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Abstract
In this paper we address the problem of finding time-optimal search paths in known environments. In par-
ticular, we address the problem of searching a known environment for an object whose unknown location
is characterized by a known probability density function (PDF). With this formulation, the time required to
find the object is a random variable induced by the choice of search path together with the PDF for the ob-
ject’s location. The optimization problem we consider is that of finding the path that minimizes the expected
value of the time required to find the object. As the complexity of the problem precludes finding an exact
optimal solution, we propose a two-level, heuristic approach to finding the optimal search path. At the top
level, we use a decomposition of the workspace based on critical curves to impose a qualitative structure
on the solution trajectory. At the lower level, individual segments of this trajectory are refined using local
numerical optimization methods. We have implemented the algorithm and present simulation results for the
particular case when the object’s location is specified by the uniform PDF.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2009
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1. Introduction

In this paper, we address the problem of minimizing the expected value of the time
required to find an object in a known two-dimensional (2-D) environment modeled
by polygons. This corresponds to finding a search trajectory that will minimize the
average time to find an object if the search is performed many times. We assume that
the search is performed by a mobile robot that is capable of recognizing the object
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and that all prior knowledge of the object’s position is encoded in a probability
density function (PDF) defined on the environment. We believe that the potential
applications are many, from finding a specific piece of art in a museum to search
and detection of injured people inside a building.

In this paper, we deal mainly with the theoretical development of the planning
algorithms to deal with this problem. The implementation of our algorithms in a real
robot would need significantly more development; in particular, computer vision
algorithms able to robustly detect the search object.

The work we report here represents a combination and an extension of our pre-
vious work. In Ref. [1], we presented an approach to the problem of searching an
object by sensing at discrete locations in a 2-D environment. In that case, we used
a visibility-based decomposition of the polygon to convert the problem into a com-
binatoric one. In Ref. [2] we extended our work to 3-D environments. In Ref. [2],
we again assumed that the robot only senses at discrete locations.

However, searching for an object with a robot that senses the environment contin-
uously has advantages over sensing only at discrete locations. A robot that senses at
discrete locations can only find the object when it reaches one of the locations, even
if the object had entered its field of view long before. A robot that senses the envi-
ronment continuously can find the object as soon as the object is within its field of
view. In addition, in a continuous sensing scheme the robot may perform temporal
integration of data, which allows robustness in the sensing data processing needed
to detect the object. In our formulation, we assume that the robot is equipped with
an omnidirectional sensor. Current technology provides these type of sensors, e.g.,
omnidirectional cameras [3, 4]. These are some of our motivations to propose a
motion strategy where the robot senses the environment continuously as it moves.

In Ref. [5], we presented methods to find locally optimal continuous trajectories
between adjacent regions in a polygonal decomposition of the workspace. In the
present paper, we present a two-level planner that gives a full, heuristic solution
to the problem of minimizing the expected time to find an object with a robot that
senses continuously the environment. Our main contributions are:

(i) We claim that our work presents a new paradigm for search tasks. This corre-
sponds to minimizing the expected value of the time to find an object. It can be
specially useful in applications where the time assigned to the task is limited
or not completely known.

(ii) We provide a two-level algorithm that determines an efficient ordering of visit-
ing regions and then generates locally optimal subpaths to construct a complete
efficient trajectory.

(iii) We provide an efficient procedure based on the calculus of variations to com-
pute locally optimal paths.



A. Sarmiento et al. / Advanced Robotics 23 (2009) 1533–1560 1535

1.1. Related Work

The present work is placed in the area of path planning for mobile robots. In this
area, a primary task called navigation is to find a collision-free path for the robot
to move from an initial to a final configuration. Several works have addressed this
problem [6, 7]. Some of them use road maps [6] to guide the robot from an initial
to a final configuration, others use potential functions to accomplish the task [7, 8].
Other works attempt to optimize a criterion such as distance and/or robot turns [9]
or clearance from the robot path to the obstacles [10].

For the navigation problem, there are characteristics that can be added to make
them more general, for example, kinematic constraints on movement [11], sensing
and control uncertainty [12], limited sensors [10], moving obstacles [13], etc.

Similar to the work presented in Ref. [9], in this work we also propose semi-
optimal paths (in our case locally optimal), and as in Ref. [14] we carry out our
optimization procedure in a reduced search space.

Nevertheless, we need to find collision-free paths to the move the robot as in Refs
[6, 7, 9, 10, 12]. Our main interest is to address the problem of finding a static object
in a known environment. Our goal is to make the robot find an object as quickly as
possible on average. This adds a new aspect to our planning problem.

Our search problem is related to art gallery problems, exploration, coverage and
pursuit–evasion. The traditional art gallery problem is to find a minimal placement
of guards such that their respective fields of view completely cover a polygon [15].
As we will see in Section 4, guard placements could be used in a partial solution
to our search problem. A variation of the art gallery problem in which the task is
to find the minimal length path that covers the polygon is known as the shortest
watchman tour problem [16]. This is not exactly our problem since, as we will see
in Section 2.1, a trajectory that minimizes the distance traveled may not minimize
the expected value of the time to find an object along it.

In coverage problems (e.g., Refs [17, 18]), the goal is usually to sweep a known
environment with the robot or with the viewing region of a sensor. In this problem,
it is often desirable to minimize sensing overlap so as not to cover the same region
more than once. Our problem is related to the coverage problem in the sense that
any complete strategy to find an object must sense the whole environment.

