
ON THE INTERACTION BETWEEN
POWER-AWARE COMPUTER-AIDED DESIGN ALGORITHMS FOR

FIELD-PROGRAMMABLE GATE ARRAYS

by

Julien Lamoureux
B.Sc.C.E., University of Alberta, 2001

A thesis submitted in partial fulfillment of the requirements for

the degree of

Master of Applied Science

in

The Faculty of Graduate Studies
Department of Electrical and Computer Engineering

We accept this thesis as conforming to the required standard:

The University of British Columbia
June 2003

© Julien Lamoureux, 2003

UBC Rare Books and Special Collections - Thesis Authorisation Form Page 1 of 1

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements
for an advanced degree at the University of B r i t i s h Columbia, I
agree that the Library s h a l l make i t f r e e l y a v a i l a b l e for reference
and study. I further agree that permission for extensive copying of
thi s thesis for sch o l a r l y purposes may be granted by the head of my
department or by his or her representatives. It i s understood that
copying or p u b l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l not
be allowed without my written permission.

The University of B r i t i s h Columbia
Vancouver, Canada

Department

http://www.library.ubc.ca/spcoll/thesauth.html 2003-07-03

http://www.library.ubc.ca/spcoll/thesauth.html

ABSTRACT

ON THE INTERACTION BETWEEN POWER-AWARE COMPUTER-AIDED DESIGN

ALGORITHMS FOR FIELD-PROGRAMMABLE GATE ARRAYS

As Field Programmable Gate Array (FPGA) power consumption continues to increase, lower

power FPGA circuitry, architectures, and Computer-Aided Design (CAD) tools need to be

developed. Before designing low-power FPGA circuitry, architectures, or CAD tools, we must

first determine where the biggest gains (in terms of energy reduction) are to be made and

whether these gains are cumulative. In this thesis, we focus on FPGA CAD tools. Specifically,

we describe a new power-aware CAD flow for FPGAs that was developed to answer the above

questions.

Estimating energy using very detailed post-route power and delay models, we determine the

gains obtained by our power-aware technology mapping, clustering, placement, and routing

algorithms and investigate how each gain behaves when the algorithms are applied concurrently.

The individual energy reductions of the power-aware technology-mapping, clustering,

placement, and routing algorithms were 7.6%, 12.6%, 3.0%, and 2.6% respectively. The

majority of the overall energy reduction was achieved during the technology mapping and

clustering stages of the power-aware FPGA CAD flow. In addition, the gains were mostly

cumulative when the individual power-aware CAD algorithms were applied concurrently with

overall energy reductions of 22.6%.

