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bInstituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avenida del Seminario s/n, Moncada, 46313 Valencia, Spain

Abstract

Glaucoma is a chronic eye disease and one of the major causes of permanent blindness. Since it does not show initial symptoms,
early diagnosis is important to limit its progression. This paper presents an automatic optic nerve characterization algorithm
for glaucoma diagnosis based only on retinal fundus images. For optic cup segmentation, we used a new method based on the
stochastic watershed transformation applied on the YIQ colour space to extract clinical indicators such as the Cup/Disc ratio, the
area Cup/Disc ratio and the ISNT rule. Afterwards, an assessment between normal and glaucomatous fundus images is performed.
The proposed algorithm was evaluated on 6 different (private and public) databases containing 723 images (377 normal and 346
glaucomatous images) which achieved a specificity and sensitivity of 0.674 and 0.675, respectively. Moreover, an F-score of 0.770
was obtained when evaluating this method on the publicly available database Drishti-GS1. A comparison of the proposed work
with other state-of-the-art methods demonstrates the robustness of the proposed algorithm; because it was tested using images from
different databases with high variability, which is a common issue in this area. Additional comparisons with existing works for cup
segmentation, that use the publicly available database Drishti-GS1, are also presented in this paper.
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1. Introduction

Glaucoma is the second most prominent eye disease in the
world [1]. It is considered as a “multifactorial optic neuropa-
thy” which leads to deterioration in vision and quality of life.
Glaucoma is usually asymptomatic and people are commonly
unaware of the disease until later stages. For that reason, early
detection and treatment are important to prevent vision loss.
This silent eye disease is mainly characterized by optic nerve
fibre loss and that is given by the increased intraocular pressure
(IOP) and/or loss of blood flow to the optic nerve [2]. However,
IOP measurement is found to be neither specific nor sensitive
enough to be an effective glaucoma indicator since visual dam-
age can be present without increased IOP.

The optic nerve head is physiologically defined as the loca-
tion where ganglion cell axons leave the eye forming the optic
disc (OD). It can be divided into two zones, a central exca-
vation zone called the optic cup and a peripheral part called
neuro-retinal rim [3]. See Figure 1.

While the optic disc (OD) and cup are present in all indi-
viduals, an abnormal size of the cup with respect to the optic
disc is a characteristic of a glaucomatous eye (called “cupping
effect”) [4]. It can be seen in Figure 2(b). Therefore, a quanti-
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Figure 1: Digital fundus images. (a) Main structures of an original fundus
image and (b) Main structures of the optic disc region.

tative evaluation of the optic nerve can be made by measuring
the increased size of the cup using single fundus images.

(a) (b)

Figure 2: Visual difference between a healthy and a glaucomatous optic disc:
(a) healthy optic disc and (b) glaucomatous optic disc.

There are currently different ways to measure the changes in
the cup. A common way is a ratio that expresses the vertical
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diameter proportion of the optic disc and the cup (Cup/Disc ra-
tio or CDR). For normal discs, this proportion falls in the range
of 0.3 to 0.5 and is higher than 0.5 for glaucomatous discs [5].
There exist other characteristics such as the ISNT rule and the
area Cup/Disc ratio or ACDR. The ISNT rule in a healthy op-
tic disc has a characteristic configuration of the neuro-retinal
rim; which is thickest inferiorly, followed by superiorly, then
nasally, then temporally (I >S >N >T) [6]. On the other hand,
the ACDR is the ratio between the area occupied by the optic
nerve and the area occupied by the cup. Therefore, CDR, ISNT
rule and ACDR are quantitative characteristics commonly used
for glaucoma assessment and can be gathered manually or by
automatic algorithms.