Exploration problems usually involve the generation of a motion strategy to
efficiently move a robot to sense and discover its environment and construct a repre-
sentation (model) of the environment [19–22]. In exploration problems for the robot
to move to an unexplored area, a local navigation problem must be solved. For in-
stance, in Ref. [10] the authors propose algorithms for local path planning and map
building based on the generalized Voronoi graph (GVG). The authors also deal with
robot kinematic constraints by replacing the GVG’s arcs with smooth local paths
that a car-like robot is able to travel.

In exploration problems, unlike ours, the environment is not known a priori and
the objective is to construct a complete representation rather than to find a specific
target.
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Finally, our research is somewhat related to the pursuit–evasion problem, where
one robot or a team of robots — the pursuers — are interested in finding other
mobile robots — the evaders [23–30]. In our problem the searched object is static.
In some sense, this simplifies the problem (since once an area has been seen, there
is no worry that the object could move into that area), which allows us to consider
the more difficult optimization problem of minimizing the expected value of the
time required to find the object.

In Ref. [31] a dynamic data structure (called the gap navigation tree) is proposed.
This data structure corresponds to a minimal representation of the environment and
allows the search of static targets. In the present paper, the problem of finding a
static object is also addressed, but unlike the work presented in Ref. [31], instead of
minimizing the distance traveled to find the object, here our goal is for the robot to
find the object as quickly as possible on average. Our new formulation of optimality
can be very useful in applications where the time assigned to the task is limited or
not completely known.

The remainder of the paper is organized as follows. In Section 2, we give the
mathematical definition of our problem. In Section 3, we give an overview of our
two-level solution approach. We then describe the two levels of planning; in Sec-
tion 4, we describe the top level, in which constraints on the qualitative structure
on the solution path are derived, and in Section 5, we describe the lower level, in
which locally optimal continuous trajectories are derived given these qualitative
constraints. Finally, in Section 6, we present simulation results.

2. Problem Definition

In this section we give the mathematical definition of the problem of minimizing
the expected value of the time required to find the object. We assume the robot is
equipped with an omnidirectional sensor. We also assume that the environment is
2-D polygonal and known (i.e., the robot has a complete map), and that the robot
will recognize the object when it is visible. In our formulation, we assume that the
environment is know, but that we do not have any information about the search
object location. Since there is no reason to believe that one object location is more
likely than another, we assign equal values to every location. This is equivalent to
defining a uniform PDF modeling the object location. In fact this assumption is
already known in the literature and called the principle of insufficient reason [32].
We believe this reasoning is very general given that we do not need to assume a
relation between a particular type of object and its possible location, which will
reduce the scope of the applications.

While we believe that the formulation we develop in this section holds for arbi-
trary PDFs, in the sequel we will develop specific solutions for the case of a uniform
PDF, since it is clear that additional work would be required to do so.

If the robot follows a path S starting from initial position (x0, y0) at time t = 0
(see Fig. 1), we define the random variable T to be the time at which the robot first
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Figure 1. Simple example of a point robot following a route S.

sees the target object. The probability that the robot will see the object before time
t is given by P(T � t) = FT (t), the cumulative distribution function (CDF) of the
random variable T :

FT (t) =
∫ t

0
fT dt = P(T � t).

Of course the probability of having seen the object prior to time t depends on the
route S followed by the robot. We, therefore, define the CDF along any given path
as:

FT (t |S) =
∫

V (S,t)

fXY (x, y)dx dy,

in which fXY (x, y) is the PDF for the object’s location and V (S, t) is the subset of
the environment that has been seen by the robot as it moves along S until time t . We
say that at time t the path S has covered the region V (S, t) and, in general, we will
use the term ‘cover’ to denote that the robot has sensed, not necessarily physically
covered, a certain region.

In the particular case of a uniform fXY , the probability of seeing the object before
time t is proportional to the area of the environment that has already been seen:

V (S, t)

Total Area
= P(T � t) = FT (t).

From the CDF FT we can obtain the PDF fT and calculate the expected value of
the time to find the object T following route S:

E[T |S] =
∫ ∞

0
t · fT |S(t |S)dt.
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We are interested in finding the trajectory S that minimizes E[T |S], in other words,
obtaining the path that, on average, makes the robot find the object as quickly as
possible. This amounts to the optimization:

S∗ = arg inf
S

{E[T |S]} = inf
S

{∫ ∞

0
t · fT |S(t |S)dt

}
. (1)

This is an infinite dimensional optimization problem. We have shown that even
a discrete version of this problem is NP-hard [1] and, thus, it is not practical to
generate an optimal route. We will, therefore, present algorithms that make a trade-
off between optimality and tractability.

2.1. Expected Value Versus Worst Case

It is useful to note the difference between minimizing the expected value of the
time to find an object and minimizing the time it would take in the worst case. To
minimize the worst case time, the robot must find the shortest path that completely
covers the environment (the shortest watchman tour problem [16]). This usually
means that no portions of the environment are given any priority over others and
the rate at which new portions of the environment are seen is not important. On
the other hand, to minimize the expected value of the time, the robot should gain
probability mass of seeing the object as quickly as possible. For a uniform fXY , this
requires sensing large portions of the environment as soon as possible.

For a given environment, the route that minimizes the distance traveled typi-
cally does not minimize the expected value of the time to find an object along it.
This is illustrated in the example shown in Fig. 2. In this example, there are two
rooms, and these can be observed from viewpoints L1 and L2, respectively. The
probability of finding an object in a room is proportional to the size of the room.
Assume that the robot starts in the corridor at location L0 and moves with unit
speed.