ii

T A B L E OF CONTENTS

A B S T R A C T i i

T A B L E O F C O N T E N T S i i i

L I S T O F F I G U R E S v i

L I S T O F T A B L E S v i i i

A C K N O W L E D G E M E N T S ix

CHAPTER 1 I N T R O D U C T I O N 1

1.1 RESEARCH GOALS 2

1.2 RESEARCH APPROACH 3

1.3 THESIS ORGANIZATION 4

CHAPTER 2 B A C K G R O U N D A N D P R E V I O U S W O R K 5

2.1 FPGA ARCHITECTURE 5

2.1.1 Configurable Logic Blocks 7

2.1.2 Configurable Routing Fabric 8

2.2 F P G A C A D FLOW 10

2.2.1 Terminology 11

2.2.2 Technology Mapping 13

2.2.3 Clustering 18

2.2.4 Placement 22

2.2.5 Routing 25

2.3 Focus AND CONTRIBUTION OF THIS THESIS 27

CHAPTER 3 E X P E R I M E N T A L M E T H O D O L O G Y 29

3.1 MOTIVATION 29

3.2 NEW EXPERIMENTAL METHODOLOGY 31

3.3 T H E DELAY M O D E L 33

3.4 POWER M O D E L 34

3.4.1 Switching Activity Estimation 35

3.4.2 Power Estimation 36

3.5 SUMMARY 40

CHAPTER 4 P O W E R - A W A R E T E C H N O L O G Y M A P P I N G 41

4.1 POWER AND TECHNOLOGY MAPPING 41

4.2 E M A P ALGORITHM 43

i i i

4.2.1 Overview of the EMap Algorithm 43
4.2.2 The Cost Function 45

4.3 E X P E R I M E N T A L M E T H O D O L O G Y 4 6

4.4 E X P E R I M E N T A L R E S U L T S 4 6

4.5 S U M M A R Y 4 9

CHAPTER 5 P O W E R - A W A R E C L U S T E R I N G 50

5.1 E N E R G Y A N D C L U S T E R I N G 5 0

5.2 R E C A L I B R A T I N G T H E T - V P A C K A L G O R I T H M 51

5.3 E N H A N C I N G T H E T - V P A C K A L G O R I T H M 5 2

5.4 E X P E R I M E N T A L M E T H O D O L O G Y 5 4

5.5 E X P E R I M E N T A L R E S U L T S 5 4

5.5.7 Calibrating the P-T-VPack Algorithm 54
5.5.2 Final Results 55

5.6 S U M M A R Y 5 7

CHAPTER 6 P O W E R - A W A R E P L A C E M E N T 59

6.1 E N E R G Y A N D P L A C E M E N T 5 9

6.2 R E C A L I B R A T I N G T H E T - V P L A C E A L G O R I T H M 6 0

6.3 E N H A N C I N G T H E T - V P L A C E A L G O R I T H M 61

6.4 E X P E R I M E N T A L M E T H O D O L O G Y 6 2

6.5 E X P E R I M E N T A L R E S U L T S 6 2

6.5.7 Calibrating the P-T-VPlace Algorithm 63
6.5.2 Final Results 64

6.6 S U M M A R Y 6 6

CHAPTER 7 P O W E R - A W A R E R O U T I N G 67

7.1 E N E R G Y A N D R O U T I N G 67

7.2 T H E P - T - V R O U T E A L G O R I T H M 6 9

7.3 E X P E R I M E N T A L M E T H O D O L O G Y 7 0

7.4 E X P E R I M E N T A L R E S U L T S 7 0

7.4.7 Calibrating the P-T-VRoute Algorithm 70
7.4.2 Experimental Results 77

7.5 S U M M A R Y 7 3

CHAPTER 8 C O M B I N E D R E S U L T S 74

8.1 DISCUSSION 7 4

8.2 E X P E R I M E N T A L M E T H O D O L O G Y 7 4

8.3 E X P E R I M E N T A L R E S U L T S 75

iv

8.4 SUMMARY 77

CHAPTER 9 C O N C L U S I O N S A N D F U T U R E W O R K 79

9.1 SUMMARY AND CONTRIBUTIONS 79

9.2 FUTURE WORK 80

9.2.7 System-Level Power Optimization for FPGAs 81

9.2.2 Static Power Optimizations 82

R E F E R E N C E S 84

V

LIST OF FIGURES

FIGURE 1.1: T H E B A S E L I N E FPGA C A D F L O W 3

FIGURE 2.1: C O N C E P T U A L FPGA M O D E L S [16] 6

FIGURE 2.2: A G E N E R I C F P G A LOGIC B L O C K [21] 8

FIGURE 2.3: A N I S L A N D - S T Y L E FPGA [14] 9

FIGURE 2.4: Two T Y P E S O F P R O G R A M M A B L E SWITCHES U S E D IN S R A M - B A S E D FPGAs [14] 10

FIGURE 2.5: T H E FPGA C A D F L O W 11

FIGURE 2.6: A D I R E C T E D A C Y C L I C G R A P H REPRESENTATION O F A B O O L E A N N E T W O R K 12

FIGURE 2.7: T H E L O O K U P T A B L E E Q U I V A L E N T O F A C U T 13

FIGURE 2.8: L U T - B A S E D T E C H N O L O G Y MAPPING 15

FIGURE 2.9: A N E X A M P L E O F C L U S T E R I N G 18

FIGURE 2.11: A N E X A M P L E O F P L A C E M E N T 2 2

FIGURE 2.12: P S E U D O - C O D E O F A GENERIC S I M U L A T E D A N N E A L I N G - B A S E D P L A C E R [14] 2 3

FIGURE 3.1: E X P E R I M E N T A L F R A M E W O R K 3 2

FIGURE 3.2: E Q U I V A L E N T CIRCUIT FOR FPGA R O U T I N G E L E M E N T S [14] 3 4

FIGURE 3.3: A G E N E R I C V P R LOGIC B L O C K 38

FIGURE 3.4: A N H - T R E E C L O C K DISTRIBUTION N E T W O R K 38

FIGURE 3.5: L E A K A G E C U R R E N T S [64] 3 9

FIGURE 4.1: A C T I V I T Y - A W A R E MAPPING SOLUTION 41

FIGURE 4.2: N O N A C T I V I T Y - A W A R E MAPPING SOLUTION 4 2

FIGURE 4.3: P S E U D O - C O D E O F T H E E M A P T E C H N O L O G Y M A P P I N G A L G O R I T H M 4 4

F I G U R E 4.4: E N E R G Y V E R S U S T H E ACTIVITY F A C T O R (L A M B D A) 48

FIGURE 5.1: I N T E R - C L U S T E R A N D I N T R A - C L U S T E R C O N N E C T I O N S 51

FIGURE 5.2: E N E R G Y V E R S U S TIMPWG-TRADEOFF 5 2

FIGURE 5.3: E N E R G Y V E R S U S A L P H A A N D B E T A 55

FIGURE 5.4: E N E R G Y DISSIPATION V E R S U S C L U S T E R SIZE 5 7

FIGURE 6.1: Two E X A M P L E P L A C E M E N T SOLUTIONS 5 9

vi

FIGURE 6.2: E N E R G Y V E R S U S T I M I N G - T R A D E O F F 61

FIGURE 6.3: E N E R G Y V E R S U S P O W E R - T R A D E O F F (G A M M A) 6 3

FIGURE 6.4: P - T - V P L A C E (WIRE C A P . vs. SWITCHING ACTIVITY) 65

FIGURE 7.1: R O U T I N G E X A M P L E 1: (A) C O N G E S T E D I N T E R C O N N E C T A N D (B) INDIRECT C O N N E C T I O N 67

FIGURE 7.2: R O U T I N G E X A M P L E 2: (A) U N C O N G E S T E D I N T E R C O N N E C T A N D (B) DIRECT C O N N E C T I O N 68

FIGURE 7.3: E N E R G Y , D E L A Y , A N D P O W E R V E R S U S P O W E R W E I G H T 71

FIGURE 7.4: P - T - V R O U T E R E S U L T S (WIRE CAP. VS. SWITCHING ACTIVITY) 7 3

FIGURE 8.1: E M A P / P - T - V P A C K O V E R L A P 7 7

FIGURE 9.1: M O D E R N F P G A WITH E M B E D D E D S Y S T E M - L E V E L B L O C K S 81

vii

LIST OF TABLES

T A B L E 4.1: T E C H N O L O G Y M A P P I N G R E S U L T S 4 3

T A B L E 4.2: E M A P RESULTS (K = 4) 4 7

T A B L E 4.3: E M A P R E S U L T S 4 8

T A B L E 5.1: P - T - V P A C K R E S U L T S (N = 4) 5 5

T A B L E 5.2: C L U S T E R I N G GAIN C O M P O N E N T S 5 7

T A B L E 6.1: P - T - V P L A C E RESULTS 6 4

T A B L E 7.1: P - T - V R O U T E R E S U L T S 7 2

T A B L E 8.1: C O M B I N E D R E S U L T S (E N E R G Y N J) 7 5

T A B L E 8.2: O V E R L A P B E T W E E N P O W E R - A W A R E A L G O R I T H M S 7 6

viii

ACKNOWLEDGEMENTS

First of all, I wish to thank my academic advisor, Dr. Steve Wilton, for the guidance, technical

advice, and moral support that he provided throughout my Masters. From Dr. Wilton, I learned a

great deal about how to conduct and present research, and about the ins and outs of a career in

research.

I would also like to thank the other members of Dr. Wilton's research group, namely: Andy Yan,

Danna Cao, Ernie Lin, James Wu, Kara Poon, Martin Ma, Noha Kafafi, and Steve Oldridge, for

their helpful insights and for creating a friendly research environment. Special thanks are due to

Kara Poon for her detailed FPGA power model and to Dr. Guy Lemieux for his helpful and

thought-evoking comments.

I greatly appreciate the financial support that was provided by the Altera Corporation, the BC

Advanced Systems Institute (ASI), Micronet R & D , and the Natural Sciences and Engineering

Research Council of Canada (NSERC). Without their support, this work would not be possible.

Finally, I would especially like to thank my family for their support and encouragement

throughout my years of schooling, and Sasha Ransom for being a continual source of motivation

and confidence.

ix

Chapter 1

INTRODUCTION

Power consumption has become a critical concern in the semiconductor industry. As the heat

generated by integrated circuits begins to exceed the ability of packaging to dissipate this heat,

designers are forced to sacrifice performance in order to meet power budgets. Furthermore, the

increased demand for low-power chips for hand-held applications provides additional incentive

for the development of new techniques to reduce power consumption.

Power consumption is especially critical in Field-Programmable Gate Arrays (FPGAs). An

FPGA's programmability is afforded through the use of long routing wires and programmable

switches. These wires are laden with parasitic capacitance. During high-speed operation, the

switching of these wires causes significant power dissipation. Moreover, the programmable

logic blocks used within FPGAs to implement user circuit functionality consume significantly

more power than the fixed logic used within Application Specific Integrated Circuits (ASICs).

Already, many FPGA vendors report that power dissipation is one of the primary concerns of

their customers [56].

FPGA power consumption can be reduced by optimizing the circuitry and the architecture of the

FPGA's programmable fabric, or the Computer-Aided Design (CAD) tools used to map circuits

onto the FPGA. This thesis focuses on optimizing the FPGA CAD flow for power.

1

1.1 Research Goals

The FPGA CAD flow is comprised of a sequence of algorithms, namely: technology mapping,

clustering, placement, and routing. These algorithms perform a series of transformations in

order to map user circuits onto FPGAs. Each algorithm can be enhanced to minimize the power

consumption of the final circuit implementation. There have been several low-power FPGA

CAD algorithms described in previous works [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. However, these have

all been "point solutions", in that each considered only a single CAD algorithm. This thesis

examines the entire FPGA CAD flow (from technology to routing) in order to understand the

interaction between power-aware FPGA CAD algorithms. Specifically, the purpose of this

thesis is to answer the following two questions:

1. What stages of the FPGA CAD flow are most suited to power minimization? This thesis

focuses on technology mapping, clustering, placement and routing. Although, high-level

synthesis algorithms would also be amenable to power minimization, it has not yet been

investigated.

2. Are the power savings from individual power-aware stages cumulative? In other words,

do the gains at one stage impact the gains that can be achieved in subsequent stages?

Thus, the primary goal is to understand the interaction between the power reduction techniques

in each stage of the CAD flow. Only by understanding where gains can be expected, and how

these gains interact, can we expect to make significant progress in creating low-power FPGA

CAD tools.

2

1.2 Research Approach

To answer the above questions, we enhance each algorithm in the FPGA CAD flow to minimize

the power dissipated by circuits that are mapped onto FPGAs. We then investigate the

individual and combined gains of the algorithms using an experimental framework that is the

same for each algorithm. The framework begins with a baseline FPGA CAD flow consisting of

well-established algorithms, as shown in Figure 1.1. The baseline CAD flow consists of CutMap

[11], T-VPACK [12], and VPR [13, 14, 15]. These algorithms are representative of algorithms

used in commercial FPGA CAD flows.

