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Abstract

In this paper, we study the problems of opin-
ion expression extraction and expression-level
polarity and intensity classification. Tradi-
tional fine-grained opinion analysis systems
address these problems in isolation and thus
cannot capture interactions among the tex-
tual spans of opinion expressions and their
opinion-related properties. We present two
types of joint approaches that can account for
such interactions during 1) both learning and
inference or 2) only during inference. Exten-
sive experiments on a standard dataset demon-
strate that our approaches provide substantial
improvements over previously published re-
sults. By analyzing the results, we gain some
insight into the advantages of different joint
models.

1 Introduction

Automatic extraction of opinions from text has at-
tracted considerable attention in recent years. In
particular, significant research has focused on ex-
tracting detailed information for opinions at the fine-
grained level, e.g. identifying opinion expressions
within a sentence and predicting phrase-level po-
larity and intensity. The ability to extract fine-
grained opinion information is crucial in supporting
many opinion-mining applications such as opinion
summarization, opinion-oriented question answer-
ing and opinion retrieval.

In this paper, we focus on the problem of identi-
fying opinion expressions and classifying their at-
tributes. We consider as an opinion expression

any subjective expression that explicitly or implic-
itly conveys emotions, sentiment, beliefs, opinions
(i.e. private states) (Wiebe et al., 2005), and con-
sider two key attributes — polarity and intensity —
for characterizing the opinions. Consider the sen-
tence in Figure 1, for example. The phrases “a bias
in favor of” and “being severely criticized” are opin-
ion expressions containing positive sentiment with
medium intensity and negative sentiment with high
intensity, respectively.

Most existing approaches tackle the tasks of opin-
ion expression extraction and attribute classification
in isolation. The first task is typically formulated as
a sequence labeling problem, where the goal is to la-
bel the boundaries of text spans that correspond to
opinion expressions (Breck et al., 2007; Yang and
Cardie, 2012). The second task is usually treated as
a binary or multi-class classification problem (Wil-
son et al., 2005; Choi and Cardie, 2008; Yessenalina
and Cardie, 2011), where the goal is to assign a
class label to a text fragment (e.g. a phrase or a sen-
tence). Solutions to the two tasks can be applied in a
pipeline architecture to extract opinion expressions
and their attributes. However, pipeline systems suf-
fer from error propagation: opinion expression er-
rors propagate and lead to unrecoverable errors in
attribute classification.

Limited work has been done on the joint modeling
of opinion expression extraction and attribute clas-
sification. Choi and Cardie (2010) first proposed
a joint sequence labeling approach to extract opin-
ion expressions and label them with polarity and in-
tensity. Their approach treats both expression ex-
traction and attribute classification as token-level se-
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He demonstrated a bias in favor of medium the rebels despite being severely criticized high.

Figure 1: An example sentence annotated with opinion expressions and their polarity and intensity. We use colored
boxes to mark the textual spans of opinion expressions where green (red) denotes positive (negative) polarity, and use
subscripts to denote intensity.

quence labeling tasks, and thus cannot model the
label distribution over expressions even though the
annotations are given at the expression level. Jo-
hansson and Moschitti (2011) considered a pipeline
of opinion extraction followed by polarity classifica-
tion and propose re-ranking its k-best outputs using
global features. One key issue, however, is that the
approach enumerates the k-best output in a pipeline
manner and thus they do not necessarily correspond
to the k-best global decisions. Moreover, as the
number of opinion attributes grows, it is not clear
how to identify the best k for each attribute.

In contrast to existing approaches, we formu-
late opinion expression extraction as a segmenta-
tion problem and attribute classification as segment-
level attribute labeling. To capture their interac-
tions, we present two types of joint approaches: (1)
joint learning approaches, which combine opinion
segment detection and attribute labeling into a sin-
gle probabilistic model, and estimate parameters for
this joint model; and (2) joint inference approaches,
which build separate models for opinion segment
detection and attribute labeling at training time, and
jointly apply these (via a single objective function)
only at test time to identify the best “combined” de-
cision of the two models.

To investigate the effectiveness of our approaches,
we conducted extensive experiments on a standard
corpus for fine-grained opinion analysis (the MPQA
corpus (Wiebe et al., 2005)). We found that
all of our proposed approaches provide substan-
tial improvements over the previously published re-
sults. We also compared our approaches to a strong
pipeline baseline and observed that joint learning re-
sults in a significant boost in precision while joint
inference, with an appropriate objective, can signifi-
cantly boost both precision and recall and obtain the
best overall performance. Error analysis provides
additional understanding of the differences between
the joint learning and joint inference approaches,
and suggests that joint inference can be more effec-
tive and more efficient for the task in practice.

