Skip to main content

3D Printing in Cranioplasty for Giant Cranial Deformity with Multi-Dimensional Nuclear Magnetic Simulation

Buy Article:

$107.14 + tax (Refund Policy)

This article is based on 3D printing technology, through multi-dimensional nuclear magnetic stimulation to the in-depth study of the application of plastic surgery in patients with giant cranial deformity cranial reduction, first of all, patients with CT scan of the brain, based on CT data for 3D reconstruction, 3D geometric modeling, using 3D printing Prepare multiple skull 1:1 scale, solid models, perform surgical planning and drills, determine the surgical plan (related parameters such as surgical time, cranial cavity volume, frontal plane ratio, anterior-posterior diameter, left-right diameter, head-to-height ratio, etc.), it can increase the patient’s speed and stride, and complete a variety of material tests. The 3D printing group had lower pain VAS scores at 1 h and 24 h after surgery than the traditional data group. The same data observed from different dimensions may yield different results, but also enable people to understand the nature of things more comprehensively and clearly. It was statistically significant (P < 0.05). The postoperative swelling of the 3D printing group was less than that of the customary group, and the difference was statistically significant (P < 0.05). Through 12 months of follow up observation, the power of 3D printing is higher than that of the habitual group, and the difference is statistically significant (P < 0.05). This technology has an important guiding significance in future related treatment technology.

Keywords: 3D Printing; Multi-Dimensional Nuclear Magnetic Stimulation; Plastic Surgery; Shrinkage of Giant Cranial Deformity

Document Type: Research Article

Affiliations: Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Fujian, 361001, China

Publication date: 01 June 2021

More about this publication?
  • Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content