Conf. on Learning Representations (ICLR), Virtual only.

Kipf, T., Li, Y., Dai, H., Zambaldi, V. F., Sanchez-Gonzalez, A., Grefenstette, E., Kohli,

P., and Battaglia, P. W. (2019). CompILE: Compositional imitation learning and

execution. In Proc. Int. Conf. on Machine Learning (ICML), pages 3418–3428, Long

Beach, CA, USA.

Koffka, K. (1935). Principles of gestalt psychology.

Köhler, W. (1929). Gestalt psychology.

32

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit,

J., Dosovitskiy, A., and Kipf, T. (2020). Object-centric learning with slot attention. In

Proc. Advances in Neural Information Processing Systems (NeurIPS), Virtual only.

Lu, Y., Shen, Y., Zhou, S., Courville, A., Tenenbaum, J. B., and Gan, C. (2021). Learning

task decomposition with ordered memory policy network. In Int. Conf. on Learning

Representations (ICLR), Virtual only.

Machado, M. C., Bellemare, M. G., and Bowling, M. (2017). A Laplacian framework for

option discovery in reinforcement learning. In Proc. Int. Conf. on Machine Learning

(ICML), pages 2295–2304, Sydney, Australia.

McGovern, A. and Barto, A. G. (2001). Automatic discovery of subgoals in reinforce-

ment learning using diverse density. In Proc. Int. Conf. on Machine Learning (ICML),

pages 361–368, Williamstown, MA, USA.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In

Proc. Int. Conf. on Machine Learning (ICML), pages 1928–1937, New York City, NY,

USA.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C., Jayakumar, S., Jaderberg, M.,

Kaufman, R. L., Clark, A., Noury, S., Botvinick, M. M., Heess, N., and Hadsell, R.

(2020). Stabilizing Transformers for reinforcement learning. In Proc. Int. Conf. on

Machine Learning (ICML), pages 7487–7498, Virtual only.

Peng, X. B., Chang, M., Zhang, G., Abbeel, P., and Levine, S. (2019). MCP: Learning

33

composable hierarchical control with multiplicative compositional policies. In Proc.

Advances in Neural Information Processing Systems (NeurIPS), pages 3681–3692,

Vancouver, Canada.

Radvansky, G. A. and Zacks, J. M. (2014). Event cognition. Oxford University Press.

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C., and Lillicrap, T. P. (2020). Com-

pressive transformers for long-range sequence modelling. In Int. Conf. on Learning

Representations (ICLR), Virtual only.

Schmidhuber, J. (1990). Towards compositional learning in dynamic networks. Technical

Report FKI-129-90.

Schmidhuber, J. (1991). Learning to generate subgoals for action sequences. In IJCNN-

91-Seattle International Joint Conference on Neural Networks, volume ii, pages 453

vol.2–.

Schmidhuber, J. (2012). Self-delimiting neural networks. Preprint arXiv:1210.0118.

Schmidhuber, J. (2019). Reinforcement learning upside down: Don’t predict rewards–

just map them to actions. Preprint arXiv:1912.02875.

Schmidhuber, J. and Wahnsiedler, R. (1993). Planning simple trajectories using neural

subgoal generators. In Proc. Int. Conf. on From Animals to Animats 2: Simulation of

Adaptive Behavior, page 196–202.

Shiarlis, K., Wulfmeier, M., Salter, S., Whiteson, S., and Posner, I. (2018). TACO:

Learning task decomposition via temporal alignment for control. In Proc. Int. Conf.

on Machine Learning (ICML), pages 4654–4663, Stockholm, Sweden.

34

Şimşek, Ö. and Barto, A. G. (2004). Using relative novelty to identify useful temporal

abstractions in reinforcement learning. In Proc. Int. Conf. on Machine Learning

(ICML), Banff, Canada.

Şimşek, Ö. and Barto, A. G. (2008). Skill characterization based on betweenness. In

Proc. Advances in Neural Information Processing Systems (NIPS), pages 1497–1504,

Vancouver, Canada.

