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Abstract  

Objectives; The accumulation and usefulness of clinical data have increased with IT 

development. While using clinical data that needs to be identifiable to obtain meaningful 

information, it is essential to ensure that data is de-identified and unnecessary clinical 

information is minimized to protect personal information. This process requires criteria and an 

appropriate method as there are clear identifiers as well as quasi-identifiers that are not readily 

identifiable.   

Methods; To formulate such a method, first, primary quasi-identifiers were selected by 

classifying information in 20 clinical personal information database tables into Direct-

Identifier (DID), Quasi-Identifier (QI), Sensitive Attribute (SA), and Non-Sensitive Attribute 

(NSA) according to its type. Secondary QIs were then selected by assessing the risk for outliers 

by measuring uniqueness values of the selected data and scoring re-identification by calculating 

equivalence class of the influence on other data on QI removal. Third, the risk of re-

identification of data users was numeralized and classified. Lastly, the final QI according to 

user class was determined by comparing the calculated re-identification scores to the threshold 

values of user classes.  

Results; Eventually, final QIs ranging from a minimum of 18 to a maximum of 28 were selected 

by making an assumption about user classes and using it as criteria. 

Conclusions; The QI selection method presented by the current investigators can be used by 

researchers at the final checkup stage before they de-identify the selected QIs. Therefore, 

clinical data users can securely and efficiently use clinical data containing personal information 

by objectively selecting QIs using the method proposed in the present study. 
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1. Introduction 

 

The big data industry has made it possible to perform analyses in various areas; however, the 

industry is now able to provide individualized services to information users by converging and 

utilizing each individual’s data. Therefore, although the value of data utilization has increased, 

the risk of loss of personal information has increased as well.[1, 2]  

Medical data include various medical records and results based on the actions taken with regard 

to the treatment of an individual at a hospital such as basic information about the patient, 

pathology, admission, discharge, and surgery information. In addition, medical data also 

include sensitive personal information such as disease codes and surgery history. Therefore, 

de-identification must be performed prior to using medical data for non-medical purposes.[3] 

De-identification is a process used to make the subject of the information unidentifiable. 

Personally identifiable information such as name and resident registration number are included 

in information that can identify an individual.[4]  

Medical data can be classified in the context of de-identification into Direct-Identifier (DID), 

Quasi-Identifier (QI), Sensitive Attribute (SA), and Non-Sensitive Attribute (NSA). DID refers 

to data that enable direct identification of a target individual such as name, social security 

number, and e-mail address. In the United States, Health Insurance Portability and 

Accountability Act (HIPAA) Privacy rules regulate the utilization of medical information and 

selection of DID type based on laws related to the personal information protection.[5, 6] 

Because such DIDs reveal identity without any other additional information, de-identification 

measures are taken to prevent identification by either removing the value corresponding to the 

selected DID or by applying predetermined rules.[7]  

QI is defined as the information that can identify an individual when combined with other 

categories of information even though they are not a DID. It is also important personal 

information that requires the same level of processing as a DID. A large amount of data loss 

will occur if the information classified as QI is de-identified, and the data that can be used for 

actual analysis will be greatly reduced. Accordingly, selecting QIs appropriately and providing 

information that is actually needed for data analysis are important issues associated with de-

identification.[8] 

Because no exact criteria have been defined for de-identification until now, QIs are selected by 

subjective judgments stemming from the experience of the person in charge. In addition, QI 

selection is inconsistent because it is de-identified based on different criteria. When such data 

are collated, there is a possibility of the identity of the information subject being revealed by 

privacy attacks such as linkage attacks.[9] On the other hand, the QIs selected based on the 

guidelines for de-identification of personal information comply with criteria for the prevention 

of information re-identification. Therefore, a QI selection method needs to be established with 

consideration to using medical data, distribution range, and QI characteristics given that data 

utility will be reduced owing to most of the data being suppressed if all defined example items 

are selected as QIs and de-identified.[10, 11] 
The QI related research mostly proposed so far has involved comparing and analyzing target 

data, and based on the outcome, data on new de-identification targets is suggested. Research 

conducted until now, however, also has limitations in that there was obscure standard, and de-

identification methods judged to be the most appropriate were subjectively suggested.  