There are only two routes the robot might take to solve this problem: Go to the
smaller room first, L0 → L1 → L2, or go to the larger room first, L0 → L2 → L1.
In the former case, the robot reaches L1 at t = 1 and L2 at t = 7, and the expected
value of the time to find the object is:

E[T |(L0,L1,L2)] = (0.1)(1) + (0.9)(7) = 6.4.

The robot always completes its search by t = 7. In the latter case, the robot reaches
L2 at t = 5 and L1 at t = 11, and the expected time to find the object is:

E[T |(L0,L2,L1)] = (0.9)(5) + (0.1)(11) = 5.6.

In the worst case, the robot completes its search at t = 11. Thus, as can be seen from
this simple example, the trajectory that is optimal in the distance traveled does not
necessarily minimize the expected value of the time to find the object.
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3. Solution Overview

In general, it is not possible to solve (1) directly to obtain the globally optimal tra-
jectory S∗. For this reason, we have adopted a two-level approach that constructs
an approximation to S∗. At the top level, we use a decomposition of the workspace
to impose a qualitative structure on our solution trajectory. At the lower level, in-
dividual segments of this trajectory are refined using local numerical optimization
methods.

If the environment is convex then everything can be seen from a single point and
the solution is trivial. If the environment contains a single corner, nonconvex vertex,
as the one in Fig. 3a, any path that covers the polygon must reach one of the inflec-
tion rays (aspect graph lines) [33], either A1 or A2, associated to the nonconvex
vertex. The nonconvex vertices are also called reflex vertices, those whose internal
angle is bigger than π. Those vertices are key in our problem because they are the
ones that break the environment convexity.

Figure 2. Example with a simple environment.

(a) (b)

Figure 3. Optimal trajectories. (a) An environment with one nonconvex vertex. (b) Inflection rays
(dotted segments) associated with nonconvex vertices A, B and C.
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We call the area bounded by the inflection rays the corner guard regions [34]. In
Fig. 3a the corner guard region is shown in gray. These regions have the character-
istic that any point inside them can see ‘both sides’ of their associated nonconvex
vertices. In Fig. 3b, the inflection rays are the dotted lines (incident to the vertices
labeled A, B and C) that demarcate the corresponding corner guard regions shown
in gray.

A sufficient and occasionally necessary condition for a searcher to view the
entirety of a polygon is that the searcher visit each corner guard region. This ob-
servation is the motivation for our top-level strategy. Since a continuous path needs
to visit the corner guard regions, it is important to decide in which order they are
visited. The problem can be abstracted to finding a specific order of visiting nodes
in a graph that minimizes the expected value of time to find an object.

We describe this strategy in Section 4. The basic idea is to select viewing loca-
tions Li associated to each nonconvex vertex and to determine the optimal ordering
of visiting the Li locations.

Given the ordering on the locations Li , the low-level strategy constructs locally
optimal paths between regions. Each of these locally optimal path segments be-
gins at the endpoint of the previous segment and terminates somewhere on the edge
bounding the next region to be visited. The optimization is performed using the
Runge–Kutta method to numerically solve the Euler–Lagrange equations found us-
ing the calculus of variations. This is described in Section 5. In Section 6, we present
trajectories that are obtained when the two levels are combined.

4. Top-Level Trajectory

As mentioned before, our overall strategy is to partition the workspace with critical
curves, calculate the locally optimal trajectory in each region and then concatenate
the subpaths to construct the final trajectory.

Recall that to cover a polygon, it is sufficient that a trajectory visits at least one
point inside each corner guard region (as defined in Section 3) associated to non-
convex vertices of the polygon.

To estimate the ordering to visit inflection rays (critical curves), we select dis-
crete view locations Li ; each is associated to a nonconvex vertex. We place one Li

near each nonconvex vertex inside its corner guard region. We call these locations
guards (from the art gallery problem [35]).

Thus, the high-level, combinatoric algorithm finds an ordering for the robot to
visit the guards. Note that when the robot travels the continuous path to cover the
environment, it does not visit the exact location of the guards, but the inflection rays
associated to them. The guards’ locations are only used to define an ordering to visit
the corner guard regions associated to them.

Figure 4 shows a polygon with the two guards locations marked by an ‘×’, and
labeled L1 and L3. The guards’ visibility regions are shown with two gray colors
and the visibility region intersection is shown in white.
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Figure 4. Guards (sensing locations) associated to nonconvex vertices and their visibility region
V (Li).

4.1. Choosing an Ordering of Regions

Our algorithm to choose an ordering to visit regions builds on our previous research
on expected-value search with mobile robots [1]. We use a utility function to drive
a greedy algorithm in a reduced search space that is able to explore several steps
ahead without incurring too high a computational cost. Below, we describe our
efficient algorithm to define an order to visit sensing locations.

We define the visibility region for location Lj , denoted V (Lj ), as the set of
points that have an unoccluded line of sight to Lj (the line segment connecting
them does not intersect the exterior of P ). Thus, if the object lies within V (Lj ), the
robot will successfully recognize the object from Lj . If the set {Li} is chosen as
described in Section 3, the associated visibility regions define a cover of P , i.e.:⋃

j

V (Lj ) = P.

Thus, a sufficient condition to ensure that the object is found is that the robot visit
each Lj . In this section, we give an algorithm for determining the optimal order in
which the Lj should be visited.