Şimşek, Ö., Wolfe, A. P., and Barto, A. G. (2005). Identifying useful subgoals in

reinforcement learning by local graph partitioning. In Proc. Int. Conf. on Machine

Learning (ICML), pages 816–823, Bonn, Germany.

Singh, G., Deng, F., and Ahn, S. (2022). Illiterate DALLE learns to compose. In Int.

Conf. on Learning Representations (ICLR), Virtual only.

Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14(1):29–56.

Srivastava, R. K., Shyam, P., Mutz, F., Jaśkowski, W., and Schmidhuber, J. (2019). Train-

ing agents using upside-down reinforcement learning. Preprint arXiv:1912.02877.

Stolle, M. and Precup, D. (2002). Learning options in reinforcement learning. In

International Symposium on abstraction, reformulation, and approximation, pages

212–223. Springer.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial intelligence,

112(1-2):181–211.

35

Tadepalli, P. and Dietterich, T. G. (1997). Hierarchical explanation-based reinforcement

learning. In Proc. Int. Conf. on Machine Learning (ICML), pages 358–366, Nashville,

TN, USA.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,

and Polosukhin, I. (2017). Attention is all you need. In Proc. Advances in Neural

Information Processing Systems (NIPS), pages 5998–6008, Long Beach, CA, USA.

Watters, N., Matthey, L., Burgess, C. P., and Lerchner, A. (2019). Spatial broadcast

decoder: A simple architecture for learning disentangled representations in VAEs.

In Learning from Limited Labeled Data (LLD) Workshop, ICLR, New Orleans, LA,

USA.

Zacks, J. M., Tversky, B., and Iyer, G. (2001). Perceiving, remembering, and com-

municating structure in events. Journal of experimental psychology: General, 130

1:29–58.

Zeng, C., Docter, J., Amini, A., Gilitschenski, I., Hasani, R., and Rus, D. (2022).

Dreaming with transformers. In AAAI Workshop on Reinforcement Learning in

Games, Virtual only.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2021). Deformable DETR:

Deformable transformers for end-to-end object detection. In Int. Conf. on Learning

Representations (ICLR), Virtual only.

36

Appendix

6 Experimental Details

6.1 Datasets

Craft The craft environment was initially introduced and re-implemented as a gym

environment (Andreas et al., 2017; Lu et al., 2021). Demonstration data is collected

from the rollouts of the heuristic bots (Lu et al., 2021). We use rollouts from each of

the 3 tasks MakeAxe, MakeBed and MakeShears for both the fully observable and

partial observable versions of these environments Lu et al. (2021) to report the results in

Table 1. We use 10 000 trajectories for training and another separate 1000 trajectories

each for creating validation and test splits. These are used for hyperparameter tuning

and reporting evaluation metrics respectively.

Minigrid We use the DoorKey-8x8, UnlockPickup-v0, BlockedUnlock-

Pickup and KeyCorridor-S4R3 environments from Minigrid (Chevalier-Boisvert

et al., 2018) as additional datasets. These environments use procedural generation for

each episode ensuring more variability in the action sequences that make up a sub-routine

in comparison to Craft. We collect demonstration data by training an A2C agent (Mnih

et al., 2016) on this environment until the policy receives an episodic return of ≥ 0.9,

which is close to optimal. We use 10 000 rollouts collected from this “expert” A2C agent

(Mnih et al., 2016) as the training set and 1000 rollouts each for the validation and test

splits used to tune hyperparameters and report evaluation metrics respectively.

37

Ground-truth segment generation For the Craft environments, the USE action serves

as a delimiter that marks the end of sub-routines. In the Minigrid environments, the

PICKUP and TOGGLE actions serve as delimiters. For the synthetic versions of the

DoorKey-8x8 and UnlockPickup datasets with a single delimiter (used in sec-

tion 4.2), we simply replace all occurrences of the delimiting action PICKUP with

TOGGLE. We extract the ground-truth boundaries of sub-routines using the indices of

these action tokens in the sequences as markers. Ground-truth sub-routine indices for

every sequence are in ascending order from left-to-right where delimiting points are spec-

ified using the heuristics described above. Table 6 shows the ground-truth sub-routine

types for each of the environments.

