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Abstract

We show how to train the fast dependency
parser of Smith and Eisner (2008) for im-
proved accuracy. This parser can consider
higher-order interactions among edges while
retaining O(n3) runtime. It outputs the
parse with maximum expected recall—but for
speed, this expectation is taken under a pos-
terior distribution that is constructed only ap-
proximately, using loopy belief propagation
through structured factors. We show how to
adjust the model parameters to compensate for
the errors introduced by this approximation,
by following the gradient of the actual loss on
training data. We find this gradient by back-
propagation. That is, we treat the entire parser
(approximations and all) as a differentiable
circuit, as others have done for loopy CRFs
(Domke, 2010; Stoyanov et al., 2011; Domke,
2011; Stoyanov and Eisner, 2012). The re-
sulting parser obtains higher accuracy with
fewer iterations of belief propagation than one
trained by conditional log-likelihood.

1 Introduction

Recent improvements to dependency parsing ac-
curacy have been driven by higher-order features.
Such a feature can look beyond just the parent and
child words connected by a single edge to also con-
sider siblings, grandparents, etc. By including in-
creasingly global information, these features pro-
vide more information for the parser—but they also
complicate inference. The resulting higher-order
parsers depend on approximate inference and decod-
ing procedures, which may prevent them from pre-
dicting the best parse.

For example, consider the dependency parser we
will train in this paper, which is based on the work

of Smith and Eisner (2008). Ostensibly, this parser
finds the minimum Bayes risk (MBR) parse under
a probability distribution defined by a higher-order
dependency parsing model. In reality, it achieves
O(n3tmax) runtime by relying on three approxima-
tions during inference: (1) variational inference by
loopy belief propagation (BP) on a factor graph,
(2) truncating inference after tmax iterations prior to
convergence, and (3) a first-order pruning model to
limit the number of edges considered in the higher-
order model. Such parsers are traditionally trained
as if the inference had been exact.1

In contrast, we train the parser such that the ap-
proximate system performs well on the final eval-
uation function. We treat the entire parsing com-
putation as a differentiable circuit, and backprop-
agate the evaluation function through our approx-
imate inference and decoding methods to improve
its parameters by gradient descent. The system also
learns to cope with model misspecification, where
the model couldn’t perfectly fit the distribution even
absent the approximations. For standard graphical
models, Stoyanov and Eisner (2012) call this ap-
proach ERMA, for “empirical risk minimization un-
der approximations.” For objectives besides empiri-
cal risk, Domke (2011) refers to it as “learning with
truncated message passing.”

Our primary contribution is the application of this
approximation-aware learning method in the pars-
ing setting, for which the graphical model involves
a global constraint. Smith and Eisner (2008) pre-
viously showed how to run BP in this setting (by
calling the inside-outside algorithm as a subroutine).
We must backpropagate the downstream objective

1For perceptron training, utilizing inexact inference as a
drop-in replacement for exact inference can badly mislead the
learner (Kulesza and Pereira, 2008; Huang et al., 2012).
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function through their algorithm so that we can fol-
low its gradient. We carefully define an empirical
risk objective function (à la ERMA) to be smooth
and differentiable, yet equivalent to accuracy of the
minimum Bayes risk (MBR) parse in the limit. Find-
ing this difficult to optimize, we introduce a new
simpler objective function based on the L2 distance
between the approximate marginals and the “true”
marginals from the gold data.

The goal of this work is to account for the approx-
imations made by a system rooted in structured be-
lief propagation. Taking such approximations into
account during training enables us to improve the
speed and accuracy of inference at test time. We
compare our training method with the standard ap-
proach of conditional log-likelihood (CLL) train-
ing. We evaluate our parser on 19 languages from
the CoNLL-2006 (Buchholz and Marsi, 2006) and
CoNLL-2007 (Nivre et al., 2007) Shared Tasks as
well as the English Penn Treebank (Marcus et al.,
1993). On English, the resulting parser obtains
higher accuracy with fewer iterations of BP than
CLL. On the CoNLL languages, we find that on av-
erage it yields higher accuracy parsers than CLL,
particularly when limited to few BP iterations.

2 Dependency Parsing by Belief
Propagation

This section describes the parser that we will train.

Model A factor graph (Frey et al., 1997; Kschis-
chang et al., 2001) defines the factorization of
a probability distribution over a set of variables
{Y1, Y2, . . .}. It is a bipartite graph between vari-
ables Yi and factors α. Edges connect each factor
α to a subset of the variables {Yα1 , Yα2 , . . .}, called
its neighbors. Each factor defines a potential func-
tion ψα, which assigns a nonnegative score to each
configuration of its neighbors yα = {yα1 , yα2 , . . .}.
We define the probability of a given assignment y =
{y1, y2, . . .} to be proportional to the product of all
factors’ potential functions: p(y) = 1

Z

∏
α ψα(yα).

Smith and Eisner (2008) define a factor graph for
dependency parsing of a given n-word sentence: n2

binary variables indicate which of the directed arcs
are included (yi = ON) or excluded (yi = OFF)
in the dependency parse. One of the factors plays
the role of a hard global constraint: ψPTREE(y) is

0 2 1 3 4 
Juan su abdica reino $ 

Y2,1 Y1,2 Y3,2 Y2,3 

Y3,1 Y1,3 

Y4,3 Y3,4 

Y4,2 Y2,4 

Y4,1 Y1,4 

Y0,1 

Y0,3 

Y0,4 

Y0,2 

Figure 1: Factor graph for dependency parsing of a 4-
word sentence; $ is the root of the dependency graph.
The boolean variable Yh,m encodes whether the edge
from parent h to child m is present. The unary factor
(black) connected to this variable scores the edge in iso-
lation (given the sentence). The PTREE factor (red) coor-
dinates all variables to ensure that the edges form a tree.
The drawing shows a few higher-order factors (purple for
grandparents, green for arbitrary siblings); these are re-
sponsible for the graph being cyclic (“loopy”).

