Skip to main content

An Effective Algorithm for Beat-to-Beat Heart Rate Monitoring from Ballistocardiograms

Buy Article:

$107.14 + tax (Refund Policy)

Ballistocardiograms (BCG) is an essential signal for vital sign monitoring. Obtaining the beat-to-beat intervals from BCG signal is of great significance for home-care applications, such as sleep staging, heart disease alerting, etc. The current approaches of detecting beat-to-beat intervals from BCG signals are complex. In this paper, we develop a non-invasive BCG monitoring system, and propose an effective and accurate algorithm for beat-to-beat detection. Firstly, a heartbeat shape is adaptively modeled based on a two-step procedure by taking advantage of the J-peak and the K-valley of BCG signals. Then, forward and backward detections with the criteria of both the morphological distance and the cross-correlation are jointly employed to find the position of each BCG signal, and in turn, to determine the beat-to-beat intervals of BCG signals. The proposed method was validated in at least 90 minutes recording from 10 subjects in various setups. The mean absolute beat-to-beat intervals error was 10.72 ms and on an average 97.93% of the beat-to-beat intervals were detected.

Keywords: BALLISTOCARDIOGRAPHY (BCG); BEAT-TO-BEAT HEART RATE MONITORING; TEMPLATE MATCHING APPROACH

Document Type: Research Article

Publication date: 01 March 2020

More about this publication?
  • Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content