Circuit

I
Technology Mapping (CutMap)

r
Clustering (T-VPack)

I

Placement (VPR)

I

Routing (VPR)

7
Delay / Area / Power

Estimations

Figure 1.1: The baseline FPGA CAD flow.

To investigate the influence of each CAD stage on power reduction, we replace each CAD stage

with a power-aware algorithm. Initially, we replace only one CAD stage at a time, so that we

can examine the impact of each stage on the power reduction. Then, we replace two or more of

the baseline CAD stages with their power-aware counterparts to investigate the overlap between

the gains of each stage. In all cases, the power-aware algorithms we use are representative of

power-aware algorithms that have either been published in the literature or are straightforward

extensions of the baseline CAD algorithms.

3

The gains of the power-aware algorithms are determined empirically by mapping a set of

benchmark circuits with the given CAD flows and comparing the results to those obtained with

the baseline CAD flow. Detailed models [14, 16] calculate the power and delay of the

benchmark circuits when they are mapped onto FPGAs. Regardless of which power-aware

algorithm is being evaluated, speed and power calculations are made after the routing stage of

the CAD flow. This provides for much more accurate estimates than would be possible during

earlier stages of the CAD flow, since only after routing can we accurately estimate the resistance

and capacitance associated with each net.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 gives and overview of FPGAs and summarizes the

low-power FPGA CAD algorithm techniques employed in previous works. Chapter 3 describes

the experimental framework we use to evaluate the performance of the power-aware FPGA CAD

algorithms. Chapters 4 to 7 describe new power-aware technology mapping, clustering, placing,

and routing algorithms, and the results that were obtained. Then, Chapter 8 combines the power-

aware algorithms and examines the interaction between their gains. Finally, Chapter 9

summarizes the conclusions drawn throughout this thesis and provides suggestions for future

work.

4

Chapter 2

BACKGROUND AND PREVIOUS WORK

This chapter begins with an overview of Field-Programmable Gate Arrays (FPGAs).

Specifically, it describes the architecture of the FPGA's programmable fabric and the CAD

algorithms used to map user circuits onto an FPGA. It then summarizes the power-aware CAD

algorithm techniques employed in previous works to reduce the power consumed by circuits that

are implemented on FPGAs. Finally, the focus and contributions of this thesis are presented in

the context of this previous work.

2.1 FPGA Architecture

Field-Programmable Gate Arrays are Integrated Circuits (ICs) whose functionality is

programmed after fabrication. They consist of configurable logic blocks and I/O blocks that are

interconnected by a configurable routing fabric. By configuring the logic blocks and routing

fabric correctly, any digital user circuit can be implemented. In addition to these fundamental

components, modern FPGAs also have embedded memories, embedded arithmetic logic units,

and embedded processors, as shown in Figure 2.1 (b). Although this research focuses only on

the programmable core of the FPGA, shown in Figure 2.1 (a), the results obtained are applicable

to an FPGA with embedded components as well.

5

FPGAs are configured to implement user circuits by writing to the configuration memory that is

embedded within the FPGA. Configuration memory is spread throughout the FPGA and it

defines the logical function of each configurable logic block and the connections within the

configurable routing fabric. Although other methods exist, FPGA configuration memory is

typically implemented using static RAM (SRAM). Other technologies used to implement

configuration memory include antifuses [17] and floating gate transistors [18]. However, this

thesis focuses on SRAM-based FPGA devices exclusively, since SRAM-based FPGAs are the

most common in commercial FPGAs.

Routing
Fabric

Logic
Blocks

Embedded
Confionents

Cn5 Cn5 Cn5 Cn5

M 5T5 cn5 aa
Cn5 CJT5 QT5 Cn5

rrJHTfjfrn:
^ I/O Pads

a) A generic FPGA [14].

Era ETO
ram

rjg [] ML'iiDr\
]
]

J

b) A modern FPGA with embedded
components.

F i g u r e 2.1: Conceptual FPGA models [16].

The FPGAs illustrated in Figure 2.1 are called island-style FPGAs, since the logic blocks

resemble islands in a sea of configurable routing. The logic blocks are typically arranged in a

grid and are surrounded by horizontal and vertical routing channels. Island-style FPGAs are the

6

most common in commercial FPGAs. The logic and routing resources of island-style FPGAs are

described in the following two subsections.

2.1.1 Configurable Logic Blocks

Logic blocks implement the logical component of a user circuit. Since FPGAs must be flexible

enough to implement any user circuit, FPGA logic blocks must be capable of implementing a

wide range of logical functions. To achieve this flexibility, most commercial FPGAs use

lookup-table (LUT) based logic blocks. A LUT with K inputs (X-LUT) contains 2K

configuration bits and can implement any AMnput function (or gate). Using LUTs with many

inputs (large K) reduces the number of LUTs required to implement a user circuit and

subsequently reduces routing demands; however, it increases the area of the K-UJTs

exponentially. By examining these speed, area, and routability tradeoffs, previous works have

shown that 4-input LUTs result in the fastest and densest FPGAs [19, 20].

Early FPGAs had logic blocks that consisted of a LUT, a flip-flop, and local interconnect. This

simple structure, called a logic element (LE), is illustrated in Figure 2.2. To enhance the

functionality of the logic blocks, multiple LEs are combined into each logic block with

additional local interconnect. This larger structure, called a cluster, is also illustrated in Figure

2.2. The advantages of clusters are similar to those of large LUTs: fewer logic blocks, less

global routing, and better performance. However, the area penalty incurred by a cluster is much

smaller than that of a large LUT. Modern FPGAs typically contain between 4 and 10 logic

elements per cluster.

7

Cluster .

LE p—•

LE 1 •

LE I I 1 I I >

Figure 2.2: A generic FPGA logic block [21].

2.1.2 Configurable Routing Fabric

The FPGA routing fabric connects internal FPGA components such as logic blocks and I/O

blocks. The performance of an FPGA is largely determined by the FPGA's routing architecture

since routing accounts for the majority of the area, delay, and power of the FPGA. The island-

style FPGA routing fabric consists of pre-fabricated wiring segments and programmable

switches. The set of switches used to connect a logic block to an adjacent routing channel is

called a connection block. Similarly, the set of switches used to connect intersecting routing

channels is called a switch block. Figure 2.3 illustrates these various routing structures.

The structure of these individual routing components can be parameterized by segment

distribution, connection block topology, and switch block topology, respectively. Segment

distribution describes the lengths of the wire segments in the routing channels. Longer wire

segments span multiple blocks and require fewer switches, thereby reducing routing area and

delay. However, they also decrease routing flexibility, which reduces the probability that a user

circuit can be routed successfully. Modern FPGAs commonly use a combination of long and

short wires in order to balance this tradeoff. Connection and switch block topology describes the

8

interconnection pattern within these blocks. In terms of routability, fully populated blocks (that

is, blocks in which any incident pin can be connected to any other incident pin) would be

optimal. However, in terms of area, the cost would be prohibitive. Previous work [19, 22, 23,

67] has shown that connection and switch blocks still provide good routability even when only

sparsely populated.

Logic
Block

Connection
Block

Programmable
Connection

Switch

Switch
Block

Wire
Segment

Figure 2.3: An island-style FPGA [14].

The programmable SRAM-based switches within the connection blocks and the switch blocks

can be implemented using either pass-transistors or tri-state buffers, as illustrated in Figure 2.4.

Pass-transistor switches require less area and dissipate less power than tri-state buffer switches.

However, tri-state buffer switches are faster for connections that span many segments. Routing

architectures commonly use a combination of tri-state buffer and pass-transistor switches to

provide more selection for routing signals.

9

SRAM

SRAM

SRAM

Pass Transistor Tri-state Buffer

Figure 2.4: Two types of programmable switches used in SRAM-based FPGAs [14].