Therefore, we attempt to suggest a methodology that can objectively specify QIs within the 

scope of clinical data. The proposed methodology can minimize the danger of information 

leakage when used for research by identifying connections in data based on the risk of exposing 

information when data is collated and minimize data loss through de-identification processes. 



 

1.1 Background  
 

The information that can identify an individual by itself should be eliminated. In addition, risks 

due to combining with other information should be minimized. It means that de-identification 

may be needed to accomplish the analysis goal in the case that obtaining consent for analyzing 

retained personal information is difficult. Considering the risk of information re-identification, 

management and post management of de-identification should be thorough.[5, 6]  

Fundamentally, de-identification technologies assume the risk of re-identification. The level of 

risk is considered to differ depending on the de-identification method applied. Various 

elements are included, but the level of specific data linked to a particular individual is one of 

the most basic elements. From this perspective, the risk of personal information infringed upon 

due to the identification of applicable information varies depending on whether the data are 

linked to a specific individual, whether there is a potential possibility of data linking to a 

specific individual, or whether the data can possibly be linked to a loosely defined group of 

people instead of a specific individual.[7, 12]  

A comparison of de-identification related studies in the last five years reveals significant 

progress in the de-identification research on clinical information. Studies so far on various de-

identification methods have primarily focused on avoiding linkage attacks.[1, 13-16] They 

have mostly researched methods to minimize the identifiability of individuals from combining 

pieces of information by strengthening de-identification methods. Furthermore, such research 

methods have been focused on retrospective studies that use data from clinical information.[17-

26] The reason is that it is easy to be exposed to the risk of re-identification in the process of 

reusing data.[2] Although the risk of data re-identification can be reduced with such research 

methods, the possibility of reducing data utility also exists.[7] Consequently, research should 

be conducted on maintaining the value of data through studies on procedures for the selection 

of QIs, which are the targets of de-identification. Even though there have been studies dealing 

with QIs, they simply treat QIs as targets for de-identification, and research on selecting data 

as QIs based on specific criteria has not been conducted. Accordingly, taking this research 

background into consideration, the present study aims to investigate data utility and 

minimization of re-identification risk by selecting QIs using specific criteria only from clinical 

data for retrospective studies.  

  



2. Methods 
 

2.1 De-identification analysis targets 

 

De-identification analysis was performed on Electronic Medical Record (EMR), which was 

built in National Cancer Center in Korea, as source data. The EMR is composed of 6,761 tables 

containing four types of clinical data: clinical code, prescription and results, patient information, 

and registration. Experiments were conducted on 17 tables that did have personal information. 

Additionally, even though death-related information is not personal information according to 

the act for personal information protection, 3 tables containing death-related information were 

added since it is included in the review as information to be protected.  

 

2.2 Final QI selection process 

 

We use the scores of the user who analyzes the data for research such as retrospective study 

and the institution with which the user is affiliated as the criterion for selecting QIs to identify 

the objective balance between re-identification risk and data utility. The items known to be 

elements that can identify an individual were first selected as QIs by combining them with 

other information according to the HIPAA rules.[5] The calculation of uniqueness and 

influence values is described at step 2. The final QIs were selected for the digitized columns 

based on the QI selection criteria established using the scores for the user and institution. Figure 

1 shows the process carried out to select the final QIs.  

 



 

Figure 1. Process of QI decision by possibility of data linkage, analysis of re-identification 

possibility in organization, understanding of user, and possibility of re-identification. 

 

Step 1. Primary QI selection according to the de-identification guidelines 

 

Selection of QIs aims not only to safely use data but also to obtain data that must be de-

identified to use in research. Accordingly, de-identification of QIs is subjected to different 

criteria depending on the purpose of research, unlike DIDs that require compulsory deletion 

for de-identification. In addition, the sensitive data included in clinical data must also be 

deleted in principle if they are irrelevant to the purpose of data use. Therefore, the first step in 

the de-identification process is classifying data columns into DID, QI, SA, and NSA.[6] The 

data column classification process is indicated in Figure 2. If the information is not a DID and 

a specific individual cannot be identified using the information but can be easily identified by 

combining it with other information such as personal, physical, and credit characteristics, the 

information is classified as a QI. If an individual is identified using information that is not a 

DID or QI, sensitive information that can inflict ethical, financial, and reputational harm upon 

an individual is classified into an SA, and other general information is classified into an NSA.  