Table 6: Examples of ground-truth sub-routines for Craft (Lu et al., 2021) (fully &

partially observable) , DoorKey-8x8, UnlockPickup, BlockedUnlockPickup

and KeyCorridor environments from Minigrid suite (Chevalier-Boisvert et al., 2018).

MakeAxe get wood, make at workbench, get iron, make at toolshed

MakeBed get wood, make at toolshed, get grass, make at workbench

MakeShears get wood, make at workbench, get iron, make at workbench

DoorKey-8x8 pickup key, open door, go to green goal

UnlockPickup-v0 pickup key, open door, pickup box

BlockedUnlockPickup pickup key, remove boulder, open door, pickup box

KeyCorridor pickup key, open door, pickup ball

38

6.2 Evaluation Metrics

Evaluation metrics used to quantitatively measure the segmentation performance of

models are the alignment accuracy of sub-routine prediction and F1 score of boundary

index prediction and is consistent with prior work (Lu et al., 2021; Kipf et al., 2019).

Alignment Accuracy The expression to compute alignment accuracy is shown below:

Align Acc. =
1

L ∗N

N∑
n

L∑
l

1(ŝnl = snl)

where N is the number of sequences, L is the sequence length (possibly different for

each sequence), ŝl is the predicted sub-routine and sl is the ground-truth sub-routine

action al belongs to in the nth sequence.

F1 Score The F1 score on predicted boundary indices is computed as shown below:

F1 score =
2× precision× recall

precision + recall

where precision is computed as,

precision =
matches of boundary predictions with ground-truth

total # of boundary predictions

and recall is computed as,

recall =
matches of boundary predictions with ground-truth

total # ground-truth boundaries

Please refer to the Appendix D.1 in prior work (Kipf et al., 2019) for further details.

6.3 Architecture and Training Details

Input Processing The Embedding layer used (Equation (1)) maps action tokens al

to Denc dimensions (denoted by hidden size in Table 9 and Table 10). The Linear layer

39

used (Equation (1)) maps observations ol to Denc dimensions. These Denc dimensional

action and observation features are then concatenated and processed by a 1-layer MLP

with Denc units and ReLU activation to learn a joint action-observation embedding space.

Encoder The linear layers used in self-attention have Denc units in the Encoder

block. The position-wise feedforward network used in the Encoder uses 4 times the

number of units as hidden size. We add the standard sinusoidal positional encoding psin

(Vaswani et al., 2017) to the joint action-observation features zao. Further, we use a linear

layer to generate the learned positional encoding plearn that is added to the outputs h from

the Encoder module. The final configuration(s) for each of these hyperparameters are

shown in Table 9 and Table 10 for fixed and variable slot environments respectively.

The hyperparameter sweep configurations are shown in Table 7 and Table 8 for fixed

and variable slot environments respectively. The overall Encoder block uses the same

architectural template as the Transformer encoder (Vaswani et al., 2017).

Slot Attention The slot attention module uses linear layers withDslots units to generate

keys and values. The recurrent update function is implemented using a GRU (Cho et al.,

2014) (see also earlier work (Gers et al., 2000)) with Dslots units (denoted by slot size in

Table 9 and Table 10). The MLP network used for the residual update is implemented

using a 2-layer network with Dslots units and ReLU and no activation for the hidden

layer and output layers respectively. Further, the initial query vector for slot k is

sampled from a Gaussian distribution with mean 0 and standard-deviation σ.

40

Decoder The decoder architecture adapts the spatial broadcast decoder (Watters et al.,

2019) in a suitable manner to decode all slots into their corresponding action segments.

We broadcast the slot representations along the sequence length L and pass the obser-

vations ol as inputs at each timestep to the Decoder. The Decoder module has the

exact same architecture as the Transformer encoder with the exception that an additional

output linear layer of A+ 1 (where A is the size of action space) dimensions is used to

decode the slot representations into predicted action logits and the end position logits.