1 or 0 according to whether the assignment en-
codes a projective dependency tree. Another n2 fac-
tors (one per variable) evaluate the individual arcs
given the sentence, so that p(y) describes a first-
order dependency parser. A higher-order parsing
model is achieved by also including higher-order
factors, each scoring configurations of two or more
arcs, such as grandparent and sibling configurations.
Higher-order factors tend to create cycles in the fac-
tor graph. See Figure 1 for an example factor graph.

We define each potential function to have a log-
linear form: ψα(yα) = exp(θ · fα(yα,x)). Here x
is the assignment to the observed variables such as
the sentence and its POS tags; fα extracts a vector
of features; and θ is our vector of model parameters.
We write the resulting probability distribution over
parses as pθ(y |x), to indicate that it depends on θ.

Loss For dependency parsing, our loss function is
the number of missing edges in the predicted parse
ŷ, relative to the reference (or “gold”) parse y∗:

`(ŷ,y∗) =
∑

i: ŷi=OFF I(y∗i = ON) (1)

I is the indicator function. Because ŷ and y∗ each
specify exactly one parent per word token, `(ŷ,y∗)
equals the directed dependency error: the number of
word tokens whose parent is predicted incorrectly.
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Decoder To obtain a single parse as output, we
use a minimum Bayes risk (MBR) decoder, which
returns the tree with minimum expected loss under
the model’s distribution (Bickel and Doksum, 1977;
Goodman, 1996). Our ` gives the decision rule:

hθ(x) = argmin
ŷ

Ey∼pθ(· |x)[`(ŷ,y)] (2)

= argmax
ŷ

∑

i: ŷi=ON

pθ(yi = ON |x) (3)

Here ŷ ranges over well-formed parses. Thus, our
parser seeks a well-formed parse hθ(x) whose in-
dividual edges have a high probability of being cor-
rect according to pθ (since it lacks knowledge y∗

of which edges are truly correct). MBR is the prin-
cipled way to take a loss function into account un-
der a probabilistic model. By contrast, maximum
a posteriori (MAP) decoding does not consider the
loss function. It would return the single highest-
probability parse even if that parse, and its individual
edges, were unlikely to be correct.2

All systems in this paper use MBR decoding to
consider the loss function at test time. This implies
that the ideal training procedure would be to find the
true pθ so that its marginals can be used in (3). Our
baseline system attempts this. Yet in practice, we
will not be able to find the true pθ (model misspec-
ification) nor exactly compute the marginals of pθ
(computational intractability). Thus, this paper pro-
poses a training procedure that compensates for the
system’s approximations, adjusting θ to reduce the
actual loss of hθ(x) as measured at training time.

To find the MBR parse, we first run inference to
compute the marginal probability pθ(yi = ON |x)
for each edge. Then we maximize (3) by running a
first-order dependency parser with edge scores equal
to those probabilities.3 When our inference algo-
rithm is approximate, we replace the exact marginal
with its approximation—the belief from BP, given
by bi(ON) in (6) below.

Inference Loopy belief propagation
(BP) (Murphy et al., 1999) computes ap-
proximations to the variable marginals

2If we used a simple 0-1 loss function within (2), then MBR
decoding would reduce to MAP decoding.

3Prior work (Smith and Eisner, 2008; Bansal et al., 2014)
used the log-odds ratio log pθ(yi=ON)

pθ(yi=OFF)
as the edge scores for

decoding, but this yields a parse different from the MBR parse.

pθ(yi |x) =
∑
y′:y′i=yi

pθ(y
′ |x), as needed

by (3), as well as the factor marginals
pθ(yα |x) =

∑
y′:y′α=yα

pθ(y
′ |x). The algo-

rithm proceeds by iteratively sending messages
from variables, yi, to factors, α:

m
(t)
i→α(yi) ∝

∏

β∈N (i)\α
m

(t−1)
β→i (yi) (4)

and from factors to variables:

m
(t)
α→i(yi) ∝

∑

yα∼yi
ψα(yα)

∏

j∈N (α)\i
m

(t−1)
j→α (yi)

(5)

where N (i) and N (α) denote the neighbors of yi
and α respectively, and where yα ∼ yi is standard
notation to indicate that yα ranges over all assign-
ments to the variables participating in the factor α
provided that the ith variable has value yi. Note that
the messages at time t are computed from those at
time (t−1). Messages at the final time tmax are used
to compute the beliefs at each factor and variable:

bi(yi) ∝
∏

α∈N (i)

m
(tmax)
α→i (yi) (6)

bα(yα) ∝ ψα(yα)
∏

i∈N (α)

m
(tmax)
i→α (yi) (7)

We assume each of the messages and beliefs given
in (4)–(7) are scaled to sum-to-one. For example,
bi is normalized such that

∑
yi
bi(yi) = 1 and ap-

proximates the marginal distribution over yi values.
Messages continue to change indefinitely if the fac-
tor graph is cyclic, but in the limit, the messages may
converge. Although the equations above update all
messages in parallel, convergence is much faster if
only one message is updated per timestep, in some
well-chosen serial order.4

For the PTREE factor, the summation over vari-
able assignments required for m(t)

α→i(yi) in Eq. (5)
equates to a summation over exponentially many
projective parse trees. However, we can use an
inside-outside variant of Eisner (1996)’s algorithm

4Following Dreyer and Eisner (2009, footnote 22), we
choose an arbitrary directed spanning tree of the factor graph
rooted at the PTREE factor. We visit the nodes in topologically
sorted order (from leaves to root) and update any message from
the node being visited to a node that is later in the order. We
then reverse this order and repeat, so that every message has
been passed once. This constitutes one iteration of BP.
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to compute this in polynomial time (we describe this
as hypergraph parsing in §3). The resulting “struc-
tured BP” inference procedure—detailed by Smith
and Eisner (2008)—is exact for first-order depen-
dency parsing. When higher-order factors are incor-
porated, it is approximate but remains fast, whereas
exact inference would be slow.5

3 Approximation-aware Learning

We aim to find the parameters θ∗ that minimize a
regularized objective function over the training sam-
ple of (sentence, parse) pairs {(x(d),y(d))}Dd=1.