Global networks, such as clock and reset networks, are implemented with dedicated routing

tracks which are separate from the configurable routing. Like other integrated circuits, FPGA

clock distribution networks are designed to minimize skew in order to maximize system

performance. Current FPGAs feature programmable phase-locked loops (PLLs) and delay-

locked loops (DLLs) which allow users to multiply, divide, or shift external clock signals to

synchronize with internal clock signals. They also support multiple clock signals, allowing users

to manage several on and off-chip clock domains. Clock multiplexers and clock management

circuitry are also available for disabling parts of the clock network to reduce power

consumption. In order to achieve the best results, power-aware FPGA CAD tools must consider

these features; however, the modeling and application of these networks is beyond the scope of

this thesis. For simplicity, this thesis assumes a global H-tree clock distribution network.

2.2 FPGA CAD Flow

Since large FPGAs contain millions of configuration memory bits, the state of each bit (0 or 1)

must be determined using Computer-Aided Design (CAD) tools. These CAD tools transform

high-level circuit descriptions into configuration bitstreams. Circuits are mapped onto the FPGA

by writing this bitstream into the configuration memory of the FPGA, which defines the state of

10

the FPGA's routing switches and the functionality of the FPGA's logic blocks. The CAD flow

is divided into a sequence of stages, illustrated in Figure 2.5.

High-Level Synthesis
4

FPGA CAD Flow

Technology Mapping
I

Clustering
1

Placement
I

Routing

, ± >
FPGA Configuration

Figure 2.5: The FPGA CAD Flow.

High-level synthesis is the first stage of the CAD flow. It transforms a high-level circuit

description into a Boolean network consisting of basic logic gates and flip-flops. After high-

level synthesis, the FPGA CAD flow maps this Boolean network onto the configurable fabric of

the FPGA. The FPGA CAD flow has four stages: technology mapping, clustering, placement,

and routing. These stages are described in the following subsections.

2.2.1 Terminology

Before describing each stage of the FPGA CAD flow, we review some terminology defined in

[11,24] to describe Boolean networks (user circuits). A Boolean network can be represented by a

directed acyclic graph (DAG), where gates are represented by nodes and wires are represented

by directed edges as shown in Figure 2.6.

11

. _. , , An equivalent directed A Boolean network :. . acyclic graph (DACr)

Figure 2.6: A directed acyclic graph representation of a Boolean network-

Given a network N=(V(N), E(N)) with a source s and a sink t, a cut (X, X) is a partition of the

nodes in V(N) such that X and re X (see Figure 2.7). The cut-size is the number nodes in X

that are adjacent to the nodes in X. A cut is K-feasible if its cut-size is smaller or equal to K.

The set of nodes which are fanins of node v is denoted input(v) and the set of nodes which are

fanouts of node v is denoted outputiy). Given a subgraph H of the Boolean network, input(H)

denotes the set of distinct nodes outside H which supply input to the gates in H. A Boolean

network is K-bounded if \input(v)\ < K for all node v in the network. The depth of a node v is the

length of the longest path from any primary input of the network to v. Given a /̂ -bounded

network N, let iV v denote the subnetwork consisting of node v and all the predecessors of v. The

label of v, denoted label(v), is defined as the depth of the optimal AT-LUT mapping solution of

Ny. A cone rooted at node v, denoted Cv, is a subgraph consisting of v and its predecessors

nodes. A fanout-free cone (FFC) at v, denoted FFCV, is a cone of v that does not contain a node

that fans-out to a node external to the cone. Finally, a maximum fanout-free cone (MFFC) at v,

denoted MFFCV, is the fanout-free cone at v with largest number of nodes.

Additional terminology, used to describe the timing information of Boolean networks, include

required time, arrival time, slack, and criticality. The required time for a node v, denoted

12

required(v), is the amount of time that a signal has to make a transition before becoming illegal.

Similarly the arrival time for a node v, denoted arrival(v), is the amount of time that a signal

takes to make a transition. The slack of a node v, denoted slack(v), is the difference between the

required time and the arrival time of the node. The nodes along the critical paths of a Boolean

network have a slack of zero since their required time and arrival time are equal. The remaining

nodes have a slack that is positive. Finally, the criticality of a node v, denoted criticality(v), is a

measure of how close a node is to being on the critical path.

2.2.2 Technology Mapping

Technology Mapping is the first stage of the FPGA CAD flow that we consider. This stage

transforms the Boolean network that was generated during high-level synthesis into a LUT and

flip-flop network, thereby allowing it to be implemented on LUT-based FPGAs. /̂ -bounded

Boolean networks can be transformed into LUT networks since 7̂ -input lookup tables are

capable of implementing any logical function with /̂ -inputs or less. Since a K-UJT can

implement any rv-input function, the task of mapping a Boolean network to a LUT network is

equivalent to choosing a set of AT-feasible cuts that include all the nodes in the network. Figure

2.7 illustrates a cut (X, X) of a Boolean network and the corresponding LUT mapping.

A 4-feasible cut (X, X) LUT mapping of cut (X, X)

Figure 2.7: The lookup table equivalent of a cut.

13

Technology mapping algorithms typically aim to minimize the delay, area, or power

requirements of the final circuit. Circuit delay can be minimized during technology mapping by

minimizing the depth of the LUT network. The depth of a LUT network is the length of the

longest path from any input to any output of the network. Minimizing the length of the longest

path minimizes the critical-path delay of a circuit. The FlowMap algorithm, described in [67],

was a breakthrough in the area of LUT-based FPGA technology mapping. Until FlowMap, a

number of heuristic algorithms were proposed, but none guaranteed optimal depth solutions for

general Boolean networks. It was proven in [67] that an optimal depth solution can be found for

any circuit in polynomial time. The key step in the algorithm incorporates the Max-Flow Min-

Cut theorem [24] to compute a minimum height /̂ -feasible cut for each node in a network.

Compared to previous technology mapping algorithms, FlowMap reduced the depth and the area

of circuits by 7% and 50% respectively.

After FlowMap, various depth-optimal algorithms were proposed to further minimize area [11,

25, 26]. The CutMap algorithm, which is described in [11], produces area efficient depth-

optimal circuits by minimizing node duplication. Node duplication occurs when a node is

encapsulated within more than one LUT. This is shown with an example in Figure 2.8.

Although node duplication is necessary for depth optimization, excessive node duplication

increases circuit area. CutMap avoids node duplication by favoring cuts in which the nodes that

are inputs to the cut have either previously been cut, or are likely to be cut. Nodes with large

MFFC are likely to be cut since encapsulating their predecessor nodes does not cause node

duplication. CutMap produces depth-optimal circuits that require, on average, 20% fewer LUTs

14

than FlowMap. This reduction in area also helps to reduce power consumption since the circuit

requires fewer FPGA resources.

Boolean Network L U T Network

A B C D E F A B C D C D E F

4-1 I T

Figure 2.8: LUT-based technology mapping.

Several previous works have focused on minimizing power consumption directly [1, 2, 3, 4, 5,

6]. These power-aware technology mapping algorithms typically minimize power by hiding

wires with high switching activity within LUTs. This reduces dynamic power dissipation since

the internal wire capacitance of LUTs is significantly smaller than the external wire capacitance

of the routing fabric that connects them. The power-aware algorithm described in [4] is very

similar to FlowMap. Like FlowMap, the algorithm finds minimum height Af-feasible cuts for

critical nodes in order to optimize circuit depth. However, for non-critical nodes, the algorithm

finds minimum weight -̂feasible cuts in order to minimize power consumption. They define a

minimum weight ^-feasible cut (Xv, Xv) for node v as a A -̂feasible cut such that the maximum

estimated power consumption of the nodes Xv that provide inputs to the nodes in Xv is

minimized. The algorithm estimates the power consumption of these nodes recursively using the

following expression:

15

ep(y) = Kp • (Cin + Cout) • p 0) + X ep^ui ^'
u,E input (v)

where Kp is a constant, C,-„ and C0M are input and output LUT capacitance, and P(v) is the

switching probability of node v. This cost function favors implementations in which LUTs have

low input switching activities and capture high activity nets internally. The algorithm also

guarantees depth-optimal circuits since only non-critical nodes are affected; however, it is only

effective for circuits with many non-critical nodes. Power savings for circuits with little slack

tend to be small.