Segment masks are computed given end position logits as shown in Algorithm 2. Then

we composite segment masks and predicted action logits to generate the full predicted

action sequence.

Hyperparameter Tuning We perform a random search of 300 hyperparameter config-

urations from all possible configurations in the hyperparameter sweeps shown in Table 7

and Table 8 on 3 seeds for fixed and variable slot environments respectively. We train

our model for a maximum of 100 epochs on all environments with early stopping using

the evaluation metrics (average over F1 and Align. acc.) on the validation set. Then, we

picked the best performing configuration(s) for all of the environments for our model

based on the evaluation metrics (average of F1 and Align. acc.) on the validation set and

ran them again using 5 seeds to report final scores (shown in Table 1, Table 2, Table 3).

The final configurations used for our model are shown in Table 9 and Table 10 for fixed

and variable number of sub-routine environments respectively.

Empirical Prior Distribution For the empirical prior distribution used in the Ponder-

Net loss Equation (5), we use a categorical distribution over the maximum number of

41

(a) Craft. (b) DoorKey-8x8. (c) UnlockPickup.

Figure 5: Empirical piece-wise priors for the Craft (fully and partially observable),

Doorkey-8x8 and UnlockPickup environments in Minigrid all of which contains fixed

number of sub-routines across trajectories.

slots K. We compute the categorical probabilities as ratio of counts of the number of tra-

jectories which have k ∈ {1, ..., K} sub-routines and the total number of trajectories in

the training dataset. Please refer to Figure 5 and Figure 6, which show these categorical

priors for various datasets.

Since we have a discrete distribution for our prior and posteriors, we directly compute

the KL-divergence between the halting probability (phalt) and prior distribution (pe) as

shown below:

DKL[phalt||pe] =
K∑
k′=1

phalt(k
′) log

(phalt(k
′)

pe(k′) + ε

)
(7)

where ε is a small positive number (here set to 1e − 4) for numerical stability. The

maximum number of slots K used for each of the environments can be seen in Figure 5

and Figure 6.

42

(a) BlockedUnlockPickup. (b) KeyCorridor-S4R3.

Figure 6: Empirical discrete prior distributions for the BlockedUnlockPickup and

KeyCorridor-S4R3 environments in Minigrid both of which contains variable num-

ber of sub-routines across trajectories.

Table 7: Hyperparameter sweep configurations for SloTTAr on for Craft (Lu et al., 2021)

(fully & partially observable), DoorKey-8x8 and UnlockPickup environments

from Minigrid (Chevalier-Boisvert et al., 2018). All of these environments have a fixed

number of sub-routines across all trajectories.

SloTTAr Craft (fully) Craft (partial) DoorKey-8x8 UnlockPickup

batch size [32, 64, 128] [32, 64, 128] [32, 64, 128] [32, 64, 128]

beta [0.1, 0.5, 1.0] [0.1, 0.5, 1.0] [0.1, 0.5, 1.0] [0.1, 0.5, 1.0]

hidden size [64, 96, 128] [64, 96, 128] [64, 96, 128] [64, 96, 128]

number of heads [4, 8, 16] [4, 8, 16] [4, 8, 16] [4, 8, 16]

slot size [64, 96, 128] [64, 96, 128] [64, 96, 128] [64, 96, 128]

slot std dev [0.5, 1.0] [0.5, 1.0] [0.5, 1.0] [0.5, 1.0]

number of iterations [1, 2] [1, 2] [1, 2] [1, 2]

learning rate [2.5e-4, 5e-4 1e-3] [2.5e-4, 5e-4 1e-3] [2.5e-4, 5e-4 1e-3] [2.5e-4, 5e-4 1e-3]

43

Table 8: Hyperparameter sweep configurations for SloTTAr for BlockedUnlock-

Pickup and KeyCorridor-S4R3 Minigrid environments (Chevalier-Boisvert et al.,

2018). These environments have a variable number of sub-routines across different

trajectories.