θ∗ = argmin
θ

1

D

(( D∑

d=1

J(θ;x(d),y(d))
)
+
λ

2
||θ||22

)

(8)

where λ > 0 is the regularization coefficient and
J(θ;x,y∗) is a given differentiable function, pos-
sibly nonconvex. We locally minimize this objec-
tive using `2-regularized AdaGrad with Composite
Mirror Descent (Duchi et al., 2011)—a variant of
stochastic gradient descent that uses mini-batches,
an adaptive learning rate per dimension, and sparse
lazy updates from the regularizer.6

Objective Functions The standard choice for J is
the negative conditional log-likelihood (§6). How-
ever, as in Stoyanov et al. (2011), our aim is to mini-
mize expected loss on the true data distribution over
sentence/parse pairs (X,Y ):

θ∗ = argminθ E[`(hθ(X), Y )] (9)

Since the true data distribution is unknown, we sub-
stitute the expected loss over the training sample,
and regularize our objective in order to reduce sam-
pling variance. Specifically, we aim to minimize
the regularized empirical risk, given by (8) with
J(θ;x(d),y(d)) set to `(hθ(x(d)),y(d)). Note that

5How slow is exact inference for dependency parsing? For
certain choices of higher-order factors, polynomial time is pos-
sible via dynamic programming (McDonald et al., 2005; Car-
reras, 2007; Koo and Collins, 2010). However, BP will typically
be asymptotically faster (for a fixed number of iterations) and
faster in practice. In some other settings, exact inference is NP-
hard. In particular, non-projective parsing becomes NP-hard
with even second-order factors (McDonald and Pereira, 2006).
BP can handle this case in polynomial time by replacing the
PTREE factor with a TREE factor that allows edges to cross.

6θ is initialized to 0 when not otherwise specified.

this loss function would not be differentiable—a key
issue we will take up below. This is the “ERMA”
method of Stoyanov and Eisner (2012). We will also
consider simpler choices of J—akin to the loss func-
tions used by Domke (2011).

Gradient Computation To compute the gradi-
ent ∇θJ(θ;x,y∗) of the loss on a single sentence
(x,y∗) = (x(d),y(d)), we apply automatic differ-
entiation (AD) in the reverse mode (Griewank and
Corliss, 1991). This yields the same type of “back-
propagation” algorithm that has long been used for
training neural networks (Rumelhart et al., 1986). It
is important to note that the resulting gradient com-
putation algorithm is exact up to floating-point er-
ror, and has the same asymptotic complexity as the
original decoding algorithm, requiring only about
twice the computation. The AD method applies pro-
vided that the original function is indeed differen-
tiable with respect to θ. In principle, it is possi-
ble to compute the gradient with minimal additional
coding. There exists AD software (some listed at
autodiff.org) that could be used to derive the
necessary code automatically. Another option would
be to use the perturbation method of Domke (2010).
However, we implemented the gradient computation
directly, and we describe it here.

Inference, Decoding, and Loss as a Feedfoward
Circuit The backpropagation algorithm is often
applied to neural networks, where the topology of
a feedforward circuit is statically specified and can
be applied to any input. Our BP algorithm, decoder,
and loss function similarly define a feedfoward cir-
cuit that computes our function J . The circuit’s
depth depends on the number of BP timesteps, tmax.
Its topology is defined dynamically (per sentence
x(d)) by “unrolling” the computation into a graph.

Figure 2 shows this topology. The high level
modules consist of (A) computing potential func-
tions, (B) initializing messages, (C) sending mes-
sages, (D) computing beliefs, and (E) decoding and
computing the loss. We zoom in on two submodules:
the first computes messages from the PTREE factor
efficiently (C.1–C.3); the second computes a soft-
ened version of our loss function (E.1–E.3). Both of
these submodules are made efficient by the inside-
outside algorithm.

The next two sections describe in greater detail
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how we define the function J (the forward pass) and
how we compute its gradient (the backward pass).
Backpropagation through the circuit from Figure 2
poses several challenges. Eaton and Ghahramani
(2009), Stoyanov et al. (2011), and Domke (2011)
showed how to backpropagate through the basic BP
algorithm, and we reiterate the key details below
(§5.2). The remaining challenges form the primary
technical contribution of this paper:

1. Our true loss function `(hθ(x),y∗) by way of
the decoder hθ contains an argmax (3) over
trees and is therefore not differentiable. We
show how to soften this decoder (by substitut-
ing a softmax), making it differentiable (§4.1).

2. Empirically, we find the above objective diffi-
cult to optimize. To address this, we substitute
a simpler L2 loss function (commonly used in
neural networks). This is easier to optimize and
yields our best parsers in practice (§4.2).

3. We show how to run backprop through the
inside-outside algorithm on a hypergraph (§5.4)
for use in two modules: the softened decoder
(§5.1) and computation of messages from the
PTREE factor (§5.3). This allows us to go be-
yond Stoyanov et al. (2011) and train struc-
tured BP in an approximation-aware and loss-
aware fashion.

4 Differentiable Objective Functions

4.1 Annealed Risk
Minimizing the test-time loss is the appropriate goal
for training an approximate system like ours. That
loss is estimated by the empirical risk on a large
amount of in-domain supervised training data.