 



 

Figure 2. Process of classification by data column for de-identification. DID: direct-

identification; QI: quasi-identification; SA: sensitive attribute; NSA: non-sensitive attribute. 

 

 

Step 2. Secondary QI selection based on re-identifiability scores 

 

 

Figure 3. Example of calculation rules of uniqueness (A) and influence (B).  

The QIs are selected based on identifiability scores determined by identifying the 

characteristics of the data. Uniqueness was calculated for each column, since a column with a 

large number of unique values can be considered to have a high possibility of re-identification 

(Figure 3A).[27] For example, the uniqueness of a column means the calculated ratio of unique 



records, i.e., The ratio of a record with only one value to all the records in the column. Therefore, 

because 58 and 64 are unique values among the five values in each column in the cases of 

weight and age, respectively, they have a uniqueness value of 0.2 each. If the uniqueness value 

is 0, the information cannot identify a specific individual, implying that it does not have to be 

selected as a QI because of its low data risk. On the other hand, a column that has a non-zero 

uniqueness value implies that it has at least one distinct value. Such a column can be considered 

to have re-identification risk because the distinct value can be key to identifying a specific 

individual. 

Next, the level of influence is measured based on changes in the number of equivalence classes 

(Figure 3B). NE denotes the number of equivalence classes in a data set, T is the sum of all 

columns in the table, and Ci denotes the ith column. If the number of equivalence classes 

decreases sharply compared to the number of equivalence classes of the entire table when a 

specific column is excluded, then the level of influence of the specific column on the data is 

high. In Figure 3A, even though the uniqueness values of weight and age are the same, the high 

influence of age can be seen if the ratio of the number of equivalence classes in each column 

to that in the entire table is calculated. Because the number of equivalence classes of the entire 

table is four while it is three when the age column is excluded, the influence value of age is 

0.25. A column with an influence value indicates that it can increase the risk of re-identification 

by increasing the number of equivalence classes due to its influence on other columns, even if 

its uniqueness value is 0. Therefore, it is selected as a QI, which has the possibility of 

identifying individuals by combining with other data. 

Lastly, among the primary QIs, the QIs that have uniqueness and influence values calculated 

above are selected as the secondary QIs and scored as the sum of uniqueness and influence to 

use them as re-identifiability scores. 

 

Step 3. User and institution grading based on scoring the possibility of data 

linkage 
 

 The final QI selection reflects the risk of data re-identification through a survey of the 

institution and users using the data. First, scoring is carried out by assigning weights based on 

the characteristics of the institution to prevent identification of specific individuals with data 

QIs provided through the data institutions have by classifying institutions that use data. Second, 

scoring is performed after weightings are assigned to the possibility of re-identification by 

assessing it and the ability to protect the personal information of data users. Lastly, scoring is 

performed based on the data user’s ability to protect personal information. Lastly, the re-

identification of data is scored. Table 1 shows an example of indices that can be scored on the 

possibility of data linkage. Institutions and enterprises using clinical research data assign 

weights according to the ease of collecting data related to the applicable data and score. In the 

case of public institutions, gradings are carried out with differentiation so that institutions that 

engage significantly with clinical data such as the National Health Insurance Service, the 

Health Insurance Review & Assessment Service, and Public Hospitals are graded high; 

institutions that engage relatively lesser such as the Ministry of Health & Welfare and the 

Ministry of Food and Drug Safety are graded middle, and other institutions that engage the 

least are graded low. Among enterprises, hospitals, which have high relevance to clinical data, 

are graded high; pharmaceutical companies, which have relatively low relevance are graded 

middle; and other enterprises are graded low. To differentiate the grades determined above, 

scores of ten, five, and one are assigned to high, middle, and low grades, respectively. 
 



Table 1. Probability example of data linkage 

Categorization Institution Probability Grade 

Public 
Institution 

National Health Insurance Service, Health 
Insurance Review & Assessment Service, Public 
Hospital, etc. 

High High 

Ministry of Health & Welfare, Ministry of Food 
and Drug Safety, etc. 