In order to measure CDR, ACDR and ISNT rule, the first
step is to segment the optic cup. However, given the optic cup
is actually an excavation, representing it as a 2D object using
a colour fundus image makes the automatic cup segmentation
process particularly difficult. Different approaches have been
developed towards cup segmentation and glaucoma detection
using colour fundus images. For instance, Wong et al. and Liu
et al. presented a method to calculate the CDR after obtain-
ing the optic cup and optic disc masks using level-set technique
[7]. Wong et al. tested their method on 104 images from the
Singapore Malay Eye Study, and found that their method pro-
duced results with a variation of up to 0.2 CDR units from the
ground truth. Another approach for optic disc and optic cup
segmentation is presented by Cheng et al. which developed a
technique to measure the CDR based on superpixel classifica-
tion [8]. They evaluated their method on 650 images achieving
areas under the ROC curve of 0.800 and 0.822 in two databases.
There is also another method proposed by Joshi et al., which is
based on anatomical evidence such as vessel bends at the cup
boundary. They localised the optic cup using the vessel geom-
etry and circular Hough transform obtaining a CDR error of
0.12 ± 0.10 [9]. Other works that use other information such
as the patient personal data and patient’s genome information
is presented in [10]. Different techniques have only been fo-
cused on optic disc and/or cup segmentation [11, 12]. In [13],
a review of optic disc and cup segmentation methodologies is
presented. This review provides a flowchart for each developed
technique. It discusses the pros and cons of each optic disc and
cup segmentation method.

The main contribution of this work is an automatic algorithm
for cup segmentation that is based on the pallor presented in
fundus images. Further clinical characteristics such as CDR,
ACDR and ISNT rule are measured to finally classify colour
fundus images belonging to six different databases with high
variability grade. This method is based on the use of Stochastic
Watershed transformation. In addition, an extensive analysis of
different colour spaces was done to check the best performance
in segmenting the cup.

2. Materials and Methods

2.1. Materials
Four public and two private databases were used in this

work. 12Octubre database which was provided by 12 de Oc-

tubre Hospital (Madrid), is composed of 53 annotated images
[14]. DRIVE database, composed of 40 images [15]. Drishti-
GS1 database, which consists of 101 annotated images by four
specialists [12]. HRF database, which contains 45 images [16].
RIM-ONE database, which is composed of 455 images [17],
and Autogla database, which is composed of 83 images pro-
vided by the FISABIO oftalmologı́a médica (FOM).

Experts of the FISABIO Oftalmologı́a Médica (FOM) anal-
ysed the images of the DRIVE database for glaucoma through
visual inspection, and based on their analysis they were la-
belled as Glaucoma or Normal. They also segmented the optic
disc and optic cup manually for the images in the HRF, RIM-
ONE and Autogla databases. Examples of these annotations are
shown in Figure 3.

It is important to remark that images from RIM-ONE
database are originally cropped around the disc and the final
ground truth of the Drishti-GS1 database was obtained as the
intersection of the ground truth of each specialist. Further to
these images, we count with the ground truth of the vessels in
HRF and DRIVE databases.

(a) (b) (c) (d)

Figure 3: Annotated images from HRF and Autogla databases. In this figure,
images were cropped just for presentation purposes. (a-b) Images from the HRF
database. (c-d) Images from the Autogla database.

In total, there were available 777 images belonging to 6
databases. However, experiments were only carried out in im-
ages with a minimum quality. Based on specialists’ criteria,
images with doubtful diagnosis, low resolution or images which
optic cup is not discernible were excluded from the experiment.
Examples of them are shown in Figure 4.

Therefore, a total of 723 images were used for the experi-
ments. 346 were related to glaucomatous and 377 to healthy
images, as it is shown in Table 1.

(a) (b) (c) (d)

Figure 4: Different samples of the excluded images. (a) Image with low resolu-
tion, (b-c) Examples of images which optic cup is not discernible and (d) Image
with a doubtful diagnosis.

2.2. Colour Spaces

A fundus camera captures a retinal image in the RGB colour
space (Red, Green and Blue). However, depending on the
anatomical or pathological structure of the retina to be anal-
ysed, a component of certain colour space could provide more
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Table 1: Number of images in each database used for the experiments

Name Number of images Glaucoma Normal

12Octubre [14] 53 29 24
Drive [15] 40 20 20
Drishti-GS1 [12] 101 70 31
Autogla 83 50 33
HRF [16] 45 27 18
RIM-ONE [17] 401 150 251
Total 723 346 377

information than others. For instance, for vessel segmentation,
the green channel in the RGB representation is widely used
in the literature [18]. In this work, the RGB and five more
colour spaces were analysed in order to determine which one
performs better for cup segmentation using the Stochastic Wa-
tershed transformation. The other five colour spaces are the
Lab and Luv (created by the International Commission on Il-
lumination (CIE) [19], the CMYK (Cyan, Magenta, Yellow,
and Key (black) components) colour model, the PCA (Princi-
pal Component Analysis) [20], and the YIQ (Used in NTSC
colour TV system).