Alas, this risk is nonconvex and piecewise con-
stant, so we turn to deterministic annealing (Smith
and Eisner, 2006) and clever initialization. Directed
dependency error, `(hθ(x),y∗), is not differentiable
due to the argmax in the decoder hθ. So we redefine
J(θ;x,y∗) to be a new differentiable loss function,
the annealed risk R

1/T
θ (x,y∗), which approaches

the loss `(hθ(x),y∗) as the temperature T → 0.
Our first step is to define a distribution over parses,
which takes the marginals pθ(yi = ON |x) as input,
or in practice, their BP approximations bi(ON):

q
1/T
θ (ŷ |x) ∝ exp

(∑
i:ŷi=ON

pθ(yi=ON |x)
T

)
(10)

(E) Decode and Loss

J(θ;x,y∗) =
(E.3) Expected Recall

(E.2) Inside-Outside

(E.1) Anneal Beliefs

(D) Beliefs
bi(yi) = . . ., bα(yα) = . . .

(C) Messages at time tmax

m
(tmax)
i→α (yi) = . . ., m(tmax)

α→i (yi) = . . .

m
(tmax)
PTREE→i(yi) =

(C.3) Outgoing Messages

(C.2) Inside-Outside

(C.1) Message Ratios

· · ·

(C) Messages at time t
m

(t)
i→α(yi) = . . ., m(t)

α→i(yi) = . . .

m
(t)
PTREE→i(yi) =

(C.3) Outgoing Messages

(C.2) Inside-Outside

(C.1) Message Ratios

· · ·

(C) Messages at time t = 1

m
(1)
i→α(yi) = . . ., m(1)

α→i(yi) = . . .

m
(1)
PTREE→i(yi) =

(C.3) Outgoing Messages

(C.2) Inside-Outside

(C.1) Message Ratios

(A) Compute Potentials
ψα(yα) = exp(θ · f(yα,x))

(B) Initial Messages
m

(0)
i→α(yi) = 1

m
(0)
α→i(yi) = 1

(C.3) Outgoing Messages

(C.2) Inside-Outside

(C.1) Message Ratios

(E.3) Expected Recall

(E.2) Inside-Outside

(E.1) Anneal Beliefs

Figure 2: Feed-forward topology of inference, decoding,
and loss. (E.1–E.3) show the annealed risk, one of the
objective functions we consider.

Using this distribution, we can replace our non-
differentiable decoder hθ with a differentiable one
(at training time). Imagine that our new decoder
stochastically returns a parse ŷ sampled from this
distribution. We define the annealed risk as the ex-
pected loss of that decoder:

R
1/T
θ (x,y∗) = E

ŷ∼q1/Tθ (· |x)[`(ŷ,y
∗)] (11)

As T → 0 (“annealing”), the decoder almost always
chooses the MBR parse,7 so our risk approaches the
loss of the actual MBR decoder that will be used at
test time. However, as a function of θ, it remains
differentiable (though not convex) for any T > 0.

To compute the annealed risk, observe that it sim-
plifies to R

1/T
θ (x,y∗) = −∑i:y∗i=ON q

1/T
θ (ŷi =

ON |x). This is the negated expected recall of a
parse ŷ ∼ q

1/T
θ . We obtain the required marginals

q
1/T
θ (ŷi = ON |x) from (10) by running inside-

7Recall from (3) that the MBR parse is the tree ŷ that max-
imizes the sum

∑
i:ŷi=ON pθ(yi = ON |x). As T → 0, the

right-hand side of (10) grows fastest for this ŷ, so its probabil-
ity under q1/Tθ approaches 1 (or 1/k if there is a k-way tie for
MBR parse).
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outside where the edge weight for edge i is given
by exp(pθ(yi = ON |x)/T ).

Whether our test-time system computes the
marginals of pθ exactly or does so approximately
via BP, our new training objective approaches (as
T → 0) the true empirical risk of the test-time parser
that performs MBR decoding from the computed
marginals. Empirically, however, we will find that
it is not the most effective training objective (§7.2).
Stoyanov et al. (2011) postulate that the nonconvex-
ity of empirical risk may make it a difficult function
to optimize, even with annealing. Our next two ob-
jectives provide alternatives.

4.2 L2 Distance
We can view our inference, decoder, and loss as
defining a form of deep neural network, whose
topology is inspired by our linguistic knowledge of
the problem (e.g., the edge variables should define
a tree). This connection to deep learning allows
us to consider training methods akin to supervised
layer-wise training (Bengio et al., 2007). We tem-
porarily remove the top layers of our network (i.e.
the decoder and loss module, Fig. 2 (E)) so that
the output layer of our “deep network” consists of
the variable beliefs bi(yi) from BP. We can then de-
fine a supervised loss function directly on these be-
liefs. We don’t have supervised data for this layer
of beliefs, but we can create it artificially. Use the
supervised parse y∗ to define “target beliefs” by
b∗i (yi) = I(yi = y∗i ) ∈ {0, 1}. To find parame-
ters θ that make BP’s beliefs close to these targets,
we can minimize an L2 distance loss function:

J(θ;x,y∗) =
∑

i

∑

yi

(bi(yi)− b∗i (yi))2 (12)

We can use this L2 distance objective function for
training, adding the MBR decoder and loss evalua-
tion back in only at test time.

4.3 Layer-wise Training
Just as in layer-wise training of neural networks, we
can take a two-stage approach to training. First, we
train to minimize the L2 distance. Then, we use the
resulting θ as initialization to optimize the annealed
risk, which does consider the decoder and loss func-
tion (i.e. the top layers of Fig. 2). Stoyanov et al.
(2011) found mean squared error (MSE) to give a

smoother training objective, though still nonconvex,
and used it to initialize empirical risk. Though their
variant of the L2 objective did not completely dis-
pense with the decoder as ours does, it is a similar
approach to our proposed layer-wise training.