2 Related Work

Significant research effort has been invested in
the task of fine-grained opinion analysis in recent
years (Wiebe et al., 2005; Wilson et al., 2009). Wil-
son et al. (2005) first motivated and studied phrase-
level polarity classification on an open-domain cor-
pus. Choi and Cardie (2008) developed inference
rules to capture compositional effects at the lexical
level on phrase-level polarity classification. Yesse-
nalina and Cardie (2011) and Socher et al. (2013)
learn continuous-valued phrase representations by
combining the representations of words within an
opinion expression and using them as features for
classifying polarity and intensity. All of these ap-
proaches assume the opinion expressions are avail-
able before training the classifiers. However, in
real-world settings, the spans of opinion expres-
sions within the sentence are not available. In fact,
Choi and Cardie (2008) demonstrated that the per-
formance of expression-level polarity classification
degrades as more surrounding (but irrelevant) con-
text is considered. This motivates the additional task
of identifying the spans of opinion expressions.

Opinion expression extraction has been success-
fully tackled via sequence tagging methods. Breck
et al. (2007) applied conditional random fields to as-
sign each token a label indicating whether it belongs
to an opinion expression or not. Yang and Cardie
(2012) employed a segment-level sequence labeler
based on semi-CRFs with rich phrase-level syntac-
tic features. In this work, we also utilize semi-CRFs
to model opinion expression extraction.

There has been limited work on the joint modeling
of opinion expression extraction and attribute classi-
fication. Choi and Cardie (2010) first developed a
joint sequence labeler that jointly tags opinions, po-
larity and intensity by training CRFs with hierarchi-
cal features (Zhao et al., 2008). One major drawback
of their approach is that it models both opinion ex-
traction and attribute labeling as tasks in token-level
sequence labeling, and thus cannot model their inter-
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actions at the expression-level. Johansson and Mos-
chitti (2011) and Johansson and Moschitti (2013)
propose a joint approach to opinion expression ex-
traction and polarity classification by re-ranking its
k-best output using global features. One major is-
sue with their approach is that the k-best candidates
were obtained without global reasoning about the
relative uncertainty in the individual stages. As the
number of considered attributes grows, it also be-
comes harder to decide how many predictions to se-
lect from each attribute classifier.

Compared to the existing approaches, our joint
models have the advantage of modeling opinion ex-
pression extraction and attribute classification at the
segment-level, and more importantly, they provide a
principled way of combining the segmentation and
classification components.

Our work follows a long line of joint modeling re-
search that has demonstrated great success for vari-
ous NLP tasks (Roth and Yih, 2004; Punyakanok et
al., 2004; Finkel and Manning, 2010; Rush et al.,
2010; Choi et al., 2006; Yang and Cardie, 2013).
Methods tend to fall into one of two joint mod-
eling frameworks: the first learns a joint model
that captures global dependencies; the other uses
independently-learned models and considers global
dependencies only during inference. In this work,
we study both types of joint approaches for opinion
expression extraction and opinion attribute classifi-
cation.

3 Approach

In this section, we present our approaches for the
joint modeling of opinion expression extraction and
attribute classification. Specifically, given a sen-
tence, our goal is to identify the spans of opinion
expressions, and simultaneously assign their polar-
ity and intensity. Training data consists of a col-
lection of sentences with manually annotated opin-
ion expression spans, each associated with a polar-
ity label that takes values from {positive, negative,
neutral}, and an intensity label, taking values from
{high, medium, low}.

In the following, we first describe how we model
opinion expression extraction as a segment-level se-
quence labeling problem and model attribute predic-
tion as a classification problem. Then we propose

our joint models for combining opinion segmenta-
tion and attribute classification.

3.1 Opinion Expression Extraction

The problem of opinion expression extraction as-
sumes tokenized sentences as input and outputs
the spans of the opinion expressions in each sen-
tence. Previous work has tackled this problem us-
ing token-based sequence labeling methods such as
CRFs (e.g. Breck et al. (2007), Yang and Cardie
(2012)). However, semi-Markov CRFs (Sarawagi
and Cohen, 2004) (henceforth semi-CRF) have been
shown more appropriate for the task than CRFs since
they allow contiguous spans in the input sequence
(e.g. a noun phrase) to be treated as a group rather
than as distinct tokens. Thus, they can easily capture
segment-level information like syntactic constituent
structure (Yang and Cardie, 2012). Therefore we
adopt the semi-CRF model for opinion expression
extraction here.

Given a sentence x, denote an opinion seg-
mentation as ys = 〈(s0, b0), ..., (sk, bk)〉, where
the s0:k are consecutive segments that form a
segmentation of x; each segment si = (ti, ui)
consists of the positions of the start token ti and
an end token ui; and each si is associated with
a binary variable bi ∈ {I,O}, which indicates
whether it is an opinion expression (I) or not
(O). Take the sentence in Figure 1, for exam-
ple. The corresponding opinion segmentation is
ys = 〈((0, 0), O), ((1, 1), O), ((2, 6), I), ((7, 8), O)
, ((9, 9), O), ((10, 12), I), ((13, 13), O)〉, where
each segment corresponds to an opinion expression
or to a phrase unit that does not express any opinion.

