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Abstract

This paper proposes a subjective map representation that enables a robot in a multiagent system

to make decisions in a dynamic, hostile environment. A typical situation can be found in the Sony

four-legged robot league of the RoboCup competition [1]. The subjective map is a map of the

environment that each agent maintains regardless of the objective consistency of the representation

among the agents. Owing to the map’s subjectivity, it is not affected by incorrect information

aquired by other agents. The method is compared with conventional methods with or without

information sharing.
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1 INTRODUCTION

In a multi-robot system, communication is expected to help robots acquire knowledge about the en-

vironment. Robots require a common reference coordinate system to exchange information about the

environment. A world coordinate system is such an example. To convert the observation results to the

world coordinates, each robot has to localize itself. However, localization errors often become too large

to ignore. Kurazume et al. [2] have proposed a cooperative positioning system for a group of robots

to cope with the errors from dead-reckoning. A robot can track its position by using dead-reckoning

even in unknown environment, but accumulated errors are not negligible. Their idea is to always keep

some robots stand still and other moving robots use them as landmarks. Then, the robots can avoid to

use dead-reckoning. The drawback is that robots have to move in a group and be equipped with some

device to accurately measure relative position between robots.

Means of localizing robots and acquiring their spatial configuration through their sharing of infor-

mation have been proposed [3, 4, 5]. Kato et al. [4] and Nakamura et al. [5] use geometric constraints

between several robots. Robots simultaneously observe each other, search their spatial configurations,

which satisfy the constraints of the triangle formed by their positions, and share the map of the envi-

ronment. For the global localization, one robot’s position is used as the base, then localization errors do

not influence information exchange, but depend on the self-localization of the base robot. To observe
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several robots at a glance, they used omnidirectional cameras rather than normal cameras with limited

viewing angles. However, there will be many situations in which robots using conventional cameras will

not be able to observe other robots. Then it becomes difficult to use such methods.

Although beliefs and a probabilistic representation of self-location is commonly used to cope with

self-localization error, it is difficult to obtain an accurate model for merging the maps of several robots

and maintaining the merged map. A simple weighted average of the information from each robots may

work when the errors are small and modeled. Fox et al. [6] proposed a cooperative Markov localization

method for a multi-robot system. Each robot localizes itself and merges other robots’ observation

based on global positioning in the world coordinate system. They do not assume the simultaneous

observation of each other as in [3, 4, 5] but assume the observation error can be modeled in advance

and communication delay is negligible. Then, when one of the robots has a large error which are not

modeled in its self-localization, it will affect the map used by other robots with either method. It is

difficult to design the weights or to model in order to prevent this because there are always errors that

the designer cannot anticipate, and in many situations the robot cannot detect modeling errors.

Scott et al. [7] proposed resetting of the Monte Carlo localization. A robot discards its past obser-

vations and resets its self-localization when it detects large inconsistency in its self localization with its

sensor measurements. They showed experimental results in the RoboCup environment. Their method

improves the reliability of the self-localization. However, there will be delay before the resetting is taken

and errors affect the other robots which use a shared map.

We propose an approach that uses subjective maps instead of a shared map. A subjective map is

for a robot in a multiagent system to make decisions in a dynamic, hostile environment. We assume

that relative positions from a robot itself are more important than absolute locations in an environment

and a robot can measure more precisely relative positions than absolute positions of objects in the

environment. The subjective map is maintained by each robot regardless of the objective consistency

of representations among the other robots. Owing to its subjectivity, incorrect information aquired by

other agents does not affect the method. For example, accidents or other non-negligible changes in

the environment do not affect the map. A potential field is defined on the subjective map in terms of

subtasks, such as approaching or shooting the ball, and the field is dynamically updated so that the

robot can decide what to do next. The method is compared with methods that involve sharing or not

sharing and then future issues are discussed.

2 GENERATION OF THE SUBJECTIVE MAP

In a robot soccer task, there are teammate and opponent robots, a ball, and some landmarks. A robot

can discriminate teammates and opponents but cannot identify them. Each robot does the following:

1. localize itself,

2. estimate the location of the ball, the teammates, and the opponents in the global coordinate
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system, if it observes any of them,

3. broadcast the results of its localization and estimated locations of the above to its other teammates,

4. receive messages from teammates,

5. construct its subjective map,

(a) if both the robot and its teammate observe the ball, it shifts the locations sent by the

teammate based on the ball location and adds it to its subjective map,

(b) in other cases, the robot just adds objects, including its teammate, which it does not observe

currently, to its subjective map, and

6. calculate the potential field and determine its action.

Here, we show an example of a subjective map. We assume that there are two robots (robot A and

robot B) and a ball in the environment. These robots have localized themselves, and they are watching

the ball, but they cannot observe each other owing to their limited viewing angles (Fig. 1). If we ignore

the localization errors and put observations onto a map, the ball positions from two robots may not

coincide with each other as shown in Fig. 2(a).