5 Gradients by Backpropagation

Backpropagation computes the derivative of any
given function specified by an arbitrary circuit con-
sisting of elementary differentiable operations (e.g.
+,−,×,÷, log, exp). This is accomplished by re-
peated application of the chain rule. Backpropagat-
ing through an algorithm proceeds by similar ap-
plication of the chain rule, where the intermediate
quantities are determined by the topology of the
circuit—just as in Figure 2. Running backwards
through the circuit, backprop computes the partial
derivatives of the objective J(θ;x,y∗) with respect
to each intermediate quantity u—or more concisely
the adjoint of u: ðu = ∂J(θ;x,y∗)

∂u . This section
gives a summary of the adjoint computations we re-
quire. Due to space constraints, we direct the reader
to the extended version of this paper (Gormley et al.,
2015a) for full details of all the adjoints.

5.1 Backpropagation of Decoder / Loss

The adjoint of the objective itself ðJ(θ;x,y∗) is al-
ways 1. So the first adjoints we must compute are
those of the beliefs: ðbi(yi) and ðbα(yα). This cor-
responds to the backward pass through Figure 2 (E).
Consider the simple case where J is L2 distance
from (12): the variable belief adjoint is ðbi(yi) =
2(bi(yi)− b∗i (yi)) and trivially ðbα(yα) = 0. If J is
annealed risk from (11), we compute ðbi(yi) by ap-
plying backpropagation recursively to our algorithm
for J from §4.1. This sub-algorithm defines a sub-
circuit depicted in Figure 2 (E.1–E.3). The compu-
tations of the annealed beliefs and the expected re-
call are easily differentiable. The main challenge is
differentiating the function computed by the inside-
outside algorithm; we address this in §5.4.

5.2 Backpropagation through Structured BP

Given the adjoints of the beliefs, we next back-
propagate through structured BP—extending prior
work which did the same for regular BP (Eaton and
Ghahramani, 2009; Stoyanov et al., 2011; Domke,
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2011). Except for the messages sent from the
PTREE factor, each step of BP computes some
value from earlier values using the update equa-
tions (4)–(7). Backpropagation differentiates these
elementary expressions. First, using the belief ad-
joints, we compute the adjoints of the final mes-
sages (ðm(tmax)

j→α (yj), ðm
(tmax)
β→i (yi)) by applying the

chain rule to Eqs. (6) and (7). This is the backward
pass through Fig. 2 (D). Recall that the messages at
time t were computed from messages at time t − 1
and the potential functions ψα in the forward pass
via Eqs. (4) and (5). Backprop works in the oppo-
site order, updating the adjoints of the messages at
time t− 1 and the potential functions (ðm(t−1)

j→α (yj),

ðm(t−1)
β→i (yi), ðψα(yα)) only after it has computed

the adjoints of the messages at time t. Repeating
this through timesteps {t, t − 1, . . . , 1} constitutes
the backward pass through Fig. 2 (C). The backward
pass through Fig. 2 (B) does nothing, since the mes-
sages were initialized to a constant. The final step of
backprop uses ðψα(yα) to compute ðθj—the back-
ward pass through Fig. 2 (A). For the explicit for-
mula of these adjoints, see Gormley et al. (2015a) or
Appendix A.1 of Stoyanov et al. (2011). The next
section handles the special case of ðm(t)

j→PTREE(yj).

5.3 BP and Backpropagation with PTREE

The PTREE factor has a special structure that we
exploit for efficiency during BP. Smith and Eis-
ner (2008) give a more efficient way to implement
Eq. (5), which computes the message from a fac-
tor α to a variable yi, in the special case where
α = PTREE. They first run the inside-outside al-
gorithm where the edge weights are given by the ra-

tios of the messages to PTREE: m
(t)
i→α(ON)

m
(t)
i→α(OFF)

. Then

they multiply each resulting edge marginal given by
inside-outside by the product of all the OFF mes-
sages

∏
im

(t)
i→α(OFF) to get the marginal factor be-

lief bα(yi). Finally they divide the belief by the in-
coming message m(t)

i→α(ON) to get the correspond-
ing outgoing message m(t+1)

α→i (ON). These steps are
shown in Figure 2 (C.1–C.3), and are repeated each
time we send a message from the PTree factor.

Similarly, we exploit the structure of this algo-
rithm to compute the adjoints ðm(t)

j→PTREE(yj). The
derivatives of the message ratios and products men-

tioned here are simple. In the next subsection, we
explain how to backpropagate through the inside-
outside algorithm. Though we focus here on pro-
jective dependency parsing, our techniques are also
applicable to non-projective parsing and the TREE

factor; we leave this to future work.

5.4 Backprop of Hypergraph Inside-Outside
Both the annealed risk loss function (§4.1) and the
computation of messages from the PTREE factor
(§5.3) use the inside-outside algorithm for depen-
dency parsing. Here we describe inside-outside and
the accompanying backpropagation algorithm over a
hypergraph. This general treatment (Klein and Man-
ning, 2001; Li and Eisner, 2009) enables our method
to be applied to other tasks such as constituency
parsing, HMM forward-backward, and hierarchical
machine translation. In the case of dependency pars-
ing, the structure of the hypergraph is given by the
dynamic programming algorithm of Eisner (1996).

For the forward pass of the inside-outside mod-
ule, the input variables are the hyperedge weights
we∀e and the outputs are the marginal probabilities
pw(i)∀i of each node i in the hypergraph. The latter
are a function of the inside βi and outside αj proba-
bilities. We initialize αroot = 1.

βi =
∑

e∈I(i)
we

∏

j∈T (e)
βj (13)

αj =
∑

e∈O(i)

we αH(e)

∏

j∈T (e):j 6=i
βj (14)

pw(i) = αiβi/βroot (15)

For each node i, we define the set of incoming edges
I(i) and outgoing edges O(i). The antecedents of
the edge are T (e), the parent of the edge is H(e),
and its weight is we.