2.3. Stochastic Watershed

As it was mentioned above, the proposed algorithm uses the
Stochastic Watershed transformation to segment the optic cup.
Based on the gradient image, Stochastic Watershed transforma-
tion is a segmentation technique in which the minimum pixel
values of the image represent the object of interest and the max-
imum pixel values represent the separation boundaries between
objects [21].

One problem with the watershed technique is the over-
segmentation, which is caused by the existence of numerous
local minima in the image due to the presence of noise. This
problem is solved with the marker-controlled watershed, estab-
lishing the image minima artificially and defining a marker per
minimum. Internal and external markers are needed. The in-
ternal markers determine the object of interest and the external
markers are used to limit the segmented area. In this work, the
contour of the optic disc, which was obtained from the method
proposed in [11], was used as the external marker. Internal
markers are regionalized random markers whose distribution
is restricted to areas that accomplished a specific condition. In
this case, they must be located in low-intensity or high-intensity
areas depending on the colour space. When the colour spaces
CMYK, Lab, Luv and YIQ are used, the cup is the darkest part
of the optic disc and when the RGB and PCA colour space is
used, the cup is the brightest part of the optic disc. Starting
with an initial marker or seed which is defined by the darkest or
the brightest pixel, the intensity regionalized markers or inter-
nal markers are chosen by following a Poisson distribution with
variance σ2 [22].

In particular, in Stochastic Watershed transformation, a given
number M of marker-controlled watershed realizations are per-
formed selecting N regionalized random markers (or pseudo-
random markers) in each realization. The idea is to estimate a

probability density function (pd f ) for the countours of the im-
age, which filter out non-significant border fluctuations. The
probability density function is computed by Parzen window
method [23] as: pd f (x) = 1/M ∗

∑M
i=1(WS i(x) ∗G(x; s)), where

G(x; s) represents a Gaussian function of variance s2 and mean
µ(µ = 0), M represents the number of marker-controlled wa-
tershed realizations with N regionalized random markers and
WS i = WS (%) fmrki

the ith output watershed image, being % the
gradient image. Afterwards, it is necessary to perform a last
marker-controlled watershed transformation on the pd f , which
defines the resulting mask by joining all the watershed regions.

In Section 3.2 the intermediate and final result of the Stochas-
tic Watershed algorithm for optic cup segmentation will be
shown.

3. Proposed Method

The automatic algorithm proposed in this paper is mainly fo-
cused on using the Stochastic Watershed transformation for the
cup segmentation, and then, measuring the CDR, ACDR and
the ISNT rule to classify fundus images into normal and glau-
comatous.

For cup segmentation, a preprocessing of the original reti-
nal images is required. First, the optic disc mask for each im-
age was obtained automatically by using the method proposed
in [11]. This method also uses the same Stochastic Watershed
transformation to segment the optic disc. Secondly, images are
resized and cropped around the optic disc. Thirdly, grey-scale
transformation and vessel removal are necessary steps previous
to finally apply the Stochastic Watershed transformation.

The flowchart of the proposed method is presented in Figure
5 and described below.

3.1. Preprocessing

3.1.1. Image resize
Image resize is the first part of the preprocessing block.

Due to the fact that the images under study belong to differ-
ent databases, the image size varies. This block resizes the im-
ages to a standardized size in order to obtain comparable results
between the databases. In this work, the 12Octubre’s image
size was used (768×576) because is the lowest resolution in all
databases.

To resize the images, the length of the horizontal diameter
of the fundus was used as reference [24]. Bicubic interpola-
tion was used for resizing; in which the output pixel value is
a weighted average of pixels in the nearest 4-by-4 neighbour-
hood.