For a given ordering of locations Li1,Li2, . . . , we define T as the random vari-
able that denotes the time required to find the object by sensing successively at
these locations. We use the notation Lj to refer to a particular sensing location in
the environment, while Lik refers to the kth location in the visitation sequence, i.e.,
the robot always starts at Li1 and the kth location it visits is referred to as Lik . For a
given sequence, the expected value of the time it takes to find the object is given by:

E[T |S] =
∑
j

tjP (T = tj ), (2)

where:

P(T = tj ) = Area(V (Lij ) \ ⋃
k<j V (Lik ))

Area(P )
, (3)
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assuming that the object’s location is specified by a uniform probability density
on P . Here, tj is the time it takes the robot to go from its initial position — through
all locations along the route — until it reaches the j th visited location Lij and
P(T = tj ) is the probability of seeing the object for the first time from location
Lij . Since the robot only senses at specific locations, we also denote this probabil-
ity of seeing the object for the first time from location Lij as P(Lij ).

In the remainder of this section we first describe a complete algorithm for de-
termining the optimal ordering of viewing locations and show that the underlying
problem is NP-hard. We then give a heuristic algorithm with near real-time perfor-
mance, and present results that demonstrate its efficiency and effectiveness.

4.2. Computing the Optimal Sequence

Given the set {Li}, determining the sequence that minimizes the expectation given
in (2) can be solved using a combinatorial search on a graph with dynamic weights.
The graph is constructed as follows:

(i) For each location Lj , create a node Nj in the graph.

(ii) For each pair of nodes Nj and Nk , add an edge with variable weight Wjk .

(iii) The weight Wjk is dynamic; it depends on the route followed by the robot
before reaching Nj . These weights are calculated online.

The weight Wjk should correspond to the increase in expected time the robot
incurs by going from Lj to Lk (i.e., the partial calculation of (2) along the current
route). This is a function of the time at which it arrives at Lk, which in turn de-
pends on the route followed by the robot up to that point. For example, consider
the abstract environment in Fig. 5. In Fig. 5, the nodes represent locations and the
arcs represent the time it takes to move from one location to another. In general,
the robot may not be able to travel between two locations by following a straight
line. In such cases, we use a reduced visibility graph [36] and Dijkstra’s algorithm
to follow the shortest path between them to compute these values. If the robot starts
in location L0 at time t = 0, it can take two paths to location L2 and the increase in
expected value of time W23 to go from L2 to L3 depends on which route the robot

Figure 5. Example for the dynamic weight W23.
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follows. If the robot goes directly from L0 to L2, it reaches L2 at time t = 2.0 and
the increase is W23 = 2.0 · P(L3). On the other hand, if the robot goes from L0 to
L1 and then to L2, it reaches L2 at t = 4.0, so the the increase in expected value of
time to reach L3 from L2 is W23 = 4.0 · P(L3).

Given this graph, we must find the path of minimum cost that starts at the robot’s
initial location Li1 and includes all other locations. This can be accomplished with a
branch and bound graph search [37]. This search strategy maintains a list of nodes
to be opened, ordered by their accumulated cost. The next node to be expanded
(i.e., the one whose accumulated cost is currently minimal) is always at the head
of the list. When a node is expanded, only those nodes that are adjacent and not
already included in the current path are considered children. The added cost Wjk of
expanding a child Nk from its parent Nj is given by:

Wjk = Time(Nk) · P(Lk)

Time(Nk) = Time(Nj ) + Dist(Lj ,Lk)

Speed
.

Then, the accumulated cost for the child is:

Cost(Nk) = Cost(Nj ) + Wjk,

with a cost of zero for the node corresponding to the initial position, Cost(Ni1) = 0.
Initially, the branch and bound list contains only the starting location. Then, the

head of the list is expanded and its children added to the ordered list until a solution
is found — a path that contains all locations in {Li}. When a solution is found, the
currently best nodes still continue to be expanded until (i) a lower cost solution is
found, in which case the better solution is saved and the process continues, or (ii)
the lowest cost node is worse than the current solution, in which case we know that
the current solution is optimal.

This algorithm finds the optimal solution — the one that minimizes the expected
time to find the object. Unfortunately, its space and time complexities are not of
polynomial order. Furthermore, the problem itself is intractable; more specifically,
it is NP-hard, as we now show.

Proposition. Finding the sequence that minimizes the expectation given in (2) is an
NP-hard problem.

Proof. We prove the proposition by a reduction from the minimum weight Hamil-
tonian path problem (MWHP), which is known to be NP-hard [38].

Consider a set {Li}, for i = 1, . . . , n, such that V (Li)∩V (Lj ) = ∅, for all i �= j ,
and for which P(Li) = 1/n (i.e., the probability of seeing the object is equally
likely for all locations). This reduction is illustrated in Fig. 6. The environment on
the left consists of four ‘rooms’ that are equally likely to contain the object. In the
graph on the right, nodes correspond to these rooms and edges are weighted by the
time required to travel between rooms.
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Figure 6. Polygon (one instance of our problem) corresponding to the MWHP problem.

In this special case, the ordering that minimizes the expected time to find the
object will be exactly the same as the one that minimizes the distance traveled. This
can be seen by letting P(T = tj ) = 1/n in (2) and noting that the sum depends only
on the accumulated time to traverse the sequence. Thus, this particular instance of
our problem is identical to the MWHP problem (merely set edge weight for the
edge from vi to vj to the time required to move from Li to Lj ). If a polynomial
time algorithm were to exist for our problem, it would thus be possible to solve
MWHP in polynomial time.

Given that our problem is intractable, we now turn our attention to a heuristic
algorithm that finds an approximate solution.

4.3. Heuristic Algorithm

In this section we describe a heuristic algorithm that has proved to be both effec-
tive and efficient in practice. At the heart of the algorithm is a utility function that
gives an estimate of the benefit gained by visiting a specific Li . This utility func-
tion gives rise to the notion of dominating strategies, which can be used to limit the
nodes that are explored by the search algorithm. Following the description of this
algorithm, we present results that quantitatively demonstrate the algorithms perfor-
mance against the exact algorithm described in Section 4.2.