For the backward pass of the inside-outside
module, the inputs are ðpw(i)∀i and the outputs are
ðwe∀e. We also compute the adjoints of the inter-
mediate quantities ðβj , ðαi. We first compute ðαi
bottom-up. Next ðβj are computed top-down. The
adjoints ðwe are then computed in any order.

ðαi = ðpw(i)∂pw(i)
∂αi

+
∑

e∈I(i)

∑

j∈T (e)

ðαj ∂αj

∂αi
(16)

ðβroot =
∑

i 6=root

ðpw(i)∂pw(i)
∂βroot

(17)
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ðβj = ðpw(j)∂pw(j)
∂βj

+
∑

e∈O(j)

ðβH(e)
∂βH(e)

∂βj

+
∑

e∈O(j)

∑

k∈T (e):k 6=j
ðαk ∂αk

∂βj
∀j 6= root (18)

ðwe = ðβH(e)
∂βH(e)

∂we
+
∑

j∈T (e)

ðαj ∂αj

∂we
(19)

The partial derivatives required for the above ad-
joints are given in the extended version of this pa-
per (Gormley et al., 2015a). This backpropagation
method is used for both Figure 2 (C.2) and (E.2).

6 Other Learning Settings

Loss-aware Training with Exact Inference
Backpropagating through inference, decoder, and
loss need not be restricted to approximate inference
algorithms. Li and Eisner (2009) optimize Bayes
risk with exact inference on a hypergraph for
machine translation. Each of our differentiable
loss functions (§4) can also be coupled with exact
inference. For a first-order parser, BP is exact. Yet,
in place of modules (B), (C), and (D) in Figure 2, we
can use a standard dynamic programming algorithm
for dependency parsing, which is simply another
instance of inside-outside on a hypergraph (§5.4).
The exact marginals from inside-outside (15) are
then fed forward into the decoder/loss module (E).

Conditional and Surrogate Log-likelihood The
standard approach to training is conditional log-
likelihood (CLL) maximization (Smith and Eisner,
2008) without taking inexact inference into account:
J(θ;x,y∗) = − log pθ(y |x). When inference
is exact, this baseline computes the true gradient
of CLL. When inference is approximate, this base-
line uses the factor beliefs bα(yα) from BP in place
of the exact marginals in the gradient. The liter-
ature refers to this approximation-unaware training
method as surrogate likelihood training since it re-
turns the “wrong” parameters even under the as-
sumption of infinite training data drawn from the
model being used (Wainwright, 2006). Despite this,
the surrogate likelihood objective is commonly used
to train CRFs. CLL and approximation-aware train-
ing are not mutually exclusive. Training a standard
factor graph with ERMA and a log-likelihood objec-
tive recovers CLL exactly (Stoyanov et al., 2011).

7 Experiments

7.1 Setup
Features As the focus of this work is on a novel
approach to training, we look to prior work for
model and feature design (§2). We add O(n3)
second-order grandparent and arbitrary-sibling fac-
tors as in Riedel and Smith (2010) and Martins et al.
(2010). We use standard feature sets for first-order
(McDonald et al., 2005) and second-order (Carreras,
2007) parsing. Following Rush and Petrov (2012),
we also include a version of each part-of-speech
(POS) tag feature, with the coarse tags from Petrov
et al. (2012). We use feature hashing (Ganchev and
Dredze, 2008; Weinberger et al., 2009) and restrict
to at most 20 million features. We leave the incor-
poration of third-order features to future work.

Pruning To reduce the time spent on feature ex-
traction, we enforce the type-specific dependency
length bounds from Eisner and Smith (2005) as used
by Rush and Petrov (2012): the maximum allowed
dependency length for each tuple (parent tag, child
tag, direction) is given by the maximum observed
length for that tuple in the training data. Follow-
ing Koo and Collins (2010), we train a first-order
model with CLL and for each token prune any par-
ents for which the marginal probability is less than
0.0001 times the maximum parent marginal for that
token. On a per-token basis, we further restrict to
the ten parents with highest marginal probability as
in Martins et al. (2009) (but we avoid pruning the
fully right-branching tree, so that some parse always
exists).8 This lets us simplify the factor graph, re-
moving variables yi corresponding to pruned edges
and specializing their factors to assume yi = OFF.
We train the full model’s parameters to work well
on this pruned graph.

Data We consider 19 languages from the CoNLL-
2006 (Buchholz and Marsi, 2006) and CoNLL-2007
(Nivre et al., 2007) Shared Tasks. We also convert
the English Penn Treebank (PTB) (Marcus et al.,
1993) to dependencies using the head rules from Ya-
mada and Matsumoto (2003) (PTB-YM). We evalu-
ate unlabeled attachment accuracy (UAS) using gold

8The pruning model uses a simpler feature set as in Rush
and Petrov (2012). Pruning is likely the least impactful of our
approximations: it obtains 99.46% oracle UAS for English.
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Figure 3: Speed/accuracy tradeoff of English PTB-YM
UAS vs. the total number of BP iterations tmax for
standard conditional likelihood training (CLL) and our
approximation-aware training with either an L2 objective
(L2) or a staged training of L2 followed by annealed risk
(L2+AR). Note that the x-axis shows the number of iter-
ations used for both training and testing. We use a 2nd-
order model with Grand.+Sib. factors.