If we use the weighted average of the ball location x̂ball,

x̂ball =
BσBxball + Aσball

Axball
Aσball + Bσball

, (1)

where ixj and iσj denote a position and its deviation of the object j estimated by the robot i assuming

a Gaussian distributions of the position error. ˆ indicates that it is the result of information sharing.

Then, we have a map shown in Fig. 2(b). The ball position is unified in this map. However, this may

not be the true position. Further, when robot A has an almost correct estimation but robot B does

not, robot A’s estimation becomes worse because of the information sharing. Also there are cases in

which the relative position of the robot itself is more important than its absolute position in the world

coordinate system. Moreover, it becomes more complicated when the robots can observe each other. If

we can assume that the simultaneous observations from several robots are available, then we could use

a kind of geometrical constraint, such as the one used by [4, 5]. For moving robots that have cameras

with limited viewing angles, this assumption does not hold.

We propose that each robot believes its observations, constructs its subjective map, and determines

its action based on it. For example, robot A believes its observation about the ball and calculates the

position of robot B from the relative position between the ball and robot B as,

ˆAxA = AxA, (2)

ˆAxball = Axball, (3)

ˆAxB = BxB + (Axball −B xball). (4)
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Figure 1: There are two robots watching the ball.
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Figure 2: Constructed maps based on the assumption of no localization errors, with averaged locations,

and subjective maps of robots A and B

Figs. 2 (c) and (d) show the subjective maps of robots A and B. With these subjective maps, although

reduction of the localization error is not achieved, the localization error of robot B does not affect robot

A, and robot A can use the information from robot B. The subjective map method is expected to work

for tasks in which relative positions are more important than absolute positions and in which localization

errors sometimes become large, and may not satisfy geometrical constraints.

3 POTENTIAL FIELD for DECISION MAKING

We define a potential field based on a subjective map of a robot for the experiment we show in the next

section. Each robot calculates the field from the map and decides its action based on the field. A robot

has four actions: move forward, turn left, turn right, and shoot the ball. The robot selects an action so

that it climbs the potential field and its orientation directs to the peak of the potential or to the ball if

it is on the peak. Its head is rotated to track the ball if it sees it, or to search for the ball. If the ball is

near to the robot, it shoots the ball at the opponent goal.

The potential field V (x, y) of robot i consists of three potentials. One is VT , which is a function of

the position of a teammate j, ixTj . The second is VO, which is a function of the position of an opponent

k, ixOk. The last one is VB , which is a function of the ball position ixball. All the positions are derived

from its subjective map. The robot uses its observation for ixOk and ixball if it sees them. Otherwise it
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Figure 3: True object locations

uses the position from its teammate for the ball or the opponent position which is subjectively shifted

from the information by the teammate based on the ball position as in equation (4). In the following,

we give example potentials based on the setup shown in Fig. 3.

Potentials by a teammate VT and an opponent VO are calculated by

VT (x) = −
∑

j(j 6=i)
f(x, ixTj ,σT ), (5)

VO(x) = −
∑

k

f(x, ixOk,σO), (6)

f(x, x̄,σ) =
1

2πσxσy
e
− 1

2 ·
(

( x−x̄σx )2
+
(
y−ȳ
σy

)2
)
. (7)

These potentials are for avoiding robots in the field. Figs. 4 (a), (b), (e) and (f) show the VT and VO of

robots A and B in the example setup respectively.

The potential from the ball is defined so that the robot that is closest to the ball can reach it, and

the other robots can go to positions where they can back up the shoot. The potential function of robot

i is switched depending on whether i is closest to the ball or not,

VB(x) =





f(x, ixball,σball) (i is closest),

f(x, ixsup,σsup) (otherwise),
(8)

where ixsup is the support position. It is defined as ixsup =
(
ixball + xG

)
/2, where xG is the position

of the target goal. The example potentials of robots A and B are shown in Figs. 4 (c) and (g). Final

potential fields are shown in Figs. 4 (d) and (h).

4 EXPERIMETNS

We used the competition field and the robots for RoboCup Sony four-legged robot league 2002 (Fig. 5)

for the experimental setup. In the environment there are six landmark poles, two goals that can be

used for self-localization, and one ball. The task is to shoot the ball into the goal. Owing to inadequate

lighting conditions and the low resolution of the camera, it was not possible for the robots to stably

detect each other in their local vision systems. The self-localization program is based on Carnegie

Melon University’s CM-Pack’01 [8]. Their multi-hypothesis approach tracks its position by means of a

Kalman-filter, starting from different initial positions in the field. To verify the method, we put a color
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Figure 4: Potential fields of robots.

marker on the back of each robot and used an overhead camera to measure the position of the robots

and the ball.

We used two robots A and B and compared the decisions of robot A with the following methods,

[I] robots do not share the information;

[II] robot B sends the information to robot A, and robot A uses the shared map constructed by taking

the average of the ball position; and

[III] robot B sends the information to robot A, and robot A uses its subjective map (proposed).