Middle Mid 

Government Agency and so on Low Low 

General 
Enterprise 

Hospital High High 

Pharmaceutical Company Middle Mid 

Enterprise and so on Low Low 

 

Re-identifiability was divided into user such as researcher for retrospective study, and clinical 

data aspects to assess the re-identifiability of institutions. For the user aspect, users’ intent and 

ability to re-identify clinical research data are measured. For the data aspect, the level of 

privacy information protection such as procedures to protect data itself are measured and scored. 

Table 2 is a summary of detailed indicators of re-identification intent of the user aspect and the 

possibility of external data linkage of the data aspect. For re-identification intent, the possible 

impact of re-identified data using Yes/No. For the possibility of external data linkage, the 

possibility of users linking external information to re-identify is assessed using Yes/No. The 

total score is obtained by summing the number of "Yes" responses with one point assigned for 

each response and the maximum score being four points as there are four indicators. The higher 

the score, the higher the intent and ability for re-identification.  

 

Table 2. Intention of re-identification and ability analysis1 

Classification Detailed Indicator Evaluation 

Intention of re-
identification 

Data frame that aims to shames individuals 

when data users or consumers re-identify the data 

Yes/No 

Data frame that offers monetary benefits 

when data users or consumers re-identify the data 

Yes/No 

Data users or requestors who do not communicate about 
the prohibition of re-identification and restriction of data 
provision to third party in data usage (provision) related 
contract 

Yes/No 



Possibility of 
external data 
linkage 

Data that is combinable with the evaluation-target data 
available on the Internet, SNS, and data.go.kr (government 
open-data portal) 

Yes/No 

 

Table 3 summarizes the detailed indicators used to assess the level of privacy information 

protection. It should be noted that the indicators are used to measure the risk for protection 

level, and the number of “No” assessments should be summed. Accordingly, the higher score 

the score, the lower is the protection level. The maximum score is six points.  

 

Table 2. Estimation of privacy information protection 

Classification Detailed Indicator Evaluation 

Ability in 
privacy 
protection 

Receiving security service level agreement or providing 
security training to human resources who can access the 
data 

Yes/No 

Establishing or operating management plan about keeping 
and treating data for users or requestors 

Yes/No 

Data is transferred through a safe method that is physically 
and technologically protected 

Yes/No 

It is used on a server or PC with both systems of intrusion 
blocking and intrusion prevention installed 

Yes/No 

Managing the access authorization and access records of 
human resources that can access data 

Yes/No 

Data users or requestors undergo periodic security check 
from security management division 

Yes/No 

 

The scores for re-identification intent are digitized by adding assessment scores in Tables 2 

and 3. The obtained score is a re-identifiability index and the higher the score, the higher the 

risk of re-identification , implying that data protection should be strengthened.  

 

Users’ understanding of data such as clinical data for research is measured separately for the 

relevant knowledge of data users and length of employment. For the relevant knowledge, users’ 

understanding of data is assessed and scored by analyzing their role and responsibilities (R&R), 

major, and academic degree. For the items on length of employment, given the background 

knowledge on work, it is considered that the longer the length of employment, the higher the 

re-identification risk. Table 4 shows the classification of user’s ability and explanation on 

detailed indicators. The relevant knowledge is assessed as Yes/No, and the length of 

employment is scored. One point is assigned to “Yes” on the detailed items related to relevant 

knowledge, with the maximum score being three points. Items related to the length of 

employment were scored by assigning zero point for less than three years of employment, three 

points for a period between more than three years and less than seven years, five points for a 



period between more than seven years and less than ten years, and seven points for ten years 

or more. Users’ understanding of data was scored by summing the scores of relevant knowledge 

and length of employment. The higher the score, the higher the risk of user’s re-identification, 

and the greater the need for strengthening data protection.  