At first, it might seem intuitive to assign to location Li a utility value that is
inversely proportional to the increase in the partial calculation of (2) along the cur-
rent route. This approach performs poorly in practice, because the product in (2)
causes locations with low probability to be given high utility value, thus causing
the exploration strategy to begin by looking in the least likely locations. A more
effective utility function balances the desire for a high probability of finding the
object against the desire to minimize search time. Thus, we define the utility of
moving from location Lj to location Lk as the ratio:

U(Lj ,Lk) = P(Lk)

Time(Lj ,Lk)
. (4)
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Figure 7. Function 1 − FT |S .

A robot using this function to determine its next destination will tend to prefer
locations that are close and/or locations where the probability of seeing the object
is high.

The utility function (4) is directly related to the expectation of (2). Consider the
alternate definition of expectation for a non-negative random variable, such as time,
from Ref. [39]:

E[T |S] =
∫ ∞

0
P(T > t |S)dt =

∫ ∞

0
(1 − FT |S)dt, (5)

in which FT |S is a CDF that depends on the specific route followed. In our problem,
every valid trajectory S defines a particular CDF of finding the object, FT |S . Since
we are dealing with a discrete problem, the distributions are piecewise constant,
with the discontinuities being the times at which the robot reaches the distinct Li

along the route. By (5), the expected value of a random variable with distribution
FT |S is the area under the curve 1 − FT |S , shown in Fig. 7 and it is this area that we
wish to minimize.

The utility function in (4) can be used to define a one-step greedy algorithm.
At each step, simply evaluate the utility function for all available locations and
choose the one with the highest value. This algorithm has a running time of O(n2).
However, in general, it is preferable to use a multistep look ahead. Unfortunately,
this typically increases the complexity of the algorithm by a factor of O(n) for each
look ahead step. Therefore, we use the notion of dominating strategies to reduce the
branching factor at each stage of the look ahead. In particular, if the current location
is Lj , we say that location Lk strictly dominates location Ll if both of the following
conditions are true:

P(Lk) > P (Ll)

Time(Lj ,Lk) < Time(Lj ,Ll),

i.e., if the time required to travel to Lk is smaller than that required to travel to
Ll and the probability of seeing the object from location Lk is greater than the
probability of seeing it from Ll .
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Figure 8. Location dominance.

If we plot unexplored locations on the ‘time–probability’ plane as shown in
Fig. 8, it is easy to see that dominating locations will lie on the convex hull of
the set of unexplored locations. The end points of this partial convex hull are not
considered as candidates since they are not defined locations. By only considering
this subset of the remaining locations at each step, we reduce the branching fac-
tor, making it possible to explore more steps ahead without incurring too high a
computational cost. Of course, there is no guarantee that the optimal solution is
indeed a member of this reduced search space or even that this will yield better re-
sults. However, we have found it to be a good heuristic in practice, as we will show
below.

The full algorithm consists in iteratively exploring several steps ahead, choos-
ing the most promising route up to that point and starting over from there. For n

locations, if the branching factor (average number of children per node) is B , a
tree of height logB n can be explored in linear time. This creates a partial route of
length logB n. Since a solution should be of length n, the process needs to be re-
peated n/logB n times for the complete route. This is depicted in Fig. 9. In Fig. 9,
the larger triangle represents the tree that would be generated if a complete explo-
ration were made, whereas the small triangles represent the trees that are actually
generated (explored) by the algorithm.

Thus, our final algorithm is as follows:

(i) For the last location along the current solution (initially just the robot start-
ing location) explore the possible routes (create a tree breadth-first) until the
number of nodes is of order O(n).

(ii) For each node that needs to be expanded, compute the set of locations that are
not strictly dominated by others and only choose those as children. This can
be done with a convex hull algorithm with complexity O(n logn).
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Figure 9. Exploration algorithm.

(iii) When the number of nodes in the exploration tree has reached order O(n),
choose the best leaf according to the heuristic in (4), discard the current tree
and start over with the best node as root.

The complexity of the algorithm is proportional to exploring a tree of order O(n),
choosing the best children for each node in the tree with a convex hull algorithm in
O(n logn) and repeating n/logn times to generate a complete route. This is:

O

(
n · n logn · n

logn

)
= O(n3).

In the worst case, when the branching factor is not reduced at all, our algorithm
only explores one step at a time and has a running time of:

O(n · n logn · n) = O(n3 logn). (6)

This analysis only considers the time complexity of the search algorithm itself.
It does not include the time complexity of performing polygon clipping operations,
which are required to compute the actual probabilities of seeing the object for the
first time from location Li . To date, we have implemented our algorithm only for the
case of a uniform PDF of the object’s location over the environment; consequently,
the probability of seeing the object from any given location is proportional to the
area of the visibility region from that location (point visibility polygon [40]). The
probability of seeing the object for the first time from location Lij is proportional
to the area visible from Lij minus the area already seen from locations Lik ∀k < j ,
as stated in (3). This requires polygon clipping operations to compute set unions
and differences. Any clipping algorithm supporting two arbitrary polygons must
have a complexity of at least O(nm) where n and m are the number of vertices in
each polygon [41]. The cost of performing these clipping operations must be added
to the complexity in (6) to describe the total complexity of the algorithm when
applied to general polygons. One of the polygons in every operation will be a point
visibility polygon, with at most n vertices — the same as the number of vertices in
the polygonal environment.
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We have implemented this approach using standard routines for computing vis-
ibility polygons, the reduced visibility graph and shortest paths (Dijkstra’s algo-
rithm) [37]. To compute the union of visibility regions, we used the gpc library
developed by Alan Murta based on an approach proposed in Ref. [42].