Using a semi-Markov CRF, we model the condi-
tional distribution over all possible opinion segmen-
tations given the input x:

P (ys|x) =
exp{∑|ys|

i=1 θ · f(ysi , ysi−1 ,x)}∑
y′s∈Y exp{

∑|y′s|
i=1 θ · f(y′si , y′si−1

,x)}
(1)

where θ denotes the model parameters, ysi = (si, bi)
and f denotes a feature function that encodes the po-
tentials of the boundaries for opinion segments and
the potentials of transitions between two consecutive
labeled segments.
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Note that the probability is normalized over all
possible opinion segmentations. To reduce the train-
ing complexity, we adopted the method described
in Yang and Cardie (2012), which only normalizes
over segment candidates that are plausible accord-
ing to the parsing structure of the sentence. Figure 2
shows some candidate segmentations generated for
an example sentence. Such a technique results in a
large reduction in training time and was shown to be
effective for identifying opinion expressions.

The standard training objective of a semi-CRF, is
to minimize the log loss

L(θ) = argmin
θ
−

N∑

i=1

logP (y
(i)
s |x(i)) (2)

It penalizes any predicted opinion expression whose
boundaries do not exactly align with the boundaries
of the correct opinion expressions using 0-1 loss.
Unfortunately, exact boundary matching is often not
used as an evaluation metric for opinion expres-
sion extraction since it is hard for human annota-
tors to agree on the exact boundaries of opinion ex-
pressions.1 Most previous work used proportional
matching (Johansson and Moschitti, 2013) as it takes
into account the overlapping proportion of the pre-
dicted and the correct opinion expressions to com-
pute precision and recall. To incorporate this eval-
uation metric into training, we use softmax-margin
(Gimpel and Smith, 2010) that replace P (y(i)

s |x(i))

in (2) with Pcost(y
(i)
s |x(i)), which equals

exp{∑|ys|
i=1 θ · f(ysi , ysi−1 ,x)}∑

y′s∈Y exp{
∑|y′s|

i=1 θ · f(y′si , y′si−1
,x) + l(y′s,ys)}

and we define the loss function l(y′s,ys) as

|y′s|∑

i=1

|ys|∑

j=1

(1{b′i 6= bj ∧ b′i 6= O}|sj ∩ s
′
i|

|s′i|

+ 1{b′i 6= bj ∧ bj 6= O}|sj ∩ s
′
i|

|sj |
)

which is the sum of the precision and recall errors of
segment labeling using proportional matching. The
loss-augmented probability is only computed during

1The inter-annotator agreement on boundaries of opinion
expressions is not stressed in MPQA (Wiebe et al., 2005).

We hope to eradicate the eternal scourge of corruption .
[     ][          ][   ] [                  ][                                         ][   ][                      ][ ]
[     ][          ][   ] [                  ][                                         ][                            ][ ]
[     ][          ][   ] [                                                              ][                           ][ ]
[     ][          ][   ] [                                                                                            ][ ]

Figure 2: Examples of Segmentation Candidates

training. The more the proposed labeled segmenta-
tion overlaps with the true labeled segmentation for
x, the less it will be penalized.

During inference, we can obtain the best labeled
segmentation by solving

argmax
ys

P (ys|x) = argmax
ys

|ys|∑

i=1

θ · f(ysi , ysi−1 ,x)

This can be done efficiently via dynamic program-
ming:

V (t) = argmax
s=(u,t)∈s:t,y=(s,b),y′

G(y, y′)+V (u−1) (3)

where s:t denotes all candidate segments ending at
position t andG(y, y′) = θ ·f(y, y′,x). The optimal
ys
∗ can be obtained by computing V (n), where n is

the length of the sentence.

3.2 Opinion Attribute Classification
We consider two types of opinion attributes: polar-
ity and intensity. For each attribute, we model the
multinomial distribution of an attribute class given
a text segment Denoting the class variable for each
attribute as aj , we have

P (aj |xs) =
exp{φj · gj(aj ,xs)}∑

a′∈Aj
exp{φj · gj(a′,xs)}

(4)

where xs denotes a text segment, φj is a pa-
rameter vector and gj denotes feature functions
for attribute aj . The label space for polarity
classification is {positive, negative, neutral,∅}
and the label space for intensity classification is
{high,medium, low,∅}. We include an empty
value ∅ to denote assigning no attribute value to
those text segments that are not opinion expressions.

In the following description of our joint mod-
els, we omit the superscript on the attribute variable
and derive our models with one single opinion at-
tribute for simplicity. The derivations can be carried
through with more than one opinion attribute by as-
suming the independence of different attributes.
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3.3 The Joint Models

We propose two types of joint models for opinion
segmentation and attribute classification: (1) joint
learning models, which train a single sequence la-
beling model that maximizes a joint probability dis-
tribution over segmentation and attribute labeling,
and infers the most probable labeled segmentations
according to the joint probability; and (2) joint infer-
ence models, which train a sequence labeling model
for opinion segmentation and separately train classi-
fication models for attribute labeling, and combine
the segmentation and classification models during
inference to make global decisions. In the follow-
ing, we first present the joint learning models and
then introduce the joint inference models.