3.1.2. ROI localization
After image resizing, the next step is to crop the images

strategically. The proposed method crops the original image
taking as reference the optic disc with about 100 more pixels
around it. An example of a cropped image is shown in Figure
6(a).
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Figure 5: Complete block diagram of the proposed algorithm

3.1.3. Vessel removal
The glaucoma disease is mainly characterized by the loss of

the optic nerve and astrocytes. However, to the best of our
knowledge, the vessels are not directly affected by this disease.
For that reason, an important preprocessing step is to remove
the vessels which do not provide extra information for glau-
coma diagnosis and can make the cup segmentation more diffi-
cult.

Only the HRF and the DRIVE database were provided with
the vessel masks. For the other databases (12Octubre, Drishti-
GS1, Autogla and RIM-ONE), the segmentation of the vessels
was needed. To do that, a method based on mathematical mor-
phology, curvature evaluation and the k-means clustering algo-
rithm was used [25]. Afterwards, an iterative inpainting tech-
nique [26], used in photo restoration and video processing, re-
places the pixels of the vessel mask using exemplar-based syn-
thesis.

3.1.4. Colour space analysis
After images are resized, cropped and without vessels, the

components of the colour spaces CMYK, PCA, YIQ, Lab, Luv
and RGB were analysed. The reason for this analysis is to check
the performance of each component in cup segmentation and
choose that which provides optimal results.

3.1.5. Contrast adjustment
It was observed that the nonuniform-contrast image through

the available databases affects the classification performance.
For this reason, a contrast adjustment is applied on the grey-
scale image obtained after colour space decomposition. After
obtained the grey-scale image using the colour space model, the
intensity values in that image are linearly mapped into another
grey-scale image such that 1% of data is saturated at low and
high intensities, with the aim of obtaining a higher difference
between the intensity values in the cup and the rest of the image.

3.2. Cup segmentation

The cup segmentation block is mainly divided into 2 parts:
the Stochastic Watershed transformation and the Cup adjust-
ment block.

3.2.1. Stochastic Watershed Segmentation
Fundamentally, this is the neuralgic step in the proposed

method. As it was previously mentioned, the Stochastic Wa-
tershed transformation makes M marker-controlled watershed
realizations with N pseudorandom markers to finally obtain a
pd f . Therefore, the variable parameters of the watershed al-
gorithm were carefully set (the variance of the Poisson func-
tion that generates the random markers, the number of random
markers and the number of realizations). Given the small inten-
sity variance between the pixels in the cup, the variance σ2 was
set experimentally in a small value (σ2 = 0.0003). The algo-
rithm was programmed to generate a minimum random markers
(N) of 100. This means if the initial variance is not enough to
generate a 100 random markers, the variance values increases
until there are at least the minimum number of markers. An-
other important factor is the number of realizations (M). It was
observed that 5 realizations are a good trade-off between a suit-
able pd f for segmentation and a relatively low computational
cost. For that reason, this factor was set at 5.

Given that the markers are limited by the region of interest
of the image, they are not completely random. This limitation
makes them pseudo-random markers.

3.2.2. Cup adjustment
The cup adjustment block improves the measure of the

Cup/Disc ratio and ISNT rule. In this block, the vertical ra-
dius of the mask obtained by the watershed transformation is
calculated, then a circle is generated with the same vertical ra-
dius of the watershed mask and placed in the centre of the optic
disc. The main motivation for this adjustment came from the
fact that the temporal part of the optic cup is usually hidden by
the vessels [5]. The reason for placing this circle in the centre
of the optic disc is because the optic cup is generally located in
the centre of the optic disc.

In Figure 6(j) an example of the cup adjustment result is
shown. The black line represents the segmentation using the
proposed method based on Stochastic Watershed, the white line
represents the adjustment made to the segmented cup and the
yellow and blue lines identify the ground truth of the optic disc
and cup, respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Process of the Stochastic Watershed transformation: (a) Resized and cropped image (ROI), (b) Image inpainting, (c) Grey-scale image (first PCA
component), (d) Contrast adjust, (e) Gradient image, (f) Pseudo-random markers, (g) pd f of image contours, (h) Watershed regions, (i) Final segmentation and (j)
Cup adjustment (in white).

3.3. Glaucoma diagnosis
At this point, cup segmentation process using Stochastic Wa-

tershed has been shown. Next step is to use the obtained optic
cup mask to measure the CDR, ACDR and the ISNT rule and
make a glaucoma assessment.