SloTTAr BlockedUnlockPickup KeyCorridor-S4R3

batch size [32, 64, 128] [32, 64, 128]

beta [0.05, 0.1, 0.2] [0.1, 0.2, 0.5]

hidden size [64, 96, 128] [64, 96, 128]

number of heads [4, 8, 16] [4, 8, 16]

slot size [64, 96, 128] [64, 96, 128]

slot std dev [0.5, 1.0] [0.5, 1.0]

number of iterations [1, 2] [1, 2]

learning rate [2.5e-4, 5e-4 1e-3] [2.5e-4, 5e-4 1e-3]

44

Table 9: Final hyperparameter configurations for SloTTAr for Craft (Lu et al., 2021)

(fully & partially observable), Doorkey-8x8, UnlockPickup environments from

Minigrid (Chevalier-Boisvert et al., 2018).

SloTTAr Craft (fully) Craft (partial) (DoorKey-8x8) UnlockPickup

batch size 64 64 32 32

beta 0.1 0.5 0.1 1.0

hidden size 128 128 128 128

number of heads 8 16 8 8

number of layers 1 1 1 1

slot size 128 64 128 128

slot std dev 1.0 1.0 1.0 1.0

number of iterations 1 1 1 1

number of slots 5 5 4 4

number of segments 4 4 3 3

optimizer Adam Adam Adam Adam

learning rate 0.0005 0.0005 0.0005 0.0005

45

Table 10: Final hyperparameter configurations for SloTTAr for BlockedUnlock-

Pickup and KeyCorridor-S4R3 Minigrid environments (Chevalier-Boisvert et al.,

2018). These environments have a variable number of sub-routines across different

trajectories.

SloTTAr BlockedUnlockPickup KeyCorridor-S4R3

batch size 64 32

beta 0.05 0.5

hidden size 96 96

number of heads 8 8

number of layers 1 1

slot size 96 96

slot std dev 1.0 1.0

number of iterations 1 2

number of slots 5 10

number of segments 4-5 4-9

optimizer Adam Adam

learning rate 0.0005 0.00025

46

6.4 Baseline Models and Training Details

We re-implemented CompILE 3 and OMPN 4 by adapting the original authors’ imple-

mentations available on GitHub. We perform a random search of up to 300 hyperparam-

eter configurations from all possible configurations in the hyperparameter sweeps shown

in Table 11, Table 12, Table 15 and Table 16 for all environments and both baseline

models (CompILE and OMPN) with 3 seeds. Then, we picked the best performing

configuration(s) based on their evaluation metrics on the validation set from this sweep.

We run these best performing configuration(s) on 5 seeds to obtain all results shown in

Table 1, Table 2 and Table 3. We checkpoint models during the course of training based

on their evaluation metric scores on the validation set. We use the best checkpoints to

report the final scores shown in Table 1, Table 2 and Table 3 for all the baseline models.

The final configurations used for the baseline models (CompILE and OMPN) on the

3 environments are shown in Table 13, Table 14, Table 17 and Table 18 for fixed and

variable slot environments.

3https://github.com/tkipf/compile
4https://github.com/Ordered-Memory-RL/ompn craft

47

https://github.com/tkipf/compile
https://github.com/Ordered-Memory-RL/ompn_craft

Table 11: Hyperparameter sweep configurations for CompILE for Craft (Lu et al., 2021)

(fully & partially observable), Doorkey-8x8 and UnlockPickup environments

from Minigrid (Chevalier-Boisvert et al., 2018). For the full description of all these

hyperparameters, we refer the readers to Kipf et al. (2019).