3.3.1 Joint Sequence Labeling
We can formulate joint opinion segmentation and

classification as a sequence labeling problem on the
label space Y = {y|y = 〈(s0, b̃0), ..., (sk, b̃k)〉}
where b̃i = (bi, ai) ∈ {I,O} × A, where bi is
a binary variable as described before and ai is an
attribute class variable associated with segment si.
Since only opinion expressions should be assigned
opinion attributes, we consider the following label-
ing constraints: ai = ∅ if and only if bi = O.

We can apply the same training and inference pro-
cedure described in Section 3.1 by replacing the la-
bel space ys with the joint label space y. Note that
the feature functions are shared over the joint label
space. For the loss function in the loss-augmented
objective, the opinion segment label b is also re-
placed with the augmented label b̃.

3.3.2 Hierarchical Joint Sequence Labeling
The above joint sequence labeling model does not

explicitly model the dependencies between opinion
segmentation and attribute labeling. The two sub-
tasks share the same set of features and parameters.
In the following, we introduce an alternative ap-
proach that explicitly models the conditional depen-
dency between opinion segmentation and attribute
labeling, and allows segmentation- and attribute-
specific parameters to be jointly learned in one sin-
gle model.

Note that the joint label space naturally forms
a hierarchical structure: the probability of choos-
ing a sequence label y can be interpreted as the

probability of first choosing an opinion segmenta-
tion ys = 〈(s0, b0), ..., (sk, bk)〉 given the input x,
and then choose a sequence of attribute labels ya =
〈a0, ..., ak〉 given the chosen segment sequence. Fol-
lowing this intuition, the joint probability can be de-
composed as

P (y|x) = P (ys|x)P (ya|ys,x)

where P (ys|x) is modeled as Equation (1) and

P (ya|ys,x) =

|ys|∏

i=1

P (ai|ysi ,x)

∝ exp{
|ys|∑

i=1

φ · g(ai, ysi ,x)}

where g denotes a feature function that encodes
attribute-specific information for discriminating dif-
ferent attribute classes for each segment.

For training, we can also apply a softmax-margin
by adding a loss function l(y′,y) to the denominator
of P (y|x) (as in the basic joint sequence labeling
model described in Section 3.3.1).

With the estimated parameters, we can infer the
optimal opinion segmentation and attribute labeling
by solving

argmax
ys,ya

P (ys|x)P (ya|ys,x)

We can apply a similar dynamic programming pro-
cedure by replaceing y in Equation (3) with y =
(s, b, a) andG(y, y′) with θ ·f(y, y′,x)+φ ·g(y,x).

Our decomposition of labels and features is sim-
ilar to the hierarchical construction of CRF features
in Choi and Cardie (2010). The difference is that
our model is based on semi-CRFs and the decompo-
sition is based on a joint probability. We will show
that this results in better performance than the meth-
ods in Choi and Cardie (2010) in our experiments.

3.3.3 Joint Inference
Modeling the joint probability of opinion seg-

mentation and attribute labeling is arguably elegant.
However, training can be expensive as the compu-
tation involves normalizing over all possible seg-
mentations and all possible attribute labelings for
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each segment. Thus, we also investigate joint in-
ference approaches which combine the separately-
trained models during inference without computing
the normalization term.

For opinion segmentation, we train a semi-CRF-
based model using the approach described in Sec-
tion 1. For attribute classification, we train a Max-
Ent model by maximizing P (aj |xs) in Equation (4).
As we only need to estimate the probability of an
attribute label given individual text segments, the
training data can be constructed by collecting a list
of text segments labeled with correct attribute labels.
The text segments do not need to form all possible
sentence segmentations. To construct such training
examples, we collected from each sentence all opin-
ion expressions labeled with their corresponding at-
tributes and use the remaining text segments as ex-
amples for the empty attribute value. The training of
the MaxEnt model is much more efficient than the
training of the segmentation model.

Joint Inference with Probability-based Esti-
mates To combine the separately-trained models at
inference time, a natural inference objective is to
jointly maximize the probability of opinion segmen-
tation and the probability of attribute labeling given
the chosen segmentation

argmax
ys,ya

P (ys|x)P ′(ya|ys,x) (5)

We approximate the conditional probability as

P ′(ya|ys,x) =

|ys|∏

i=1

P (ai|xsi)α (6)

where α ∈ (0, 1]. We found that α < 1 provides
better performance than α = 1 empirically. This is
an approximation since the distribution of attribute
labeling is estimated independently from the opinion
segmentation during training.