The power-aware technology mapping algorithm described in [5] uses a technique called cut-

enumeration. This technique involves finding multiple mapping solutions (cuts) for each node in

the network and then selecting the best one for each node using a cost function. Their

implementation has three phases. The first stage calculates the switching activity of each node in

the circuit using the transition density model [27], which is described in Chapter 3. The second

stage then enumerates at most p cuts for each node in topological order (beginning from the

primary inputs), where p is a user-specified positive integer. Enumerating only p cuts for each

node reduces the complexity of the algorithm without significantly affecting the final solution.

The third stage uses information from the first two stages to select the best cut for each node and

to produce the final mapping solution. It uses the following cost function to determine the best

mapping solutions:

XI outPut(Pi) | ^ •£>(/?,•) + YJ(Cout + I output(/,•) | -Cin)• D(li)

PiePI IjELUT

where VM is the supply voltage, \output(x)\ is the number of LUTs receiving input from the node

x, Cin and Cout are the input and output capacitance of a LUT, and D(v) is the estimated switching

16

activity of node v. Power savings of 14% were reported for this algorithm compared to previous

methods. The algorithm, however, does not optimize circuit depth. Thus, the resulting circuits

are likely to be slower than depth-optimal circuits.

The most recent work, described in [6], explores the tradeoff between circuit depth and power

consumption. Specifically, it shows that node duplication, which is necessary for depth

optimization, is costly in terms of power consumption. Previous empirical work has shown that

switching activity in combinational circuits typically decreases quadratically with circuit depth

[28]. Replicating a node reduces its fanout size but it increases the fanout size of its fanin nodes.

Since fanin nodes have lower depth than fanout nodes, node duplication tends to increase power

consumption. The algorithm begins by estimating the switching activity of each node in the

circuit using the transition probability model [29]. It then enumerates the set of all Af-feasible

cuts for each node in the circuit. After cut-enumeration, the algorithm re-traverses the network

in topological order to select the best cut for each node. The cost function used to select the cuts

has three components:

Cost(Xz,Y~z) = a • DCost(Xz,X~z) + p • PCost(Xz,Y~z) + y • RCost(X Z,X~Z),

where a, ft, and y are constant coefficients that reflect the relative importance of each

component. DCost(Xz, Xz) is the depth cost component, which is defined as the depth of node z

in the subgraph that corresponds to the LUT mapping solution of cut (Xz, Xz). PCost(Xz, Xz) is

the power cost component, which has two terms:

PCost(Xz,Xz)=]T[/V + PCost(BestCut(v))] - ^J-fw-\output(w) n Xz |]
v£input(X z) w^-^z

17

where fx represents the switching activity of the net driven by node x. The first term is the

summation of the activities of the nets that fan into to cut (Xa X?), while the second term is the

summation of the activities of the nets that are encapsulated within the LUT that corresponds to

cut (Xz, Xj). Finally, RCost(Xz, Xz) is the replication cost component. This component sums the

activities of the fanin nets that are replicated and substracts the activities of the fanout nets that

are encapsulated for each node that is replicated in the subgraph corresponding to cut (Xz, Xz).

Intuitively, the cost function balances the delay cost of increasing depth with the power cost of

node duplication.

2.2.3 Clustering

Clustering is the second stage of the FPGA CAD flow. It produces a netlist of logic blocks from

a netlist of LUTs and flip-flops. Most FPGA logic blocks contain between 4 and 10 LUT/flip-

flop pairs called logic elements (LE) [30, 31]. The clustering algorithm partitions the input

netlist of LEs into clusters, which can then be mapped into the logic blocks of the FPGA, as

illustrated in Figure 2.9. The aim of clustering is to minimize the number of logic blocks and the

number of connections between the logic blocks. Timing-aware clustering tools are also

possible.

L E
1

L E
4

T

m
L E
2

Clusters

L E
3

L E
5

Figure 2.9: An example of clustering.

18

There are two general clustering approaches: bottom-up [12, 14, 32, 33, 34] and top-down [35,

36]. Bottom-up approaches build clusters individually, packing each cluster around a seed LE

until it is full. Top-down approaches partition the LEs into clusters by successively subdividing

the network or by iteratively moving LEs between partitions. Bottom-up approaches are

typically faster and more simple than top-down approaches since they only consider local

connectivity information and can easily satisfy logic block pin constraints. Top-down

approaches offer the best solutions; however, their computational complexity can be prohibitive.

The VPack algorithm, described in [14], uses a bottom-up approach. LEs are packed one at a

time. For each cluster, an attraction function is used to select a seed LE from the set of all LEs

that have not already been packed. After packing a seed LE into the new cluster, a second

attraction function selects new LEs to pack into the cluster. LEs are packed into the cluster until

the cluster reaches full capacity or all cluster inputs have been used. If all the cluster inputs

become occupied before the cluster reaches full capacity, a hill-climbing technique is applied

which looks for LUTs that do not increase the number of inputs used by the cluster. The VPack

algorithm is outlined in Figure 2.10.

19

UnclusteredBLEs = PatternMatchToBLEs(LUTs, Registers);
LogicClusters = N U L L ;

while(UnclusteredBLEs != N U L L) {
C = GetBLEwithMostUsedlnputs(UnclusteredBLEs);

while(|C| < N) {// cluster is not full
BestBLE = MaxAttractionLegalBLE(C, UnclusteredBLEs);
If (BestBLE == N U L L) // no B L E can be added to this cluster

break;
UnclusteredBLEs = UnclusteredBLE - BestBLE;
C = C u BestBLE;

}
if (|C| < N) { // cluster is not full - try hill climbing

while(|C|<N) {
BestBLE = MinClusterInputIncreaseBLE(C, UnclusteredBLEs);
C = C U BestBLE;
UnclusteredBLEs = UnclusteredBLEs - BestBLE;

}
if (ClusterlsIllegal(C))

RestoreToLastLegalState(C, UnclusteredBLEs);
1
LogicClusters = LogicClusters u C;

Figure 2.10: Pseudo-code of the VPack algorithm [14].

The T-VPack algorithm [12, 15] is a timing-aware clustering algorithm that is based on VPack.

The algorithm is identical to VPack, however, the attraction functions used to select the LEs to

be packed into the clusters are different. The VPack seed function chooses LEs with the most

used inputs, whereas the T-VPack seed function chooses LEs that are on the most critical path.

VPack's second attraction function chooses LEs that share the most connections with the LEs

already packed into the cluster. T-VPack's second attraction function has two components for

an LE B being considered for cluster C:

Attraction^, C) = a • Crit(B) + (1 - a)J — ^ - L 1

G

where Crit(B) is a measure of how close LE B is to being on the critical path, Nets(B) is the set

of nets connected to LE B, Nets(C) is the set of nets connected to the LEs already selected for

cluster C, oris a user-defined constant which determines the relative importance of the attraction

20

components, and G is a normalizing factor. The first component of T-VPack's second attraction

function chooses critical-path LEs, and the second chooses LEs that share many connections

with the LEs already packed into the cluster. By initializing and then packing clusters with

critical-path LEs, the algorithm is able to absorb longer sequences of critical-path LEs into

clusters. This minimizes circuit delay since the local interconnect within the cluster is

significantly faster than the global interconnect of the FPGA. Experimentally, circuits clustered

using T-VPack are 2.0% more energy efficient than circuits clustered using VPack. T-VPack is

the baseline clustering algorithm in this thesis.