 

Table 3. User understanding about data 

Classification Detailed Indicator Evaluation 

Relevant 
knowledge 

Data users or requestors have knowledge or relevant 
degrees indicating the ability to re-identify private 
information 

Yes/No 

Data users or requestors can possess or obtain resources 
(money) that can be used to re-identify private information 

Yes/No 

Data users or requestors can access other databases that 
can be linked for the re-identification of private information 

Yes/No 

Working 
period 

Working period of data users or requestors is less than 3 
years 

0 pts 

Working period of data users or requestors is 3 or more 
years but less than 7 years 

3 pts 

Working period of data users or requestors is 7 or more 
years but less than 10 years 

5 pts 

Working period of data users or requestors is 10 or more 
years 

7 pts 

 

The average of the scores of the possibility of data linkage, analysis of the re-identifiability of 

institutions, and users’ understanding of data is obtained. The average value is entered as 

Average Score, and grade is calculated. The average scores are classified into “High” for seven 

points or higher, “Middle” for a score higher than four points but less than seven points, and 

“Low” for less than four points. For example, assuming ten points for the possibility of data 

linkage, five points for re-identifiability, and five points for users’ understanding of data, the 

Average Score of institution and users is 6.67, which is classified as “Middle” (Table 5). 

 

Table 4. Example of calculation for organization and user 

Probability of data 
linkage 

Possibility analysis of 
organization re-
identification 

User understanding 
Average 
score 

10* 2** 8*** 
6.67 
(Middle) 



* The score is obtained from the contents of Table 1, and the score ranges from a minimum of one point to a maximum of ten points. 

** The score is obtained from the contents of Tables 2 and 3, and the score ranges from a minimum of one point to a maximum of ten 

points. 

*** The score is obtained from the contents of Table 4, and the score ranges from a minimum of one point to a maximum of ten points. 

 

Step 4 Final QI selection considering re-identifiability scores and the possibility 

of data linkage 
 

To differentiate the selection criteria for the final QIs depending on the users using data and 

their affiliated institutions, the final QI selection is determined for the re-identifiability of 

scores calculated in Step 3 based on the calculated threshold according to the extracted grade. 

A threshold value of data identifiability of 0.25 is assigned for “High” grade, 0.5 for “Middle” 

grade, and 0.75 for “Low” grade respectively. Only the columns that scored higher re-

identifiability than the applicable thresholds are selected as QIs. The lower the grade, the higher 

the threshold, which results in less number of QIs being selected.  



3. Results  

The clinical data set tables were classified into DIDs, QIs, SAs, and NSAs according to the 

existing HIPAA rules. Table 6 indicates the classification status of the 20 CRDW tables, which 

were classified into 108 DIDs, 137 QIs, 68 SAs, and 460 NSAs. The number of classified DIDs, 

QIs, SAs, and NSAs includes duplicate counts. 

 

Table 6. Analysis results of clinical data set tables by National Cancer Center 

No Description  DID QI SA NSA 

1 Patient master  4 9 5 10 

2 Physical measurement information  7 11 0 12 

3 Patient mortality information  1 1 4 4 

4 Patient mortality date information  1 1 0 4 
5 Patient mortality cause information  1 0 4 4 

6 Therapeutic radiation therapy  12 10 0 27 

7 Processing prescription details  4 6 0 22 

8 Blood transfusion prescription details  4 12 0 37 

9 Details of rehabilitation treatment  6 8 0 27 

10 Reading results TA  1 1 0 43 

11 Pathological reading results  1 1 0 6 

12 Results of pathology readings  10 6 3 21 

13 Surgical prescription details  6 11 0 28 

14 Image function test results  15 5 0 15 

15 Medication prescription details  4 7 6 61 

16 Diagnostic test results  3 3 4 30 

17 Test prescription details  4 6 0 34 

18 Diagnostic information  6 8 0 16 

19 Visit information  10 3 0 22 

20 Early assessment of nursing (General adult)  8 28 42 37 

 

In the 108 columns classified into DID among the 20 tables, the DIDs associated with patients 

are patient names, town-level addresses, and patient identification numbers. In addition, the 

DIDs related to hospital personnel were doctor ID, doctor name, therapist ID, therapist name, 

anesthesiologist ID, anesthesiologist name, initial keyboarder, and final amender.  