CompILE Craft (fully) Craft (partial) DoorKey-8x8 UnlockPickup

batch size [64, 128, 256] [64, 128, 256] [32, 64, 128] [32, 64, 128]

beta b = beta z [0.01, 0.05, 0.1] [0.01, 0.05, 0.1] [0.01, 0.05, 0.1] [0.01, 0.05, 0.1]

hidden size [64, 128] [64, 128] [64, 128] [64, 128]

latent dist. [‘gaussian’, ‘concrete’] [‘gaussian’, ‘concrete’] [‘gaussian’, ‘concrete’] [‘gaussian’, ‘concrete’]

latent size [64, 128] [64, 128] [64, 128] [64, 128]

learning rate [5e-5, 2.5e-4 1e-3] [5e-5, 2.5e-4 1e-3] [1e-4, 2e-4 5e-4] [1e-4, 2e-4 5e-4]

prior rate [2, 3, 4] [2, 3, 4] [2, 3, 4] [2, 3, 4]

Table 12: Hyperparameter sweep configurations for CompILE for BlockedUnlock-

Pickup and KeyCorridor-S4R3 environments from Minigrid (Chevalier-Boisvert

et al., 2018).

CompILE BlockedUnlockPickup KeyCorridor-S4R3

batch size [32, 64, 128] [32, 64, 128]

beta b = beta z [0.01, 0.05, 0.1] [0.01, 0.05, 0.1]

hidden size [64, 128] [64, 128]

latent dist. [‘gaussian’, ‘concrete’] [‘gaussian’, ‘concrete’]

latent size [64, 128] [64, 128]

learning rate [5e-5, 2.5e-4 5e-4] [5e-5, 2.5e-4 5e-4]

prior rate [2, 3, 4] [2, 3, 4]

48

Table 13: Final hyperparameter configurations for CompILE for Craft (Lu et al., 2021)

(fully & partially observable), DoorKey-8x8 and UnlockPickup environments

from Minigrid Chevalier-Boisvert et al. (2018). All of these environments have a fixed

number of sub-routines across all trajectories.

CompILE Craft (fully) Craft (partial) DoorKey-8x8 UnlockPickup

batch size 128 128 32 64

beta b 0.01 0.01 0.01 0.05

beta z 0.01 0.01 0.01 0.05

prior rate 3 3 4 2

hidden size 128 128 128 64

latent dist. ‘gaussian’ ‘gaussian’ ‘gaussian’ ‘gaussian’

latent size 128 128 128 64

number of segments 4 4 3 3

optimizer Adam Adam Adam Adam

learning rate 0.00025 0.00025 0.0005 0.0005

49

Table 14: Final hyperparameter configurations for CompILE for BlockedUnlock-

Pickup and KeyCorridor-S4R3 environments from Minigrid Chevalier-Boisvert

et al. (2018). All of these environments have a fixed number of sub-routines across all

trajectories.

CompILE BlockedUnlockPickup KeyCorridorS4R3

batch size 32 32

beta b 0.01 0.01

beta z 0.01 0.01

prior rate 3 3

hidden size 128 128

latent dist. ‘gaussian’ ‘gaussian’

latent size 128 128

number of segments 4-5 4-9

optimizer Adam Adam

learning rate 0.0005 0.0005

50

Table 15: Hyperparameter sweep configurations for OMPN for Craft (Lu et al., 2021)

(fully & partially observable) , Doorkey-8x8 and UnlockPickup environments

from Minigrid (Chevalier-Boisvert et al., 2018). All of these environments have a fixed

number of sub-routines across all trajectories.

OMPN Craft (fully) Craft (partial) DoorKey-8x8 UnlockPickup

batch size [64, 128, 256] [64, 128, 256] [32, 64, 128] [32, 64, 128]

hidden size [64, 128] [64, 128] [64, 128] [64, 128]

learning rate [1e-4, 2.5e-4, 5e-4] [1e-4, 2.5e-4, 5e-4] [1e-4, 2e-4, 5e-4] [1e-4, 2e-4, 5e-4]

number of slots [2, 3] [2, 3] [2, 3] [2, 3]

max. gradient norm [0.5, 1.0, 2.0] [0.2, 0.5, 1.0] [0.2, 0.5, 1.0] [0.5, 1.0, 2.0]

Table 16: Hyperparameter sweep configurations for OMPN for BlockedUnlock-

Pickup and Doorkey-8x8 environments from Minigrid (Chevalier-Boisvert et al.,

2018). All of these environments have a variable number of sub-routines across all

trajectories.