Although no previous work has focused on power during the clustering stage to the CAD flow,

the algorithm recently described in [7] minimizes power indirectly by minimizing inter-cluster

wiring. The algorithm minimizes inter-clustering wiring by (1) absorbing as many small nets

into clusters as possible, and (2) depopulating clusters according to Rent's rule [37] in order to

balance the amount of interconnect between clusters. Absorbing nets entirely into clusters

reduces the overall net count, which simplifies routing. Small nets can more easily be absorbed

entirely into clusters since they have fewer terminals. To balance the amount of interconnect

between clusters, the algorithm limits the number of available pins using Rent's rule. The aim is

to match the number of inputs of each cluster to the amount of logic implemented within the

cluster in order to alleviate congestion.

Like the previous clustering algorithms, the above algorithm packs one cluster at a time using

two cost functions. The seed function chooses LEs with the lowest connectivity value, which is

defined as:

. . . T _. separation(LE) connectivity(LE) = —
degree(LE)

21

where separation is the total number of pins of all the nets that are incident to LE, and degree is

the number of nets incident to LE. LEs with a small connectivity value are more easily absorbed

since the nets that are incident to it are not connected to many other LEs. The second attraction

function is similar to VPack in that it chooses LEs that share nets with the LEs already in the

cluster. However, to reward net absorption, the attraction is multiplied by a constant k, where k

> 10, if adding the LE to the cluster fully absorbs a net. Compared with T-VPack, the algorithm

reduces the routing area. Correspondingly, the power dissipated by global interconnect is also

reduced.

2.2.4 Placement

The third stage of the FPGA CAD flow is placement. In this stage, physical locations are

assigned to each logic block in the netlist produced by the clustering algorithm, as shown in

Figure 2.11. Placement algorithms seek to simultaneously minimize routing demands and

critical-path delays. Routing demands are reduced by placing highly interconnected logic

blocks close together. Similarly, critical-path delays are minimized by placing logic blocks

along critical-path nets close together.

n 0 • LU
0 0 0 - k

0 0 0 0
i] • n n -:

Figure 2.11: An example of placement.

22

There are three general placement approaches: min-cut [38, 39, 40], analytic [41, 42, 43], and

simulated annealing [13, 14, 15, 44, 45, 46]. Although each technique has been shown to

produce good results, simulated annealing-based placers are much more adaptable than other

placers to new optimization goals and architectural changes. Pseudo-code describing a generic

simulated annealing-based placement algorithm is shown in Figure 2.12.

S = RandomPlacementO;
T = InitialTemperature();
R i i m i t = InitialRlimil();

while(ExitCriterion() == False) {
while(InnerLoopCriterion() == False) {

Snew = GenerateViaMove(S, R i i m i t)

/* Outer Loop */
/* Inner Loop */

AC = Cost(Snew) - Cost(S);

r = random(0, 1);
if(r<eA O T)

S = S n e w; // accept sway
i

T = UpdateTempO; // cool
Riimit = UpdateR,imit();

}

Figure 2.12: Pseudo-code of a generic simulated annealing-based placer [14].

The algorithm starts with a random initial placement of the user circuit. Pairs of logic blocks are

then randomly selected and then swapped repeatedly. Each swap is evaluated to determine if it

should be kept or not. If the swap decreases the cost, as defined by a cost function, the swap is

always kept; however, if the cost increases the swap may or may not be kept. The probability of

keeping a seemingly-bad swap decreases as the algorithm executes.

T-VPlace [13], is a simulated annealing based placement algorithm which minimizes routing and

critical-path delay. The cost function used by T-VPlace has two components. The first

23

component is the sum of the bounding box dimensions of all nets. That is, if there are Nnets nets,

and bbx(i) and bby(i) are the x and y dimensions of the bounding box of net i, then:

N
nets

Wiring Cost = ^ q(i) • [bbx (i) + bby (/)]
i=l

The term q(i) is used to scale the bounding boxes to better estimate wirelength for nets with

more than 3 terminals, as described in [14]. The second component is used to evaluate the

timing cost of a potential placement. The timing cost is:

Delay(i, j) • Criticality(i, j)
Vi.y'e circuit

where Delay(iJ) is the estimated delay of the connection from source i to sink j, CE is a constant,

and Criticality(iJ) is an indication of how close to the critical path the connection is [14]. The

total cost is the sum of the wiring cost and timing cost for all nets:

. „ , ATiming Cost ,„ . N AWiring Cost
AC = X + (1 - X) ,

Previous Timing Cost Previous Wiring Cost

where PreviousTimingCost and PreviousWiringCost are auto-normalizing factors that are

updated once every temperature, and A is a constant which determines the relative importance of

the cost components.

A power-aware placement and routing algorithm, described in [8], minimizes power by placing

logic blocks connected by high-activity nets close together. Like T-VPlace, the algorithm is

based on simulated annealing; however, the algorithm targets row-based FPGAs with antifuse

24

configuration memory instead of island-style FPGAs with SRAM configuration memory. The

placement algorithm's cost function has four components:

C = W + a-T + b-P + c-F

where, W is the total wire length, T is the critical-path delay, P is the overall power dissipation,

and F is the extra cost associated to using an uncommitted feed through (a vertical connection).

The a, b, and c weight factors determine the relative importance of each cost component. The

first two components of the cost function are similar to those of the T-VPlace cost function. The

wire length is estimated using bounding boxes, and delay is estimated using Elmore delay. The

third component, however, estimates power by multiplying the wire length estimate of each net

by the estimated activity of each net. The final component is specific to row-based FPGAs.

Power reductions of up 40% were reported for the row-based placement and routing algorithm;

however, the impact on critical-path delay was not considered.

2.2.5 Routing

The final stage of the FPGA CAD flow is routing. Routing determines how the connections

between logic blocks are formed within the prefabricated configurable routing fabric. The aim

of routing is to minimize critical-path delays and to avoid congestion. Congestion is avoided by

routing connections as directly as possible and by balancing the usage of routing wires across the

FPGA. Critical-path delays are minimized by giving priority to high-criticality nets when

contention occurs between nets for a given routing resource.

There are two routing approaches: two-step routing [15, 47, 48, 49, 50, 51], which performs

global routing and then detailed routing, and combined global-detailed routing [52, 53, 54, 55],

25

which performs global and detailed routing in a single step. Global routing determines which

logic block pin and routing channel is used by each net, and detailed routing determines which

wire segments within a routing channel are used by each net. Two-step routers are commonly

used for ASICs; however, they are not typically used for FPGAs since the limited flexibility of

the FPGA routing fabric makes detailed routing difficult after global routing constraints are

applied. It is hard for the global FPGA routers to know if detailed routing is possible without

actually performing the detailed routing.

The VPR router [15] uses a negotiated congestion-delay algorithm based on PathFinder [53].

During initial iterations, an overuse of routing resources is allowed (in other words, it is

acceptable for more than one net to share a routing wire). In later iterations, however, the

penalty for this overuse is increased, until no tracks are used by more than one net.

The VPR router uses the following cost function to evaluate a routing wire n while forming a

connection from source / to sink j:

Cost(n) = Criticality(i, j) • delayElmore (n)+

(1 - Criticality(i, j)) • b(ri) • h(n) • p(n)

The cost function has a delay term and a congestion term. The delay term is the product of the

normalized Elmore delay of node n and Criticality(iJ) as defined in Section 2.2.1. The

congestion term, which has more weight when the criticality is low, has three components: b(n)

is the "base cost", h(n) is the historical congestion cost, and p(n) is the present congestion of

node n. The value of p(n) is increased gradually as the algorithm progresses to discourage node

sharing, allowing the algorithm to produce a legal solution.

26

Like T-VPlace, the VPR router performs well in terms of delay and power, since minimizing

timing reduces delay and minimizing congestion reduces the power dissipated by global routing.

However, no previous work has focused specifically on minimizing power during the routing

stage of the FPGA CAD flow.