ACDR is defined as the ratio between the area occupied by
the cup and the area occupied by the optic disc. CDR is the ratio
of the vertical diameter of the cup and the vertical diameter of
the optic disc [6]. The proposed algorithm measures the CDR
by computing the diameter of the optic disc and the cup, as
the mean of the two highest vertical diameters because of the
irregular shape of the optic disc and the cup.

Optimum thresholds for glaucoma diagnosis were stablished
to 0.50 for the CDR and 0.30 for ACDR [5].

Regarding the ISNT rule, the horizontal and vertical thick-
ness of the neuro-retinal rim were measured as it was done with
the CDR (by mean of the two highest values). The horizontal
thickness represents the temporal part (T) plus the nasal part
(N) of the neuro-retinal rim: HorDiam = T + N, and the ver-
tical thickness represents the inferior part (I) plus the superior
part (S) of the neuro-retinal rim: VerDiam = I + S . If the hori-
zontal thickness is smaller than the vertical thickness, the optic
disc in the image follows the ISNT rule, and then, classified as
“Normal”, otherwise it is classified as “Glaucomatous”.

4. Results and Discussion

As it was mentioned in Section 2.1, 723 images belonging to
6 different databases were used for this work.

4.1. Cup segmentation
In order to test the performance of the cup segmentation,

the Jaccard and Dice indexes were calculated for every image,
and the mean and standard deviation were obtained for each
database. After that, the weighted average and standard devi-
ation of the Jaccard and Dice indexes were calculated for all
databases. This means they are calculated according to the

number of images of each database. This analysis was per-
formed for all the six colour spaces (CMYK, PCA, YIQ, Lab,
Luv and RGB).

As it can be seen from Table 2, HRF and RIM-ONE
databases have better cup segmentation results when YIQ
colour space is used. Given these databases have the major-
ity of the images (446/723 images), the weighted average is
higher when YIQ colour space is applied. However, the results
obtained when using the CMYK colour space, have also a con-
siderable performance in cup segmentation.

In most cases, using the Stochastic Watershed transformation
a proper contour of the optic cup is obtained. Examples of these
results can be observed in Figure 7(a-b). However, wrong con-
tours are obtained when the optic cup has not its characteristic
pallor. For that reason, a weakness of this method lies in the
pallor absence of the optic cup. Which makes the optic cup not
discernible from other parts of the optic disc. Examples of this
problem can be seen in Figure 7(c-d).

(a) (b) (c) (d)

Figure 7: Results of best and worst cases of the optic cup segmentation (upper
images are the original images cropped around the optic disc). The blue line
represents the annotation made by the experts, the black line represents the
contour obtained from the Stochastic Watershed transformation and the white
line represents the cup adjustment.

In order to compare the proposed method with other state-of-
the-art methods, the overlapping error E was computed. This
evaluation metric is defined as E = 1−Area(S∩G)/Area(S∪G),
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Table 2: Results of the cup segmentation using six colour spaces.

Database Index CMYK YIQ Luv Lab PCA RGB

12Octubre Jaccard 0, 553 ± 0, 185 0, 565 ± 0, 215 0, 526 ± 0, 260 0, 551 ± 0, 238 0, 558 ± 0, 214 0, 575 ± 0.192
Dice 0, 692 ± 0, 173 0, 695 ± 0, 204 0, 643 ± 0, 281 0, 674 ± 0, 250 0, 689 ± 0, 202 0, 709 ± 0.178

DRIVE Jaccard 0, 567 ± 0, 198 0, 481 ± 0, 227 0, 415 ± 0, 247 0, 461 ± 0, 224 0, 471 ± 0, 211 0, 495 ± 0.200
Dice 0, 700 ± 0, 191 0, 615 ± 0, 233 0, 541 ± 0, 269 0, 596 ± 0, 239 0, 611 ± 0, 209 0, 638 ± 0.187

Drishti-GS1 Jaccard 0, 656 ± 0.191 0, 661 ± 0.215 0, 347 ± 0.350 0, 492 ± 0.328 0, 668 ± 0.200 0, 664 ± 0.185
Dice 0, 775 ± 0.160 0, 771 ± 0.190 0, 416 ± 0.391 0, 583 ± 0.356 0, 781 ± 0.175 0, 780 ± 0.161