4.4. Numerical Results: Combinatoric Layer

We tested our algorithm using the polygonal world shown in Fig. 10. The black
regions correspond to the obstacles and the small circles to the sensing locations Li .

In this example, we chose a subset of nonconvex vertices whose visibility region
union totally cover the environment. We have chosen a small subset, 10 locations
(this order of magnitude is the maximum for problems for which one can hope to
find the globally optimal solution, due to computational complexity) to be able to
compute the globally optimal paths and compare them against the result obtained
by our algorithm.

For comparison, we computed three routes: (a) the route that minimizes the ex-
pected value of the time to find the object (i.e., the optimal solution), (b) the route
that minimizes the distance traveled and (c) the route generated by our heuristic
algorithm. These are shown in Fig. 10a–c, respectively. The results are summarized
in Table 1, where for each route we show the expected value for the time required
to find the object, the total distance traveled (which is proportional to the worst-
case time to find the object) and the required computation time. With respect to the
optimal solution, the route generated by our algorithm is about 4% worse in ex-
pected value of the time to find the object and about 7% worse in distance traveled.

Figure 10. Routes to search for an object by different criteria: the optimal expected value of time (a),
the optimal distance traveled (b) and the heuristic utility function (c).

Table 1.
Comparison between the three strategies

Strategy Expected time Distance traveled Processing (s)

Optimal expected time 943.21 2783.20 892.82
Optimal distance 994.79 2273.09 488.87
Heuristic algorithm 982.21 2970.43 0.44
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However, in execution time, our algorithm is more than 2000 times faster. With re-
spect to the minimum distance route, the route generated by our algorithm is about
1% better in expected value of the time to find the object, even though it is about
30% longer in distance traveled. In execution time, our algorithm is more than 1000
times faster.

4.5. Decomposing a Polygon into Regions for Continuous Optimization

As we have described above, we divide the environment using inflection rays (such
as the segment A1 in Fig. 11a), which delimit corner guard regions. The corner
guard regions are used as subgoals that the robot must visit to cover the whole
environment.

In the continuous optimization of the local paths, we compute, by means of an
integral, the increase of the area seen as the robot moves and the locally optimal
robot trajectory (see Section 5). To do so, we triangulate the environment. Every
triangle area is computed rotating a line passing through a nonconvex vertex. Hence,
in our division of the environment, we also use lines connecting nonconvex vertices
and convex vertices.

These lines delimit regions where the edge being seen ‘through’ a nonconvex
vertex changes. A segment line connecting a nonconvex vertex and a convex vertex
is labeled R1 in Fig. 11a. In Fig. 11a, the edge seen through nonconvex vertex G1
while the robot is inside the shaded region is E1, but as the robot moves out of
this region, the edge seen through G1 changes to E2. These lines are important
because the visibility region generated by the nonconvex vertex will change non-
smoothly when the robot crosses one of them. Hence, the integral used to compute
the increase of the area seen (as the robot moves) changes its form. Note that these
second kind on lines are only used to compute local optimal paths, they are not
needed to establish an ordering to visit regions. If the robot is moving between
two subgoals and it encounters one of such lines, then a new portion of the local

(a) (b)

Figure 11. (a) Edges visible through a nonconvex vertex. (b) An environment with two nonconvex
vertices.
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optimal path is computed based on the polygon’s segment associated to this line,
but the robot continues its path toward the next corner guard region. Recall that the
ordering to visit regions is defined by the top-level layer.

When the polygonal workspace contains more than one nonconvex vertex, as
shown in Fig. 11b, then we generate paths that are optimal for only one corner
at a time, shown in Fig. 11b. This strategy ignores the area visible behind other
corners for the purpose of generating paths. The advantage of this policy is that
it can be ‘guided’ to follow a certain order of nonconvex vertices. The top-level,
combinatoric layer attempts to find global optimality by forcing a specific order-
ing for the low-level, continuous layer. Without this ordering, the end result would
be a purely greedy algorithm that follows the visibility gradient and does not con-
sider the amount of area visible in the future and the cost (distance) to travel the
path. The visibility gradient is a vector that yields the maximal local reduction
of the shadow caused by a visibility obstruction (nonconvex vertex). In symbols
∇f (V (Sr(q)|v,E), where V (Sr(q)|v,E) is the visibility polygon which reduction
depends on the robot path Sr(q), given the nonconvex vertex position v and the
environment E. The direction of ∇f is the orientation in which the directional
derivative has associated the maximal local shadow area reduction.

We use this approach to make the robot follow an ordering of regions that glob-
ally reduces the expected value of time.

5. Optimizing the Local Paths

Once a visitation order for the Li has been established by the top-level algorithm, it
is necessary to generate a continuous path that successively visits the corresponding
regions delimited by the inflection rays. In this section, we formalize the problem
of generating locally optimal segments of this continuous path. Since the Li cor-
respond to nonconvex vertices in the environment, we consider here the case in
which the robot will move around such a corner from one region to another. The
final, global path will be a concatenation of these local paths. Below, we first de-
rive the Euler–Lagrange equations that are satisfied by locally optimal paths and we
then present numerical methods for their solution.

5.1. Conditions for Optimality

The problem we consider is shown in Fig. 12. In this case, the robot moves around
a nonconvex vertex (corner) to explore the unseen area A′. For now, we assume that
this is the only unseen portion of the environment.