Of the 137 columns selected as QIs, the columns with uniqueness scores and influence were 

considered as re-identifiable columns, and the first batch of 64 QIs including duplicates were 

selected. Table 7 illustrates the method of making final QI selections for the applicable columns 

based on the threshold values graded using objective scores for the users and institutions 

mentioned above. First, re-identifiability was scored by summing the uniqueness scores and 

influence scores of each column. From the obtained scores, 28 columns were selected as QIs if 

the threshold was set at 0.25 and by taking columns that have re-identifiability score of 0.25 or 

higher as QIs in the case of “High” user and institution grading. A total of 20 columns were 

selected as QIs if the threshold was set at 0.5 and by taking columns with re-identifiability 

score of 0.5 or higher as QIs in the case of “High” user and institution grading. Lastly, 17 



columns were selected as QIs if the threshold was set at 0.75 and by taking columns with re-

identifiability score of 0.75 or higher as QIs in the case of “High” user and institution grading 

 



Table 7.  The list of selected columns in CRDW 

 

No Table description Column description Uniqueness Influence Sum 

(Uniqueness

+Influence) 

QI 

(0.25+/ 

check) 

QI 

(0.5+/ 

check) 

QI 

(0.75+/ 

check) 

No Table description Column description Uniqueness Influence Sum 

(Uniqueness

+Influence) 

QI 

(0.25+/ 

check) 

QI 

(0.5+/ 

check) 

QI 

(0.75+/

check) 

6 Therapeutic radiation 

therapy 

Gender 0 0.0008 0.0008 

   

13 Surgical prescription 
details 

Medical charge code 0.0003 0 0.0003 

   

Date of birth 0.0000 0.6494 0.6494 O O 

 

Medical charge name(English) 0.0003 0 0.0003 

   

Age at the prescription 0 0.0748 0.0748 

   

Medical charge name(Korea) 0.0003 0 0.0003 

   

Therapeutic site code 0 0.1401 0.1401 

   

14 Image function test 
results 

Gender 0 0.2927 0.2927 O 

  

7 Processing prescription 

details 

Gender 0 1 1 O O O Date of birth 0.0003 0.9994 0.9997 O O O 

Date of birth 0.0000 0.9947 0.9947 O O O Age at the examination 0 0.8670 0.8670 O O O 

Age at the prescription 0 1 1 O O O 15 Medication 
prescription details 

Gender 0 0.0663 0.0663 

   

Prescription type code 0 1 1 O O O Date of birth 0.0001 0.9757 0.9758 O O O 

Prescription code 0.0000 0.9997 0.9997 O O O Age at the examination 0 0.4918 0.4918 O 

  

Medical charge code 0.0000 0.9997 0.9997 O O O Prescription code 0 0.0025 0.0025 

   

8 Blood transfusion 

prescription details 

Gender 0 0.0135 0.0135 

   

Medical charge code 0 0.0195 0.0195 

   

Date of birth 0.0095 0.8194 0.8289 O O O Medical charge code(English) 0 0.4085 0.4085 O 

  

Age at the prescription 0 0.2026 0.2026 

   

Medical charge code(Korea) 0.0000 0.6785 0.6785 O O 

 

Prescription code 0 0.0110 0.0110 

   

16 Diagnostic 
examination results 

Gender 0 0.3070 0.3070 O 

  

Operation name 0.0077 0.0189 0.0266 

   

Date of birth 0.0000 0.9994 0.9994 O O O 

Blood type 0 0.0082 0.0082 

   

Age at the examination 0.0000 0.8680 0.8680 O O O 

9 Details of rehabilitation 

treatment 

Gender 0 0.0035 0.0035 

   

17 Examination 
prescription details 

Gender 0.0009 0.0749 0.0758 

   

Date of birth 0.0027 0.8187 0.8214 O O O Date of birth 0 0.0061 0.0061 

   

Age at the prescription 0 0.1348 0.1348 

   

Age at the prescription 0 0.0005 0.0005 

   

Rehabilitation code 0 0.5190 0.5190 O O 

 

Prescription type code 0 0.0013 0.0013 

   

12 Results of pathology 

readings 

Gender 0 0.0359 0.0359 

   

Prescription code 0 0.0288 0.0288 

   

Date of birth 0.0014 0.7914 0.7928 O O O 18 Diagnostic 
information 

Date of birth 0.0041 0.7602 0.7643 O O O 

Age at the examination 0 0.3000 0.3000 O 

  

Gender 0 0.0100 0.0100 

   

Inspection classification code 0 0.0010 0.0010 

   

Age of diagnosis 0 0.0744 0.0744 

   