Joint Inference with Loss-based Estimates In-
stead of directly using the output probabilities of the
attribute classifiers, we explore an alternative that es-
timates P ′(ya|ys,x) based on the prediction uncer-
tainty:

P ′(ya|ys,x) ∝ exp(−α
|ys|∑

i=1

U(ai|xsi)) (7)

where U(ai|xsi) is a uncertainty function that mea-
sures the classification model’s uncertainty in its as-
signment of attribute class ai to segment xsi . In-
tuitively, we want to penalize attribute assignments
that are uncertain or favor attribute assignments with
low uncertainty. The prediction uncertainty is mea-
sured using the expected loss. The expected loss for
a predicted label a′ can be written as

Ea|xsi
[l(a, a′)] =

∑

a

P (a|xsi)l(a, a′)

where l(a, a′) is a loss function over a′ and the
true label a. We used the standard 0-1 loss func-
tion in our experiments2 and set U(ai|xsi) =
log(Ea|xsi

[l(a, ai)]).
Both joint inference objectives can be solved effi-

ciently via dynamic programming.

4 Features

We consider a set of basic features as well as task-
specific features for opinion segmentation and at-
tribute labeling, respectively.

4.1 Basic Features

Unigrams: word unigrams and POS tag unigrams
for all tokens in the segment candidate.
Bigrams: word bigrams and POS bigrams within
the segment candidate.
Phrase embeddings: for each segment candidate,
we associate with it a 300-dimensional phrase em-
bedding as a dense feature representation for the seg-
ment. We make use of the recently published word
embeddings trained on Google News (Mikolov et
al., 2013). For each segment, we compute the av-
erage of the word embedding vectors that comprise
the phrase. We omit words that are not found in the
vocabulary. If no words are found in the text seg-
ment, we assign a feature vector of zeros.
Opinion lexicon: For each word in the segment can-
didate, we include its polarity and intensity as indi-
cated in an existing Subjectivity Lexicon (Wilson et
al., 2005).

2The loss function can be tuned to better tradeoff precision
and recall according to the applications at hand. We did not
explore this option in this paper.
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4.2 Segmentation-specific Features

Boundary words and POS tags: word-level fea-
tures (words, POS, lexicon) before and after the seg-
ment candidate.
Phrase structure: the syntactic categories of the
deepest constituents that cover the segment in the
parse tree, e.g. NP, VP, TO VB.
VP patterns: VP-related syntactic patterns de-
scribed in Yang and Cardie (2012), e.g. VPsubj,
VParg, which have been shown useful for opinion
expression extraction.

4.3 Polarity-specific Features

Polarity count: counts of positive, negative and
neutral words within the segment candidate accord-
ing to the opinion lexicon.
Negation: indicator for negators within the segment
candidate.

4.4 Intensity-specific Features

Intensity count: counts of words with strong and
weak intensity within the segment candidate accord-
ing to the opinion lexicon.
Intensity dictionary: As suggested in Choi
and Cardie (2010), we include features indicat-
ing whether the segment contains an intensifier
(e.g. highly, really), a diminisher (e.g. little, less),
a strong modal verb (e.g. must, will), and a weak
modal verb (e.g. may, could).

5 Experiments

All our experiments were conducted on the MPQA
corpus (Wiebe et al., 2005), a widely used corpus
for fine-grained opinion analysis. We used the same
evaluation setting as in Choi and Cardie (2010),
where 135 documents were used for development
and 10-fold cross-validation was performed on a dif-
ferent set of 400 documents. Each training fold con-
sists of sentences labeled with opinion expression
boundaries and each expression is labeled with po-
larity and intensity. Table 1 shows some statistics of
the evaluation data.

We used precision, recall and F1 as evaluation
metrics for opinion extraction and computed them
using both proportional matching and binary match-
ing criteria. Proportional matching considers the
overlapping proportion of a predicted expression s

and a gold standard expression s∗, and computes
precision as

∑
s∈S

∑
s∗∈S∗

|s∩s∗|
|s| /|S| and recall as

∑
s∈S

∑
s∗∈S∗

|s∩s∗|
|s∗| /|S∗|, where S and S∗ denote

the set of predicted opinion expressions and the set
of correct opinion expressions, respectively. Binary
matching is a more relaxed metric that considers a
predicted opinion expression to be correct if it over-
laps with a correct opinion expression.

We experimented with the following models:
(1) PIPELINE: first extracts the spans of opinion

expressions using the semi-CRF model in Section
3.1, and then assigns polarity and intensity to the ex-
tracted opinion expressions using MaxEnt models in
Section 3.2. Note that the label space of the MaxEnt
models does not include ∅ since they assume that
all the opinion expressions extracted by the previous
stage are correct.

(2) JSL: the joint sequence labeling method de-
scribed in Section 3.3.1.

(3) HJSL: the hierarchical joint sequence labeling
method described in Section 3.3.2.

(4) JI-PROB: the joint inference method using
probability-based estimates (Equation 6).

(5) JI-LOSS: the joint inference method using
loss-based estimates (Equation 7).
We also compare our results with previously pub-
lished results from Choi and Cardie (2010) on the
same task.

All our models are log linear models. We use L-
BFGS with L2 regularization for training and set the
regularization parameter to 1.0. We set the scaling
parameter α in JI-PROB and JI-LOSS via grid search
over values between 0.1 and 1 with increments of
0.1 using the development set.