2.3 Focus and Contribution of this Thesis

The goal of this research is to understand where the gains (in terms power reduction) can be

expected within the FPGA CAD flow and how these gains interact. Understanding these issues

is a key step towards creating power-aware FPGA CAD tools. All the power-aware

enhancements described in Section 2.2 were developed and evaluated in isolation. In order to

understand where power gains can be expected within the FPGA CAD flow, the algorithms must

be evaluated using a common experimental methodology that is detailed enough to capture the

improvements made by each stage. Similarly, in order to understand how the gains achieved in

earlier stages affect the gains achieved in later stages, the power-aware algorithms must be

applied in succession. Our approach involves enhancing a baseline FPGA CAD flow that is

comprised of algorithms that are representative of those used in commercial FPGA CAD flows

today. Using the detailed post-route power and delay models described in the following chapter,

we determine the gains of the individual power-aware algorithms in Chapters 4, 5, 6, and 7 and

of the combined algorithms in Chapter 8.

The contributions of this thesis are summarized as follows:

1. Developed new power-aware technology mapping, clustering, placement, and routing

algorithms by enhancing existing algorithms using techniques employed in previous

works or straightforward extensions of the baseline CAD algorithms.

27

2. Compared the gains of each power-aware algorithm using very detailed post-route

power and delay models in order to determine which stages are most suited to power

optimization.

3. Measured the gains when the power-aw are algorithms are combined to determine if

the individual gains are cumulative.

28

Chapter 3

E X P E R I M E N T A L M E T H O D O L O G Y

This chapter describes the experimental methodology employed to measure the individual and

combined gains of the power-aware algorithms that are presented in this thesis. It begins by

describing the requirements of the experimental methodology and why the experimental

methodologies employed in previous works are inadequate for investigating the interaction

between power-aware algorithms. It then presents the new experimental methodology that is

employed in this thesis. Finally, it describes the detailed models that are used to estimate the

power and delay of circuits after they are mapped onto an FPGA.

3.1 Motivation

The effectiveness of power-aware FPGA CAD algorithms can only be determined empirically

because of the inherent complexity of the interactions between FPGA CAD algorithms, FPGA

architectures, and the circuits that are mapped onto the FPGAs. Since FPGAs are intended to

implement any circuit, the effectiveness of the algorithms must be averaged for a wide range of

benchmark circuits that are reflective of circuits that are typically implemented on FPGAs.

Ideally, power-aware FPGA CAD algorithms would be evaluated by mapping benchmark

circuits onto real FPGAs and then measuring the power dissipated by the FPGAs during normal

operation. However, this methodology is not possible since the CAD tools of commercial

29

FPGAs are proprietary. Instead, the process of mapping circuits onto FPGAs is typically

modeled.

In previous works [1, 2, 3, 4, 5, 6, 7], the power models used to evaluate power-aware algorithms

were overly simplified. In each of these works, power was modeled before placement and

routing, when there is no information regarding the capacitance of the nets that are implemented

within the routing fabric of the FPGA. The models either assume the same capacitance for each

connection or estimates the capacitance of each net based on the fanout of the net. These models

do not capture the gains that can be achieved during later stages of the FPGA CAD flow, when

high activity nets are made shorter to reduce power.

Furthermore, the models employed in the previous works only consider the dynamic power

dissipated within the global interconnect of the FPGA. Recent studies of FPGA power

dissipation [16, 56] have reported that dynamic routing power accounts for only half of the

power dissipated by FPGAs. The dynamic power dissipated within the logic blocks and the

clock distribution network of the FPGA, as well as the overall static power dissipation, should

also be considered. By not considering these sources of power dissipation, the gains reported in

the previous works are likely exaggerated.

Finally, when comparing power-aware FPGA CAD algorithms, it is important to consider both

power and critical-path delay. Power-aware algorithms that do not also consider timing are

likely to produce circuits with longer critical-path delays than circuits produced using timing-

aware algorithms. Using CAD algorithms to minimize power at the expense of delay is not

30

practical since equivalent results can be obtained by simply slowing the system clock.

Therefore, the power-delay product (energy) metric is used to evaluate the performance of the

power-aware algorithms that are described in this thesis.

In order to fairly compare the energy reductions at each stage of the FPGA CAD flow, the same

experimental methodology must be employed at each stage. Specifically, the same benchmark

circuits, models, and FPGA architectural assumptions should be used for each algorithm. The

following section describes the experimental methodology used for each experiment in this

thesis.

3.2 New Experimental Methodology

The experimental methodology used for this thesis employs detailed models to estimate the

power and critical-path delay of the standard benchmark circuits after they are placed and routed

onto an FPGA, as shown in Figure 3.1. The results are compared to the results from a baseline

FPGA CAD flow, which consists of non power-aware algorithms that are representative of

algorithms used in commercial FPGA CAD flows. Specifically, the baseline FPGA CAD flow

consists of CutMap [11], T-VPACK [12], and VPR [13, 14, 15].

To investigate the influence of each algorithm on energy minimization, we replace baseline

algorithms with power-aware algorithms. Initially, in Chapters 4 through 7, we replace only one

baseline algorithm at a time, so that we can examine the impact of each individual algorithm on

energy minimization. Then, in Chapter 8, we replace multiple baseline algorithms with their

power-aw are counterparts to investigate the interaction between the power-aw are algorithms. In

all cases, the power-aware algorithms we implement are representative of power-aware

31

algorithms that have either been published in the literature or are straightforward extensions of

the baseline CAD algorithms.

Benchmark
Circuit

Architecture
Description

FPGA CAD Flow

Technology Mapping

Clustering

+
Placement

Routing

VPR
Power and Delay

Models

Power and Delay
Estimations

Figure 3.1: Experimental Framework.

The benchmark circuits are mapped onto FPGAs that are modeled within the VPR CAD tool.

VPR builds a routing-resource graph that corresponds to the architecture under investigation.

The routing-resource graph contains the connectivity and circuitry information that is needed by

the placement and routing algorithms to optimize for power and delay. After routing, the power

and delay models also access the routing-resource graph to obtain detailed information regarding

the implementation of the circuit. This allows estimates to be much more accurate than

estimates obtained during earlier stages of the CAD flow, since only after routing can the

resistance and capacitance associated with each net be accurately modeled.

The benchmark circuits consist of 20 of the largest MCNC circuits. Namely, the MCNC circuits

used are: alu4, apex2, apex4, bigkey, clma, des, diffeq, dsip, elliptic, exlOlO, ex5p, frisc,

32

misex3, pdc, s298, s38417, s38584.1, seq, spla, and tseng. Half of the benchmark circuits are
j

sequential circuits and the other half are purely combinational. The circuits range in size from

1858 to 14233 2-input gates. Each circuit was optimized in SIS using script.rugged [57] and

then transformed into a network of 2-input gates using dmig [57].

The experimental FPGA architecture used in this thesis is chosen to be representative of

commercial architectures. This architecture was shown to be efficient in terms of area and delay

in [14]. There are 4 LEs per logic block and each LE has 4 inputs. The fraction of wires in each

channel to which a logic block pin can connect to, denoted F c > is 0.5, and the number of wires to

which each incoming wire can connect to in a switch block, denoted Fs, is 3. All the wire

segments have a length of four; half are buffered and the other half are unbuffered. The channels

are uniform (same number of tracks in each channel) and unbiased (same number of tracks in the

horizontal and vertical channels). Finally, the channels have at least 20% more routing tracks

than the minimum routeable width, and are fixed when comparing algorithms. Using fixed

channel widths for each given benchmark circuit produces unbiased results, since the

architecture is the same for both results.

3.3 The Delay Model

To estimate critical-path delays, we use the delay model that was originally incorporated into the

VPR CAD tool. The model combines Elmore delay and HSPICE characterization to produce

detailed delay estimations of user circuits after routing. VPR estimates the critical-path delay of

a circuit by calculating the delay of circuit elements along its slowest path. HSPICE is used to

determine the intrinsic delay of logic blocks, connection blocks, and routing buffers. The delay

of these elements can be pre-characterized since they are independent of placement and routing.