Main sampling site 0.0433 0.3096 0.3529 O 

  

Clinical diagnosis(ICD-10th code) 0.0054 0 0.0054 

   

13 Surgical prescription 

details 

Gender 0 0.0011 0.0011 

   

Disease code(ICD-10th) 0.0028 0 0.0028 

   

Date of birth 0.0197 0.7075 0.7272 O O 

 

Disease name(English,ICD-10th) 0.0021 0 0.0021 

   

Age at the prescription 0 0.0490 0.0490 

   

Disease name(Korea,ICD-10th) 0.0019 0 0.0019 

   

Operation code 0.0048 0.0403 0.0451 

   

19 Visit information Date of birth 0.0003 0.9995 0.9998 O O O 

Operation name(English) 0.0025 0 0.0025 

   

Gender 0 0.3272 0.3272 O 

  

Operation name(Korea) 0.0003 0 0.0003       Age of arrival 0 0.8777 0.8777 O O O 



4. Discussion  

The present study conducted an experiment based on the method of selecting objective QIs for 

CRDW. Even though 137 clinical data set columns were selected (Table 5) based on the QI 

selection method of the HIPAA rules, the present investigation was able to reduce the range of 

columns to 17 - 28 by using the objective QI selection method proposed in the present study. 

If the current QI selection method is used, more than 100 columns are selected as QIs, 

processed for de-identification, and consequently data utility drops. However, data utility may 

improve if limited number of columns that have re-identifiability are selected using uniqueness 

and influence values and the columns that do not have re-identifiability are removed.  

 A flexible de-identification method was prepared by indexing and scoring information such as 

the re-identification capability of data users and their affiliated institutions. Based on the scores 

obtained, stricter selection of QIs was applied for users who had higher de-identifiability while 

selecting less number of QIs for the users whose de-identifiability was low despite using 

identical data. 

 Even though the de-identification intent of users and institutions was objectively scored, there 

is, however, the possibility of users with low scores and less amount of de-identified data 

misusing information compared to the users with high scores if they have the intention to do 

so.[28] Therefore, an honest broker is needed for using the objective QI selection method 

proposed in the present study. The users who were graded using the method proposed for 

assessing user’s re-identification intent must undergo not only the intervention by the honest 

broker but also check the usage log of the provided data. Furthermore, there are occasions 

wherein users need data with minimum level de-identification depending on the research 

purpose. The honest broker should flexibly provide the level of de-identification by relatively 

decreasing re-identifiability by strengthening the de-identification measures of other QIs.  

The columns of clinical data set have diverse information, and application of the proposed 

selection method to all research data is limited. Accordingly, the present study proposed a 

method for extracting QIs from data and selecting QIs to be minimally used based on clinical 

data sets. The study offered a method to select QIs based on objective grounds rather than the 

experience and subjective judgments of researchers by preparing objective indices for selecting 

the final QIs by numerically calculating the uniqueness and influence of the selected QI data. 

Through the method, it is expected that researchers can not only protect research data from data 

linkage attacks that identify specific individuals by linking QIs with external data but also 

prevent disturbances to research by minimizing the data loss that occurs in the process of de-

identification. The de-identification method for the finally selected QIs should make the 

unnecessary information in the information searched for research purpose unsearchable. In the 

case of information needed for research purpose, however, the information should be excluded 

from de-identification for use while strengthening de-identification of other data. In future 

research, an in-depth investigation can focus on the existing de-identification method, security, 

and efficiency to strengthen it further through differentiating the level of de-identification by 

weighting the finally selected QIs in the present study. 

 

Summary points 

· With the vast amounts of data handled in clinical settings, de-identifying data appropriately 

in a manner that retains data utility while also protecting personal information is essential.  

· The present study proposed a method for extracting Quasi Identifiers (QIs) from data and 

selecting QIs to be minimally used based on clinical data sets.  



· The study offered a method to select QIs based on objective grounds rather than the 

experience and subjective judgments of researchers by preparing objective indices for 

selecting the final QIs by numerically calculating the uniqueness and influence of the 

selected QI data.  

· The proposed methodology can minimize the danger of information leakage when used for 

research by identifying connections in data based on the risk of exposing information when 

data is collated and minimize data loss through de-identification processes. 
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