We consider the same set of features described in
Section 4 in all the models. For the pipeline and
joint inference models where the opinion segmen-
tator and attribute classifiers are separately trained,
we employ basic features plus segmentation-specific
features in the opinion segmentator; and employ ba-
sic features plus attribute-specific features in the at-
tribute classifiers.

5.1 Results

We would like to first investigate how much we can
gain from using the loss-augmented training com-
pared to using the standard training objective. Loss-
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Number of Opinion Expressions
Positive Negative Neutral

2170 4863 6368
High Medium Low
2805 5721 4875

Number of Documents 400
Number of Sentences 8241

Average Length of Opinion Expressions 2.86 words

Table 1: Statistics of the evaluation corpus

augmented training can be applied to the training of
the opinion segmentation model used in the pipeline
method and the joint inference methods, or be ap-
plied to the training of the joint sequence labeling
approaches, JSL and HJSL (the loss function takes
into account both the span overlap and the match-
ing of attribute values). We evaluate two versions of
each method: one uses loss-augmented training and
one uses standard log-loss training. Table 2 shows
the results of opinion expression detection without
evaluating their attributes. Similar trends can be ob-
served in the results of opinion expression detection
with respect to each attribute. We can see that in-
corporating the evaluation-metric-based loss func-
tion during training consistently improves the per-
formance for all models in terms of F1 measure.
This confirms the effectiveness of loss-augmented
training of our sequence models for opinion extrac-
tion. As a result, all following results are based on
the loss-augmented version of our models.

Comparing the results of different models in Ta-
ble 2, we can see that PIPELINE provides a strong
baseline. In comparison, JSL and HJSL signifi-
cantly improve precision but fail in recall, which
indicates that joint sequence labeling is more con-
servative and precision-biased for extracting opinion
expressions. HJSL significantly outperforms JSL,
and this confirms the benefit of modeling the con-
ditional dependency between opinion segmentation
and attribute classification. In addition, we see that
combining opinion segmentation and attribute clas-
sification without joint training (JI-PROB and JI-
LOSS) hurt precision but improves recall (vs. JSL
and HJSL). JI-LOSS presents the best F1 perfor-
mance and significantly outperforms the PIPELINE

baseline in all evaluation metrics. This suggests that
JI-LOSS provides an effective joint inference objec-

tive and is able to provide more balanced precision
and recall than other joint approaches.

Table 3 shows the performance on opinion extrac-
tion with respect to polarity and intensity attributes.
Similarly, we can see that JI-LOSS outperforms all
other baselines in F1; HJSL outperforms JSL but
is slightly worse than PIPELINE in F1; JI-PROB is
recall-oriented and less effective than JI-LOSS.

We hypothesize that the worse performance of
joint sequence labeling is due to its strong assump-
tion on the dependencies between opinion segmen-
tation and attribute labeling in the training data.
For example, the expression “fundamentally unfair
and unjust” as a whole is labeled as an opinion ex-
pression with negative polarity. However, the sub-
expression “unjust” can be also viewed as a nega-
tive expression but it is not annotated as an opinion
expression in this example (as MPQA does not con-
sider nested opinion expressions). As a result, the
model would wrongly prefer an empty attribute to
the expression “unjust”. However, in our joint in-
ference approaches, the attribute classification mod-
els are trained independently from the segmentation
model, and the training examples for the classifiers
only consist of correctly labeled expressions (“un-
just” as a nested opinion expression in this example
would not be considered in the training data for the
attribute classifier). Therefore, the joint inference
approaches do not suffer from this issue. Although
joint inference does not account for task dependen-
cies during training, the promising performance of
JI-LOSS demonstrates that modeling label depen-
dencies during inference can be more effective than
the PIPELINE baseline.

In Table 3, we can see that the improvement of JI-
LOSS is less significant in the positive class and the
high class. This is due to the lack of training data in
these classes. The improvement in the medium class
is also less significant. This may be because it is in-
herently harder to disambiguate medium from low.
In general, we observe that extracting opinion ex-
pressions with correct intensity is a harder task than
extracting opinion expressions with correct polarity.

Table 4 presents the F1 scores (due to space limit
only F1 scores are reported) for all subtasks using
the binary matching metric. We include the previ-
ously published results of Choi and Cardie (2010)
for the same task using the same fold split and eval-
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Loss-augmented Training Standard Training
P R F1 P R F1

PIPELINE 60.96 63.29 62.10 60.05 60.59 60.32
JSL 64.98† 54.60 59.29 67.09† 50.56 57.62

HJSL 66.16∗ 56.77 61.05 67.98† 50.81 58.11
JI-PROB 50.95 77.44∗ 61.32 50.06 76.98∗ 60.54
JI-LOSS 63.77† 64.51† 64.04∗ 64.97† 61.55† 63.12∗

Table 2: Opinion Expression Extraction (Proportional Matching). In all tables, we use bold to indicate the
highest score among all the methods; use ∗ to indicate statistically significant improvements (p < 0.05) over
all the other methods under the paired-t test; use † to denote statistically significance (p < 0.05) over the
pipeline baseline.