Autogla Jaccard 0, 568 ± 0, 197 0, 551 ± 0, 210 0, 512 ± 0, 270 0, 527 ± 0, 240 0, 560 ± 0, 209 0, 572 ± 0.201
Dice 0, 702 ± 0, 177 0, 683 ± 0, 207 0, 626 ± 0, 296 0, 653 ± 0, 245 0, 693 ± 0, 194 0, 706 ± 0.180

HRF Jaccard 0, 607 ± 0, 185 0, 627 ± 0, 150 0, 545 ± 0, 250 0, 592 ± 0, 221 0, 575 ± 0, 212 0, 614 ± 0.179
Dice 0, 738 ± 0, 161 0, 759 ± 0, 131 0, 663 ± 0, 269 0, 712 ± 0, 234 0, 704 ± 0, 199 0, 744 ± 0.161

RIM-ONE Jaccard 0, 523 ± 0, 190 0, 540 ± 0, 178 0, 329 ± 0, 287 0, 464 ± 0, 253 0, 491 ± 0, 209 0, 515 ± 0.198
Dice 0, 665 ± 0, 175 0, 683 ± 0, 169 0, 423 ± 0, 336 0, 586 ± 0, 281 0, 630 ± 0, 202 0, 656 ± 0.185

All databases Jaccard 0, 559 ± 0, 203 0, 565 ± 0, 218 0, 546 ± 0, 259 0, 468 ± 0, 233 0, 546 ± 0, 227 0.537 ± 0.205
Dice 0, 696 ± 0, 187 0, 702 ± 0, 221 0, 679 ± 0, 281 0, 590 ± 0, 226 0, 682 ± 0, 215 0.674 ± 0.190

where S and G denote the segmented cup and the ground truth
respectively.

Table 3 shows the percentage images per interval of overlap-
ping error and the average µE using the annotated images as
ground truth. The results are shown in detail for each database,
and for all the images combined.

It can be seen from the table that the percentage of images for
the Drishti-GS1 database has better relative results compare to
the other databases. However, the RIM-ONE database has more
impact on the final result because of the number of images.

For the comparison, the results presented in [8] were used.
Those results were obtained from experiments using cup seg-
mentation algorithms such as the threshold method [9], r-bend
[27], ASM method [28] and regression method [29].

Table 4 gives a comparative analysis of the performance of
the proposed method against some existing methods of cup seg-
mentation. It is possible to see from the table that the proposed
algorithm is among the methods with the best performance. In
addition, this method is evaluated with a greater number of im-
ages.

Unlike existing works, the proposed method uses databases
from different hospitals and research centres, which implies dif-
ferent image resolution and image quality, thus it demonstrates
the robustness of the method in case of variability conditions.
For instance, Regression and Superpixel methods were evalu-
ated using fewer images and from only one private database.

Another comparison with works that only use the Drishti-
GS1 database was made. For this comparison the F-score,
which is defined as F = 2P × R/(P + R) was calculated, where
P is precision and R is the recall. For instance, Sedai et al. [31]
obtained an F-score of 0.86 using only 50 of the 101 images in
the Drishti-GS1 database and Chakravarty et al. [32] obtained
an F-score of 0.81 using the whole Drishti-GS1 database. As in
the latter, in this work, all the images in the Drishti-GS1 were
used; obtaining an F-score of 0.77. It shows that the proposed
algorithm has a competitive performance for optic cup segmen-
tation.

4.2. Glaucoma diagnosis
After the cup is segmented, the CDR, ACDR and ISNT rule

was measured for all the images. Table 5 shows the specificity
(Sp) and sensitivity (Se) obtained for each colour space that was
used in the cup segmentation process.

It can be observed from Table 2 that YIQ colour space
presents better performance overall the other colour spaces in
cup segmentation. It is also possible to see from Table 5, that
measuring the CDR using the colour space YIQ, the glaucoma
diagnosis is more reliable than measuring the ACDR, the ISNT
rule or combining all of them. For that reason, next results were
obtained using the YIQ colour space and measuring the CDR.