POS tags for the CoNLL languages, and predicted
tags from TurboTagger (Martins et al., 2013) for the
PTB. Unlike most prior work, we hold out 10% of
each CoNLL training dataset as development data
for regularization by early stopping.9

Some of the CoNLL languages contain non-
projective edges, but our system is built using a
probability distribution over projective trees only.
ERMA can still be used with such a badly misspec-
ified model—one of its advantages—but no amount
of training can raise CLL’s objective above −∞,
since any non-projective gold tree will always have
probability 0. Thus, for CLL only, we replace
each gold tree in training data with a minimum-loss
projective tree (Carreras, 2007).10 This resembles
ERMA’s goal of training the system to find a low-
loss projective tree. At test time, we always evaluate
the system’s projective output trees against the pos-
sibly non-projective gold trees, as in prior work.

Learning Settings We compare three learning set-
tings. The first, our baseline, is conditional log-

9In dev experiments, we found L2 distance to be less sensi-
tive to the `2-regularizer weight than CLL. So we added addi-
tional regularization by early stopping to improve CLL.

10We also ran a controlled experiment with L2 and not just
CLL trained on these projectivized trees: the average margin of
improvement for our method widened very slightly.
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Figure 4: English PTB-YM UAS vs. the types of 2nd-
order factors included in the model for approximation-
aware training and standard conditional likelihood train-
ing. All models include 1st-order factors (Unary). The
2nd-order models include grandparents (Grand.), arbi-
trary siblings (Sib.), or both (Grand.+Sib.)—and use 4
iterations of BP.

likelihood training (CLL) (§6). As is common
in the literature, we conflate two distinct learning
settings (conditional log-likelihood/surrogate log-
likelihood) under the single name “CLL,” allowing
the inference method (exact/inexact) to differentiate
them. The second learning setting is approximation-
aware learning (§3) with either our L2 distance ob-
jective (L2) (§4.2) or our layer-wise training method
(L2+AR) which takes the L2-trained model as an ini-
tializer for our annealed risk (§4.3). The annealed
risk objective requires an annealing schedule: over
the course of training, we linearly anneal from ini-
tial temperature T = 0.1 to T = 0.0001, updat-
ing T at each step of stochastic optimization. The
third learning setting uses the same two objectives,
L2 and L2+AR, but with exact inference (§6). The
`2-regularizer weight in (8) is λ = 1. Each method is
trained by AdaGrad for 5 epochs with early stopping
(i.e. the model with the highest score on dev data is
returned). Across CoNLL, the average epoch chosen
for CLL was 2.02 and for L2 was 3.42. The learning
rate for each training run is dynamically tuned on a
sample of the training data.

7.2 Results

Our goal is to demonstrate that our approximation-
aware training method leads to improved parser ac-
curacy as compared with the standard training ap-
proach of conditional log-likelihood (CLL) maxi-
mization (Smith and Eisner, 2008), which does not
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take inexact inference into account. The two key
findings of our experiments are that our learning ap-
proach is more robust to (1) decreasing the number
of iterations of BP and (2) adding additional cycles
to the factor graph in the form of higher-order fac-
tors. In short: our approach leads to faster inference
and creates opportunities for more accurate parsers.

Speed-Accuracy Tradeoff Our first experiment is
on English dependencies. For English PTB-YM,
Figure 3 shows accuracy as a function of the num-
ber of BP iterations for our second-order model with
both arbitrary sibling and grandparent factors on En-
glish. We find that our training methods (L2 and
L2+AR) obtain higher accuracy than standard train-
ing (CLL), particularly when a small number of BP
iterations are used and the inference is a worse ap-
proximation. Notice that with just two iterations of
BP, the parsers trained by our approach obtain ac-
curacy greater than or equal to those by CLL with
any number of iterations (1 to 8). Contrasting the
two objectives for our approximation-aware train-
ing, we find that our simple L2 objective performs
very well. In fact, in only two cases, at 3 and 5 itera-
tions, does risk annealing (L2+AR) further improve
performance on test data. In our development exper-
iments, we also evaluated AR without using L2 for
initialization and we found that it performed worse
than either of CLL and L2 alone. That AR performs
only slightly better than L2 (and not worse) in the
case of L2+AR is likely due to early stopping on dev
data, which guards against selecting a worse model.

Increasingly Cyclic Models Figure 4 contrasts
accuracy with the type of 2nd-order factors (grand-
parent, sibling, or both) included in the model for
English, for a fixed budget of 4 BP iterations.
Adding higher-order factors introduces more loops,
making the loopy BP approximation more problem-
atic for standard CLL training. By contrast, under
approximation-aware training, enriching the model
with more factors always helps performance, as de-
sired, rather than hurting it.

Notice that our advantage is not restricted to the
case of loopy graphs. Even when we use a 1st-
order model, for which BP inference is exact, our
approach yields higher-accuracy parsers than CLL
training. We speculate that this improvement is due
to our method’s ability to better deal with model

TRAIN INFERENCE DEV UAS TEST UAS
CLL Exact 91.99 91.62
CLL BP 4 iters 91.37 91.25
L2 Exact 91.91 91.66
L2 BP 4 iters 91.83 91.63

Table 1: The impact of exact vs. approximate inference
on a 2nd-order model with grandparent factors only. Re-
sults are for the development (§ 22) and test (§ 23) sec-
tions of PTB-YM.

misspecification—a first-order model is quite mis-
specified! Note the following subtle point: when
inference is exact, the CLL estimator is actually a
special case of our approximation-aware learner—
that is, CLL computes the same gradient that our
training by backpropagation would if we used log-
likelihood as the objective.

Exact Inference with Grandparents §2 noted
that since we always do MBR decoding, the ideal
strategy is to fit the true distribution with a good
model. Consider a “good model” that includes unary
and grandparent factors. Exact inference is possible
here in O(n4) time by dynamic programming (Koo
and Collins, 2010, Model 0). Table 1 shows that
CLL training with exact inference indeed does well
on test data—but that accuracy falls if we substitute
fast approximate inference (4 iterations of BP). Our
proposed L2 training is able to close the gap, just as
intended. That is, we succesfully train a few itera-
tions of an approximate O(n3) algorithm to behave
as well as an exact O(n4) algorithm.