Clearly, any locally optimal path for this problem will have the property that the
unseen portion of the environment A′ decreases monotonically with time (other-
wise, the robot would be wasting time exploring previously seen areas). As can be
seen in Fig. 12, as the robot moves around the corner, A′ decreases monotonically if
and only if the angle from the corner to the robot increases monotonically. For this
reason, it is natural to express the path in polar coordinates (r, θ) with the origin at
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Figure 12. Base case for a continuous sensing robot.

the corner. For the moment, let us assume that the robot will have a starting position
such that its line of sight will only sweep the horizontal edge E1. While the analysis
is only valid for an axis-parallel edge, it can be easily adapted to the general case.

Let Qx(t) and Qy be horizontal and vertical distances from the origin to the
point where the robot’s line of sight through the origin intersects E1. The area of
the unexplored region A′(t) (which corresponds to the probability mass of seeing
the object and, therefore, the gain) is:

A′(t) = QyQx(t)

2
. (7)

As can be seen in Fig. 12:

tan(α(t)) = Qx(t)

Qy

,

and:

α(t) = π

2
− θ(t).

Since tan(π/2 − θ(t)) = 1/tan(θ(t)), we have tan(θ(t)) = Qy/Qx(t) and (7) can
be written as:

A′(t) = QyQx(t)

2
= Qy

2

2 tan(θ(t))
.

For the case when the PDF of the object’s location over the environment is con-
stant, the probability of not having seen the object at time t is:

P(T > t |S) = A′(t)
A

= Qy
2

2A tan(θ(t))
, (8)

where A is the area of the whole environment.
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Finally, from (5) and (8):

E[T |S] = Qy
2

2A

∫ tf

0

dt

tan(θ(t))
. (9)

Equation (9) is useful for calculating the expected value of the time to find an
object given a robot trajectory S expressed as a parametric function θ(t).

The calculus of variations [43] is a mathematical tool employed to find stationary
values (usually a minimum or a maximum) of integrals of the form:

I =
∫ b

a

F (x, y, y′)dx, (10)

where x and y are the independent and dependent variables, respectively. The in-
tegral in (10) has a stationary value if and only if the following Euler–Lagrange
equation is satisfied:

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0. (11)

In our case, we cannot apply the prototypical Euler–Lagrange equation directly
to expression (9) for two reasons. First, r and θ are expressed as parametric equa-
tions, instead of one as a function of the other. This is not really a problem, because
expressions very similar to (11) can be derived to accommodate the case of para-
metric functions [43]. The real problem is that (9) does not impose any constraints
on the parametric equations describing the robot motion. The optimal trajectory
without any constraints would be one where θ increases infinitely fast.

To address both of these problems, we introduce the constraint that the robot
moves with constant (unitary) speed (note that by proceeding in this manner, we
are considering the cost of moving the robot). To do this, we express its velocity
vector as a generalized motion [44] on a basis where one component Ur is radial
from the origin and the other Uθ is perpendicular, as shown in Fig. 13. Both Ur and
Uθ are unit vectors and define an orthogonal basis. In this basis, the robot’s velocity
(in polar coordinates) is described as:

V = ṙUr + rθ̇Uθ .

Figure 13. Generalized motion of a particle moving along path S.
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The constraint that the robot speed is constant can be expressed as:

‖V ‖ = ṙ2 + r2θ̇2 = 1. (12)

Starting with (12), it is possible to express the differential of time as a function of
a differential of θ . This will allow us to rewrite the parametric equation as a function
in which θ and r are the independent and dependent variables, respectively:

1 = (dr)2

(dt)2
+ r2 (dθ)2

(dt)2

(dt)2 = (
(dr)2 + r2(dθ)2)(dθ)2

(dθ)2

(dt)2 = (
r ′2 + r2)(dθ)2

dt = (
r ′2 + r2)1/2 dθ, (13)

where r ′ = dr/dθ . Substituting (13) into (9), we obtain an expression for the ex-
pected value of time to find an object where the robot’s trajectory S is expressed as
r being a function of θ :

E[T |S] = Qy
2

2A

∫ θf

θi

1

tan(θ)
(r ′2 + r2)1/2 dθ. (14)

To find stationary values of (14), we use (11) with x = θ , y = r and F =
1/tan θ(r ′2 + r2)1/2. After simplification, this yields the second-order nonlinear dif-
ferential equation:

r ′′ = r + 2r ′2

r
+ 2

sin(2θ)

(
r ′ + r ′3

r2

)
. (15)

Solutions to (15) define stationary values for the expected value of time in (14).
If this is coupled with a sufficient condition for optimality (like the transversality
condition [45]), then we will obtain the route to move around a nonconvex vertex
(corner) to search the area on the other side optimally.

Since closed-form solutions do not exist for (15), we now turn our attention to
numerical solutions.

5.2. Numerical Integration

We solved (15) numerically using an adaptive step-size Runge–Kutta method [46].
Since this equation is of second order, any numeric approach that integrates it as
an initial value problem requires two initial conditions: r(θi) and r ′(θi). We know
the staring point r(θi) and the integration range (θi, θf), but we do not impose any
other constraints on the trajectories other than unitary speed. Therefore, the possible
solutions are a family of curves that depend on the value of the first derivative at the
beginning of the integration range r ′(θi). These are shown in Fig. 14.
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Most of the possible solutions diverge long before they reach the end of the
integration range. In fact, it is evident from (15) that the solution is not defined
there (at θf = π/2). However, it is possible to get arbitrarily close and, to do so,
the first derivative at the end of the integration range must be such that the trajec-
tory approaches the target manifold (the vertical line in Fig. 12) perpendicularly.
This translates to stating that r ′(θf) = 0. In fact, the transversality condition for the
Euler–Lagrange equation establishes that, in order to satisfy the equation and obtain
a minimum, the solution function must be perpendicular to the target manifold at
t = tf [45].