In Figure 8, the ROC curves for each database can be ob-
served. In these figures, blue lines represent the ROC curves for
the ground truth and the red lines represent the obtained results
from the proposed method measuring the CDR and using the
YIQ colour space. It was observed from the experiments that
the ROC plot for the Drishti-GS1 database has the best relative
result compared to the other databases.

After the ROC curves for each database were generated, a
weighted average ROC curve was computed using the results of
all databases. In Figure 9(a) is possible to see a comparison be-
tween the ground truth and the results of the proposed method.
And in Figure 9(b), a comparison between the superpixel re-
sults, using SiMES database [8], and the results of the proposed
method. It is important to remark that the superpixel method
and the proposed method were tested with different databases.
It can be seen that although the experiments were made with a
wide variety of images, the proposed method performs properly
and its results can be considered clinically significant.

4.3. Computation time
Our whole method was implemented in MatLab on a 3.40

GHz quad-core CPU running Windows 8.1. Once the Stochas-
tic Watershed parameters were tuned an average of 0.508 s
per image were needed to segment, adjust the optic cup con-
tour and measured the CDR, ACDR and ISNT rule. This time
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Table 3: Percentage of images per overlapping error E interval and the average µE for cup segmentation purpose.

# images E <= 0, 1 E <= 0, 2 E <= 0, 3 E <= 0, 4 E <= 0, 5 µE

12Octubre 53 1,89 % 15,09 % 39,62 % 62,26 % 69,81 % 38,60 %
DRIVE 40 0 % 12,50 % 27,50 % 52,50 % 75 % 41,40 %
Drishti-GS1 101 6 % 34 % 64 % 68 % 86 % 30,85 %
Autogla 83 0 % 9,64 % 37,35 % 56,63 % 71,08 % 40,42 %
HRF 45 0 % 17,78 % 40 % 71,11 % 86,67 % 35,09 %
RIM-ONE 401 0,25 % 5,74 % 22,44 % 42,14 % 61,60 % 44,72 %

All databases 723 1.11 % 11.94 % 32.59 % 51.27 % 69.00 % 41.06 %

Table 4: Comparison between existing methods and the proposed method using the overlapping error E in cup segmentation. Other works results shown in this table
were taken from [8]

E <= 0, 1 E <= 0, 2 E <= 0, 3 E <= 0, 4 E <= 0, 5 µE Images used

Thresholding [9] 0 % 3 % 15 % 31 % 47 % 53,50 % 138
R-bend [27] 0 % 4 % 28 % 56 % 77 % 39,50 % 200
Proposed method 1 % 10 % 30 % 50 % 69 % 41.06 % 723
ASM [28] 3 % 25 % 51 % 76 % 88 % 31,30 % 325
Regression [29] [30] 6 % 29 % 62 % 81 % 95 % 28,40 % 650
Superpixel [8] 8 % 42 % 75 % 90 % 96 % 24,10 % 650

Table 5: Results of the Glaucoma diagnosis using the CDR, ACDR, ISNT and the combination of all of them (Combined). In this table, Sp stands for Specificity
and Se stands for Sensitivity

CMYK YIQ Luv Lab PCA RGB

Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se

CDR 0,574 0,697 0,675 0,674 0,650 0,731 0,832 0,563 0,487 0,716 0.545 0.716
ACDR 0,601 0,633 0,715 0,604 0,688 0,673 0,849 0,509 0,517 0,663 0.574 0.655
ISNT 0,495 0,570 0,431 0,568 0,422 0,561 0,337 0,609 0,523 0,544 0.499 0.511

Combined 0,545 0,702 0,730 0,602 0,685 0,635 0,373 0,760 0,376 0,778 0.513 0.742

clearly highlights a strength of this method, its computational
efficiency.

5. Conclusions

An automatic algorithm for optic cup segmentation and fea-
ture extraction to further classify glaucomatous images was
presented. A sensitivity of 0.675 and a specificity of 0.674
were obtained from the proposed algorithm using the YIQ
colour space and measuring the CDR. The segmentation of
the optic cup is based on the Stochastic Watershed transfor-
mation. This segmentation and glaucoma-healthy classification
were validated on 723 colour fundus images from six different
databases with high variability. An F-score of 0.770 was ob-
tained when evaluating this method on the publicly available
database Drishti-GS1.
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