Other Languages Our final experiments train and
test our parsers on 19 languages from CoNLL-
2006/2007 (Table 2). We find that, on average across
languages, approximation-aware training with an L2

objective obtains higher UAS than CLL training.
This result holds for both our poorest model (1st-
order) and our richest one (2nd-order with grandpar-
ent and sibling factors), using 1, 2, 4, or 8 iterations
of BP. Notice that the approximation-aware train-
ing doesn’t always outperform CLL training—only
in the aggregate. Again, we see the trend that our
training approach yields larger gains when BP is re-
stricted to a small number of maximum iterations. It
is possible that larger training sets would also favor
our approach, by providing a clearer signal of how
to reduce the objective (8).
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1ST-ORDER 2ND-ORDER (WITH GIVEN NUM. BP ITERATIONS)
1 2 4 8

LANGUAGE CLL L2 − CLL CLL L2 − CLL CLL L2 − CLL CLL L2 − CLL CLL L2 − CLL

AR 77.63 -0.26 73.39 +2.21 77.05 -0.17 77.20 +0.02 77.16 -0.07
BG 90.38 -0.76 89.18 -0.45 90.44 +0.04 90.73 +0.25 90.63 -0.19
CA 90.47 +0.30 88.90 +0.17 90.79 +0.38 91.21 +0.78 91.49 +0.66
CS 84.69 -0.07 79.92 +3.78 82.08 +2.27 83.02 +2.94 81.60 +4.42
DA 87.15 -0.12 86.31 -1.07 87.41 +0.03 87.65 -0.11 87.68 -0.10
DE 88.55 +0.81 88.06 0.00 89.27 +0.46 89.85 -0.05 89.87 -0.07
EL 82.43 -0.54 80.02 +0.29 81.97 +0.09 82.49 -0.16 82.66 -0.04
EN 88.31 +0.32 85.53 +1.44 87.67 +1.82 88.63 +1.14 88.85 +0.96
ES 81.49 -0.09 79.08 -0.37 80.73 +0.14 81.75 -0.66 81.52 +0.02
EU 73.69 +0.11 71.45 +0.85 74.16 +0.24 74.92 -0.32 74.94 -0.38
HU 78.79 -0.52 76.46 +1.24 79.10 +0.03 79.07 +0.60 79.28 +0.31
IT 84.75 +0.32 84.14 +0.04 85.15 +0.01 85.66 -0.51 85.81 -0.59
JA 93.54 +0.19 93.01 +0.44 93.71 -0.10 93.75 -0.26 93.47 +0.07
NL 76.96 +0.53 74.23 +2.08 77.12 +0.53 78.03 -0.27 77.83 -0.09
PT 86.31 +0.38 85.68 -0.01 87.01 +0.29 87.34 +0.08 87.30 +0.17
SL 79.89 +0.30 78.42 +1.50 79.56 +1.02 80.91 +0.03 80.80 +0.34
SV 87.22 +0.60 86.14 -0.02 87.68 +0.74 88.01 +0.41 87.87 +0.37
TR 78.53 -0.30 77.43 -0.64 78.51 -1.04 78.80 -1.06 78.91 -1.13
ZH 84.93 -0.39 82.62 +1.43 84.27 +0.95 84.79 +0.68 84.77 +1.14

AVG. 83.98 +0.04 82.10 +0.68 83.88 +0.41 84.41 +0.19 84.34 +0.31

Table 2: Results on 19 languages from CoNLL-2006/2007. For languages appearing in both datasets, the 2006 version
was used, except for Chinese (ZH). Evaluation follows the 2006 conventions and excludes punctuation. We report
absolute UAS for the baseline (CLL) and the improvement in UAS for L2 over CLL (L2 − CLL) with positive/negative
differences in blue/red. The average UAS and average difference across all languages (AVG.) is given.

8 Discussion

The purpose of this work was to explore ERMA and
related training methods for models which incorpo-
rate structured factors. We applied these methods
to a basic higher-order dependency parsing model,
because that was the simplest and first instance of
structured BP (Smith and Eisner, 2008). In future
work, we hope to explore further models with struc-
tured factors—particularly those which jointly ac-
count for multiple linguistic strata (e.g. syntax, se-
mantics, and topic). Another natural extension of
this work is to explore other types of factors: here we
considered only log-linear potential functions (com-
monly used in CRFs), but any differentiable func-
tion would be appropriate, such as a neural network
(Durrett and Klein, 2015; Gormley et al., 2015b).

Our primary contribution is approximation-aware
training for structured BP. We have specifically
presented message-passing formulas for any factor
whose belief’s partition function can be computed
as the total weight of all hyperpaths in a weighted
hypergraph. This would suffice to train the struc-
tured BP systems that have been built for projective

dependency parsing (Smith and Eisner, 2008), CNF
grammar parsing (Naradowsky et al., 2012), TAG
(Auli and Lopez, 2011), ITG-constraints for phrase
extraction (Burkett and Klein, 2012), and graphical
models over strings (Dreyer and Eisner, 2009).

9 Conclusions

We introduce a new approximation-aware learning
framework for belief propagation with structured
factors. We present differentiable objectives for
both empirical risk minimization (à la ERMA) and a
novel objective based on L2 distance between the in-
ferred beliefs and the true edge indicator functions.
Experiments on the English Penn Treebank and 19
languages from CoNLL-2006/2007 shows that our
estimator is able to train more accurate dependency
parsers with fewer iterations of belief propagation
than standard conditional log-likelihood training, by
taking approximations into account. For additional
details, see the tech report version of this paper
(Gormley et al., 2015a). Our code is available in
a general-purpose library for structured BP, hyper-
graphs, and backprop (Gormley, 2015).
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