This observation allows us to integrate equation (15) as a two-point boundary
value problem, where we specify the position at the beginning of the integration
range r(θi) and the first derivative at the end r ′(θf). For this, we coupled the Runge–
Kutta algorithm with a globally convergent Newton–Raphson method [46].

Figure 15a shows the paths generated for six different starting positions in solid
black lines. To save space, the figure only shows the upper right portion of an envi-
ronment similar to that in Fig. 12 (the units on the axes are arbitrary).

To verify the accuracy of this solution, we have also found optimal trajectories
using simulated annealing [47] and compared these to the trajectories found using
numerical integration. In our implementation, we have defined the solution trajec-
tory using a set of control point that collectively define the system state. The results
are shown in Fig. 15b. As can be seen, the general shape of the trajectories gener-
ated for six different starting positions by our numerical integration (solid lines) and
simulated annealing (control points) are very similar. We should point out, however,
that each simulated annealing run took more than 1 h, whereas the numeric integra-
tion is done in a fraction of a second. As mentioned before, Fig. 15b only shows the
upper right section of an environment, like that in Fig. 12 of arbitrary dimensions.

Figure 14. Family of curves depending on initial conditions.
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6. Simulation Results

This section presents an example of how our proposed two-layered approach can
be used to generate a continuous trajectory that covers a polygon with the goal of
reducing the expected value of the time to find an object along that trajectory.

Figure 16a shows a polygon and a staring position P (near the bottom). We
selected one Li near each nonconvex vertex and used the algorithm described in
Section 4 to find an efficient ordering for visiting the Li . This algorithm returns a
complete ordering, all the sensing locations (called guards) associated to the non-
convex vertices are included once. However, the set {Li} can be redundant; since
sensing is done continuously the polygon may be completely covered before all Li

have been visited. As a consequence, some of the Li late in the ordering may not
need to be visited. This is the case of guards L4 and L5 in Fig. 16a. Note that the

(a) (b)

Figure 15. Optimal trajectories. (a) Numerical integration. (b) Simulated annealing.

(a) (b)

Figure 16. (a) A polygon and the guards. (b) Edges visible through guard L1.
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(a) (b)

Figure 17. (a) Locally optimal trajectories for the guards that generated them. (b) The final trajectory
for a polygon.

computed ordering is still valid, since the redundant sensing locations are the last
in the ordering — the least important to minimize the expected value of time to find
the object.

Once an ordering has been established, the trajectory is generated piecewise ac-
cording to which guard is to be visited. The robot does not actually travel towards
the guard, but rather it goes around its associated nonconvex vertex in a locally
optimal trajectory, as described in Section 5. A locally optimal portion of the com-
plete path is generated for every edge seen through the current nonconvex vertex.
For example, in Fig. 16b, as the robot moves from the starting position P , in the
shaded region, the section of the environment that will be visible through guard L1
is bounded by edge E1, i.e., as the robot moves, its line of sight through the cor-
ner will ‘sweep’ edge E1 until it reaches edge E2. At this point, the shape of the
current subpath changes as it is now edge E2 that will be swept. When the trajec-
tory reaches one of the inflection rays associated with the nonconvex vertex of the
current guard, the process starts over with the next region in the ordering.

Figure 17a shows all the path segments (A–F ) generated for the polygon and
the guards to which they correspond. There may be occasions, such as portion E,

where the locally optimal trajectory would leave the polygon. In this case, the route
is saturated and made to follow the polygon boundary. Note that the end-points of
each path portion correspond to critical events, which occur at inflection rays or
when there is a transition between the edges that are currently been seen through
the corner.

Figure 17b shows the final trajectory. The zig–zag motion is not necessarily bad
because a good path must find a compromise between advancing to the next region
and sensing a larger portion of the environment as soon as possible.

For this particular example, the expected value of the time to see the object
along the shown path is 115.3. This contrasts with the expected value along the
straight line segments shown in Fig. 16a (L1 → L2 → L3), which turns out to be
136.9.
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7. Discussion and Conclusions

We addressed the problem of continuous sensing for expected value search in polyg-
onal environments. This problem involves the generation of a motion strategy that
minimizes the expected value of the time to find an object.

We presented a two-level algorithm that determines an efficient ordering of vis-
iting regions and then generates locally optimal subpaths to construct a complete
trajectory.

The final trajectory is not globally optimal for two reasons: (i) since the dis-
crete version of the problem is NP-hard, we proposed a heuristic algorithm, and
(ii) we chose to decouple the task of finding an ordering and moving between re-
gions (bounded by inflection rays).

Obviously, the optimal paths will depend on the general shape of the polygon.
For example, in polygons where most of the area is visible towards the end of the
trajectory a motion strategy that moves the robot in the visibility graph will yield
good results. This happens because it is reducing the distance to travel up to the
point where it is more likely to find the object. In contrast, if the majority of the
visible area lies near the starting point a completely greedy algorithm that follows
the visibility gradient will perform better. In our case, the high-level, combinatoric
layer attempts to find global optimality by forcing a specific ordering for the low-
level, continuous layer. Without this ordering, the end result would be a purely
greedy algorithm that does not consider the amount of area visible in the future and
the cost (distance) to travel the path. For this reason, our algorithm presents a useful
trade-off. Furthermore, our locally optimal paths are better than traveling in straight
lines (the shortest paths in Euclidean sense).
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