Positive Negative Neutral
P R F1 P R F1 P R F1

PIPELINE 45.26 43.07 44.04 50.59 47.91 49.11 40.98 49.30 44.57
JSL 50.58† 32.34 39.37 50.22 44.01 46.81 46.83† 39.81 42.85

HJSL 50.34† 37.06 42.59 53.29† 43.98 48.07 47.29† 43.27 45.03
JI-PROB 36.47 47.81∗ 41.24 40.83 54.40∗ 46.51 33.59 59.22∗ 42.66
JI-LOSS 46.44† 44.58† 45.40∗ 54.88∗ 48.50 51.40∗ 43.42† 52.02† 47.09∗

High Medium Low
P R F1 P R F1 P R F1

PIPELINE 40.98 28.10 33.25 35.44 44.72 39.36 31.19 34.46 32.63
JSL 37.91 30.83† 33.88 39.07† 37.31 38.05 40.95† 26.71 32.24

HJSL 41.05 28.80 33.63 39.06† 39.71 39.17 40.01† 29.88 34.12
JI-PROB 34.82 30.94† 32.54 29.16 50.89∗ 36.89 25.06 42.99∗ 31.53
JI-LOSS 46.11∗ 26.36 33.39 37.58† 43.58 40.15∗ 33.85† 40.92† 36.93∗

Table 3: Opinion Extraction with Correct Attributes (Proportional Matching)

uation metric. CRF-JSL and CRF-HJSL are both
joint sequence labeling methods based on CRFs.
Different from JSL and HJSL, they perform se-
quence labeling at the token level instead of the seg-
ment level, and in HJSL, the decomposition of la-
bels are not based on the decomposition of the joint
probability of opinion segmentation and attribute la-
beling. We can see that both the pipeline and joint
methods clearly outperform previous results in all
evaluation criteria.3 We can also see that JI-LOSS

provides the best performance among all baselines.

5.1.1 Error Analysis

Joint vs. Pipeline We found that many errors
made by the pipeline system are due to error prop-
agation. Table 5 lists three examples, representing
three types of the propagated errors:(1) the attribute
classifiers miss the prediction since the opinion ex-

3Significance test was not conducted over the results in Choi
and Cardie (2010) as we do not have their 10 fold results.

pression extractor fails to identify the opinion ex-
pression; (2) the attribute classifiers assign attributes
to a non-opinionated expression since it was mistak-
enly extracted; (3) the attribute classifiers misclas-
sify the attributes since the boundaries of opinion ex-
pressions are not correctly determined by the opin-
ion expression extractor. Our joint models are able
to correct many of these errors, such as the examples
in Table 5, due to the modeling of the dependency
between opinion expression extraction and attribute
classification.

Joint Learning vs. Joint Inference Note that
JSL and HJSL both employ joint learning while JI-
PROB and JI-LOSS employ joint inference. To in-
vestigate the difference between these two types of
joint models, we look into the errors made by HJSL
and JI-LOSS. In general, we observed that HJSL ex-
tracts many fewer opinion expressions compared to
JI-LOSS, and as a result, it presents high precision
but low recall. The first two examples in Table 6
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Extraction Positive Negative Neutral High Medium Low
PIPELINE 73.30 51.50 58.45 52.45 39.34 47.08 39.05

JSL 69.76 45.24 57.11 50.25 41.48† 45.88 36.49
HJSL 71.43 49.08 58.38 52.25 41.06† 46.82 38.45

JI-PROB 74.37† 50.93 58.20 54.03† 39.80 46.65 40.73†

JI-LOSS 75.11∗ 53.02∗ 62.01∗ 54.33† 41.79† 47.38 42.53∗

Previous work (Choi and Cardie (2010))
CRF-JSL 60.5 41.9 50.3 41.2 38.4 37.6 28.0

CRF-HJSL 62.0 43.1 52.8 43.1 36.3 40.9 30.7

Table 4: Opinion Extraction Results (Binary Matching)

Example Sentences Pipeline Joint Models
It is the victim of an explosive situation high at the eco-
nomic, ...

No opinions × X
A white farmer who was shot dead Monday was the
10th to be killed.

the 10th to be killed medium × X
They would “ fall below minimum standards medium for
humane medium treatment”.

minimum standards for humane
treatment medium × X

Table 5: Examples of mistakes made by the pipeline baseline that are corrected by the joint models

are cases where HJSL gains in precision and loses
in recall, respectively. The last example in Table 6
shows an error made by HJSL but corrected by JI-
LOSS. Theoretically, joint learning is more powerful
than joint inference as it models the task dependen-
cies during training. However, we only observe im-
provements on precision and see drops in recall. As
discussed before, we hypothesize that this is due to
the mismatch of dependency assumptions between
the model and the jointly annotated data. We found
that joint inference can be superior to both pipeline
and joint learning, and it is also much more efficient
in training. In our experiments on an Amazon EC2
instance with 64-bit processor, 4 CPUs and 15GB
memory, training for the joint learning approaches
took one hour for each training fold, but only 5 min-
utes for the joint inference approaches.