OMPN BlockedUnlockPickup KeyCorridor-S4R3

batch size [32, 64, 128] [32, 64, 128]

hidden size [64, 128] [64, 128]

learning rate [1e-4, 2e-4, 5e-4] [1e-4, 2e-4, 5e-4]

number of slots [2, 3, 4] [2, 3, 4]

max. gradient norm [0.2, 0.5, 1.0] [0.2, 1.0, 2.0]

51

Table 17: Final hyperparameter configurations for OMPN for Craft (Lu et al., 2021)

(fully & partially observable), Doorkey-8x8 and UnlockPickup environments

from Minigrid (Chevalier-Boisvert et al., 2018). All of these environments have a fixed

number of sub-routines across all trajectories.

OMPN Craft (fully) Craft (partial) DoorKey-8x8 UnlockPickup

batch size 128 128 64 64

hidden size 128 128 128 64

number of slots 3 3 3 3

number of segments 4 4 3 3

max. gradient norm 1.0 1.0 1.0 2.0

optimizer Adam Adam Adam Adam

learning rate 0.00025 0.00025 0.0001 0.0002

52

Table 18: Final hyperparameter configurations for OMPN BlockedUnlockPickup

and KeyCorridor-S4R3 environments from Minigrid (Chevalier-Boisvert et al.,

2018). These environments have a variable number of sub-routines across all trajectories.

OMPN BlockedUnlockPickup KeyCorridor-S4R3

batch size 32 32

hidden size 128 128

number of slots 3 3

number of segments 4-5 4-9

max. gradient norm 0.2 2.0

optimizer Adam Adam

learning rate 0.0001 0.0001

53

6.5 Visualizations

Figure 7: Within each subplot, the bottom panel shows thresholded alpha mask (in solid

lines) and the top panel shows the thresholded slot attention weights (in dotted lines) on

the y-axis for a sample trajectory from partially observable Craft environment against

actions on the x-axis. Different subplots correspond to different slots (colour coded).

54

Figure 8: Within each subplot, the bottom panel shows thresholded alpha mask (in solid

lines) and the top panel shows the thresholded slot attention weights (in dotted lines) on

the y-axis for a sample trajectory from partially observable DoorKey-8x8 Minigrid

environment against actions on the x-axis. Different subplots correspond to different

slots (colour coded).

55

Figure 9: Within each subplot, the bottom panel shows thresholded alpha mask (in solid

lines) and the top panel shows the thresholded slot attention weights (in dotted lines) on

the y-axis for a sample trajectory from partially observable UnlockPickup Minigrid

environment against actions on the x-axis. Different subplots correspond to different

slots (colour coded).

56

6.6 Additional Results

Table 19: F1 scores and alignment accuracies on the synthetic single delimiter versions

of Minigrid environments – DoorKey-8x8 and UnlockPickup-v0. F1 scores are

computed with tolerance=1 consistent with Lu et al. (2021).

single-delimiter DoorKey-8x8 (partial) UnlockPickup-v0 (partial)

F1 score Align. acc. F1 score Align. acc.

OMPN 46.26 (13.99) 56.11 (6.23) 62.35 (18.39) 70.83 (10.72)

OMPN-2 53.70 (12.01) 65.55 (8.48) 53.58 (19.57) 59.84 (15.41)

57

	1 Introduction
	2 Method
	3 Related Work
	4 Experiments
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Hyperparameter Search
	4.4 Results
	4.1 Craft
	4.2 Minigrid – DoorKey-8x8 and UnlockPickup
	4.3 Minigrid – BlockedUnlockPickup and KeyCorridor
	4.4 Analysis
	4.5 Computational Efficiency
	4.6 Limitations

	5 Conclusion
	6 Experimental Details
	6.1 Datasets
	6.2 Evaluation Metrics
	6.3 Architecture and Training Details
	6.4 Baseline Models and Training Details
	6.5 Visualizations
	6.6 Additional Results