We counted the number of times that the decision of robot A was identical to the decision when robot

A is given the location of itself, robot B, and the ball by an overhead camera (OC) and compared the

rate,

r =
(# of times that decision was identical to OC)

(# of total decision times in the trial)
(9)

Each trial ended after two minutes had elapsed or after the ball had been kicked into the goal.

Figs. 6 (a) and (b) show two initial placements in the experiment. In these initial placements,

both robots observe the ball. We have experimented with three methods under two conditions, 1)

robot B localizes itself by local vision (normal), and 2) robot B localizes itself but has large errors.

Under “normal” error condition, it has 0 [mm] to 80 [mm] offset errors in localization dependent on the

6
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Figure 5: The robot and the field for the RoboCup 2002 Sony four-legged robot league.
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Figure 6: The initial conditions of experiments.

position and standard deviation is about 20[mm]. Under “large” error condition, robot B’s location is

inverted against the center of the field, and the 100 degrees offset is added to the orientation. The error

in relative distance to the ball varies with its distance and the maximum deviation is about 50[mm]

under both error conditions. We had ten trials for each initial placement in these six conditions. Table 1

shows the rate at which the robot A’s decision was identical to the decision with the overhead camera.

We can see that with the averaged shared map, when large errors are introduced, the rate is worse than

the rate without information sharing. However, with the subjective map, in all conditions, the rate

is better than the rate without information sharing and the rate with an averaged shared map. This

indicates the validity of the subjective map approach.

In case 1, without information sharing, the robots bumped into each other because they did not

know each other’s positions, and they were initially placed at nearly the same distance from the ball.

With information sharing under normal localization errors, they showed cooperative behaviors. Fig. 7

shows such behaviors.

In case 2, the rate of averaged map showed little difference to that of no information sharing.

While under conditions that robot B had large localization errors, the result for the averaged map and
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Table 1: The rate of times that robot A’s decision was identical to the decision using an overhead camera

error and method
the rate

mean variance

[I] no sharing 0.48 0.02

1) normal [II] averaged 0.64 0.01

[III] subjective 0.69 0.01

[I] no sharing 0.48 0.02

2) large [II] averaged 0.39 0.01

[III] subjective 0.59 0.02

Figure 7: A sequence of the robots’ movements using subjective maps in case 1 under normal localization

error

subjective map showed a big diffrence. Figs. 8 (a) and (b) show the potential field of robot A and

the positions of objects in its averaged map and its subjective map at the initial position. Owing to

robot B’s large localization errors, robot A also came to have large errors in the averaged map and made

incorrect decisions. However, as shown in Fig. 8(b), in the subjective map, robot B’s error did not affect

robot A, and the rate increased. Fig. 10 shows the robots’ movements based on the subjective map. We

can see that robot A appropriately moved to the supporting position.

Fig. 6(c) shows the initial placement of case 3. Robot B localizes itself by local vision. In this case,

robot A cannot observe the ball but robot B observes it. Then, robot A uses the robot B’s position that

robot B tells even when it adopts a subjective map. And robot A has the same map with methods [II]

and [III].

Figs. 11 (a) and (b) show the potential field and the positions of objects with a non-shared map and

the subjective map in case 3. Without information sharing, robot A did not know the location of the

ball (Fig. 11(a)) nor could it move to the support position. With the subjective map, robot A moved to

the support position as expected. A sequence of movements is shown in Fig. 12. In the whole sequence

of this figure, robot B aligns itself to the ball.
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Figure 8: Robot A’s potential field and the positions of objects in its map at the initial condition in

case 2 with robot B’s large errors.

Figure 9: A sequence of the robots’ movements using an averaged map in case 2 with large error for

robot B.

5 DISCUSSIONS and CONCLUSIONS

We have proposed a subjective map in a multi-robot system in a dynamically changing environment.

Although the proposed subjective map is rather simple, our experiments showed that even in situations

with large errors in the position and the orientation. Under such situations, although a shared averaged

map method lost the benefit of information sharing, the proposed subjective map worked effectively.

The idea of a subjective map is independent of global positioning. We have used global positioning

in communication since it provided the simplest common coordinate system. When robots can observe

several objects at the same time (e.g., each other and a landmark), the relative coodinate on some

object is a good candidate for a reference coordinate system, and we need not use a global positioning

system. If the quality of information is poor, a qualitative positioning system may work better than a

quantitative positioning system.

Future work would involve the investigation of using a subjective map for other kinds of tasks,

experiments in more complex multi-robot systems, comparison to other information sharing methods,

and the weighting of information based on its reliability measured through communication.

9



Figure 10: A sequence of the robots’ movements using a subjective map in case 2 with large error for

robot B.

robotA

robotB:unknown

ball:unknown

(a) no information share

robotA

robotB
ball

(b) subjective map

Figure 11: Robot A’s potential field and positions of objects in its map at the initial condition in case 3.
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Figure 12: A sequence of the robots’ movements with a subjective map in case 3.
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