5.2 Additional Experiments

5.2.1 Evaluation with Reranking

Previous work (Johansson and Moschitti, 2011)
showed that reranking is effective in improving the
pipeline of opinion expression extraction and polar-
ity classification. We extended their approach to
handle both polarity and intensity and investigated
the effect of reranking on both the pipeline and joint
models. For the pipeline model, we generated 64-

best (distinct) output with 4-best labeling at each
pipeline stage; for the joint models, we generated
50-best (distinct) output using Viterbi-like dynamic
programming. We trained the reranker using the on-
line PassiveAggressive algorithm (Crammer et al.,
2006) as in Johansson and Moschitti (2013) with
100 iterations and a regularization constant C =
0.01. For features, we included the probability out-
put by the base models, the polarity and intensity of
each pair of extracted opinion expressions, and the
word sequence and the POS sequence between the
adjacent pairs of extracted opinion expressions.

Table 7 shows the reranking performance (F1) for
all subtasks. We can see that after reranking, JI-
LOSS still provides the best performance and HJSL
achieves comparable performance to PIPELINE. We
also found that reranking leads to less performance
gain for the joint inference approaches than for the
joint learning approaches. This is because the k-best
output of JI-PROB and JI-LOSS present less diver-
sity than JSL and HJSL. A similar issue for rerank-
ing has also been discussed in Finkel et al. (2006).

5.2.2 Evaluation on Sentence-level Tasks
As an additional experiment, we consider a su-

pervised sentence-level sentiment classification task
using features derived from the prediction output
of different opinion extraction models. As a stan-
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Example Sentences JointLearn JointInfer
The expression is undoubtedly strong and well

thought out high.
X well thought out medium ×

But the Sadc Ministerial Task Force said the election
was free and fair medium. No opinions × X

The president branded high as the “axis of evil” high in
his statement ...

of evil high × X

Table 6: Examples of mistakes that are made by the joint learning model but are corrected by the joint
inference model and vice versa. We use the same colored box notation as before, and use yellow color to
denote neutral sentiment.

Extraction Positive Negative Neutral High Medium Low
PIPELINE + reranking 73.72 51.45 60.51 53.24 40.07 47.65 40.47

JSL + reranking 72.02 47.52 59.81 52.84 41.04† 46.58 39.40
HJSL + reranking 72.60 50.78 60.85 53.45 41.04† 47.75 40.08

JI-PROB + reranking 74.81† 51.45 59.59 53.98 40.66 46.87 40.80
JI-LOSS + reranking 75.59† 53.29∗ 62.50∗ 54.94∗ 41.79∗ 47.67 42.66∗

Table 7: Opinion Extraction with Reranking (Binary Matching)

Features Acc Positive Negative Neutral
BOW 65.26 51.90 77.47 36.41

PIPELINE-OP 67.41 55.49 79.42 39.48
JSL-OP 65.86 55.97 77.68 36.46

HJSL-OP 66.79 55.12 79.29 37.56
JI-PROB-OP 67.13 56.49 79.30 38.49
JI-LOSS-OP 68.23∗ 57.32∗ 80.12∗ 40.45∗

Table 8: Sentence-level Sentiment Classification

dard baseline, we train a MaxEnt classifier using
unigrams, bigrams and opinion lexicon features ex-
tracted from the sentence. Using the prediction out-
put of an opinion extraction model, we construct fea-
tures by using only words from the extracted opinion
expressions, and include the predicted opinion at-
tributes as additional features. We hypothesize that
the more informative the extracted opinion expres-
sions are, the more they can contribute to sentence-
level sentiment classification as features. Table 8
shows the results in terms of classification accuracy
and F1 score in each sentiment category. BOW is
the standard MaxEnt baseline. We can see that us-
ing features constructed from the opinion expres-
sions always improved the performance. This con-
firms the informativeness of the extracted opinion
expressions. In particular, using the opinion expres-
sions extracted by JI-LOSS gives the best perfor-

mance among all the baselines in all evaluation crite-
ria. This is consistent with its superior performance
in our previous experiments.

6 Conclusion

We address the problem of opinion expression ex-
traction and opinion attribute classification by pre-
senting two types of joint models: joint learning,
which optimizes the parameters of different sub-
tasks in a joint probabilistic framework; joint infer-
ence, which optimizes the separately-trained mod-
els jointly during inference time. We show that
our models achieve substantially better performance
than the previously published results, and demon-
strate that joint inference with an appropriate objec-
tive can be more effective and efficient than joint
learning for the task. We also demonstrate the use-
fulness of output of our systems for sentence-level
sentiment analysis tasks. For future work, we plan
to improve joint modeling for the task by capturing
semantic relations among different opinion expres-
sions.
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