33

Elmore delay is used to determine the delay of the remaining routing circuitry. These

calculations can only be performed after routing since the resistance and capacitance of the

routing resources used by each path is required. The Elmore delay of a path formed between

logic or I/O blocks is [58]:

•C{subtreei) + Tdi

j'G path

where i is the z"th routing element of the path, Rt is its resistance, C(subtreei) is its subtree

capacitance, and T^t is the intrinsic delay of a buffer if element / is a buffer, and 0 otherwise.

Figure 3.2 illustrates the RC equivalent circuits assumed by VPR for wires, pass-transistor

switches, and tri-state buffer switches.

Wire 2 HZ HI 2

Figure 3.2: Equivalent circuit for FPGA routing elements [14].

The Elmore delay of an RC-tree can be computed in linear time and it has been shown to have

good fidelity [14]. The HSPICE characterizations and the resistance and capacitance values used

by VPR are based on the TSMC 0.18 um, 1.8 V CMOS process.

3.4 Power Model

Power estimations are made using a flexible FPGA power model, called KPM, which is

described in [16]. The power model, which is integrated into the VPR framework, estimates

34

dynamic, short-circuit, and static power of user circuits after they have been placed and routed

onto a user-specified FPGA architecture. The model considers power dissipation within the

logic blocks, routing fabric, and the clock distribution network of the FPGA.

K P M estimates power in two stages. In the first stage, the transition density model [27] is

employed to determine the switching activity of each node in the user circuit. In the second

stage, switching activities and transistor-level capacitance estimates are used to calculate the

power dissipated by the user circuit. Like VPR, the model supports a wide variety of F P G A

architectures and process technologies.

3.4.1 Switching Activity Estimation

Before calculating the dynamic and short-circuit power dissipation of a user circuit, the power

model determines the switching activity of each node in the circuit. The switching activity

estimates must be accurate in order to obtain accurate power estimates. Highly accurate

switching activity estimation techniques, however, are computationally intensive and are not

feasible for experiments involving many large circuits. Switching activity estimation techniques

can be categorized into two groups: simulation-based and probabilistic-based.

Simulation based switching activity estimation techniques are typically more accurate than

probabilistic techniques; however, they are more computationally intensive and they necessitate

input vectors. There are a wide range of simulation based techniques, which simulate at

different levels of abstraction. Circuit level simulators such as HSPICE offer very accurate

results but they are only suitable for small circuits. Gate level simulators, which operate at the

0,1 abstraction level, are more suitable for large circuits.

35

Although less accurate, probabilistic based switching activity estimation techniques are

significantly faster than simulation. There are many probabilistic techniques of varying

complexity. The most accurate method is the transition density signal model.

The transition density of a signal is the expected number of times that the signal will toggle

(from l-to-0 or from 0-to-l) during each clock cycle. For a given signal, y, the transition density

of the signal, D(y), is determined using the following expression:

where n is the number of signals that are input to function y, P(dy/dxi) is the probability that a

change in x, will cause a change in y, and D(XJ) is the transition density of input JC,-. The model

assumes that inputs are spatially and temporally uncorrelated and it does not consider the inertial

delay of logic gates. Because of these assumptions, switching activity may be severely

overestimated in high-frequency circuits. To overcome this problem, a low-pass filter function

[59] is applied to model the effect of gate delay on logic signals. Conceptually, this low-pass

filter function prevents unrealistically short pulses from propagating.

3.4.2 Power Estimation

After estimating the switching activity of every node in the user circuit, KPM estimates overall

FPGA power dissipation by considering the dynamic, short-circuit, and static power dissipated

within its logic blocks, routing fabric, and clock distribution network. In the previous works [1,

2, 3, 4, 5, 6, 7], power estimates were obtained before placement and routing and only

considered the dynamic power dissipated within the global routing fabric of the FPGA. Recent

studies of FPGA power dissipation [16, 65] have reported that dynamic routing power accounts

36

for only half of the overall power. In order to properly evaluate power-aware FPGA CAD

algorithms, a detailed power model that also considers the dynamic power dissipated within the

logic blocks and the clock distribution network of the FPGA, as well as the overall static power

dissipation must be employed.

Dynamic power is one of the main sources of FPGA power dissipation. It is dissipated

whenever the node capacitances of an FPGA are charged or discharged. Dynamic power is

expressed as follows:

P°wef'dynamic ~ 0.5 ' ̂ supply ' ̂ swing
te nodes

where VSUppiy is the supply voltage, Vswing is the swing voltage of each node, fcik is the clock

frequency of the circuit, and Activity(i) is the switching activity of node i with respect to fcik, and

Ci is the capacitance of node i. fcik is determined using delay model, which calculates the

critical-path delay of the user circuits.

KPM employs the transistor-level model from [60], the transistor sizing assumptions from [14],

and wire length estimates based on architectural parameters to estimate the capacitance of

embedded LUTs, multiplexers, and buffers within the logic blocks and the clock distribution

network. It assumes the VPR logic block architecture, which is illustrated in Figure 3.3, and an

H-tree clock distribution network, which is illustrated in Figure 3.4.

37

Figure 3.3: A generic VPR logic block.

Clock
Buffers

Clock Network

Logic
Blocks

Figure 3.4: An H-tree clock distribution network.

38

Another component of power dissipation caused by signal switching is called short-circuit

power. During a transition, there is a short period of time when the pull-up and pull-down

networks of a static CMOS gate are "on" simultaneously. Power is dissipated during this period

since current is allowed to flow from the supply rail to the ground rail. Short-circuit power is a

function of the rise and fall time and the load capacitance [16]. Based on calculations using

Altera and Xilinx datasheets [31, 61], KPM models short-circuit power as 10% of dynamic

power.

The last component, called static power, is the power dissipated by transistors that are "off.

Static power is caused by two types of transistor leakage current: drain leakage and subthreshold

leakage. Both leakage currents are illustrated in Figure 3.5

Drain leakage is current that flows through the reverse-biased diode junctions of the transistors

located between the source or drain and the substrate. The main source of leakage, however, is

subthreshold leakage, which is the current that flows between the source and the drain when the

transistor is "off. KPM assumes that drain leakage is negligible and uses the following first-

order estimation model to estimate the sub-threshold current [63]:

Subthreshold
Current

Drain
Leakage

\ * Subthreshold
"=" Current

Figure 3.5: Leakage currents [62].

I drain (weak inversion) = Ion • exp
(Vgs Von)' Q

n-k-T

39

where:

• Ion is the drain current at the boundary when V g s is equal to V o n

• Vgs is the gate-source voltage

• Von is the boundary voltage between the weak and strong inversion regions

• q is the elementary charge

• n is a process parameter

• k is the Boltzman's constant

• T is the temperature in absolute temperature

KPM then calculates the static power dissipation of each transistor by multiplying the calculated

subthreshold current with the supply voltage. KPM has been validated with HSPICE and has an

average error of 13.4% [16]. Despite this significant absolute error, KPM was shown to have

good fidelity; the relative comparisons between two alternative architectures or algorithms will

be close to the relative errors that would be obtained by the actual devices and CAD tools.

3.5 Summary

This chapter described the experimental methodology employed to measure the individual and

combined energy reductions of the power-aware algorithms that are presented in the following

chapters. It described a methodology which compares the energy dissipated by circuits mapped

onto an FPGA using power-aw are algorithms to the energy dissipated by the same circuits when

they are mapped using non power-aware algorithms. In contrast with the methodologies

employed in previous works, power and delay estimations are obtained after placement and

routing, and the power estimations include the static and dynamic power dissipated within the

routing fabric, logic blocks, and clock distribution network of the FPGA.

40

Chapter 4

POWER-AWARE TECHNOLOGY MAPPING

This chapter begins by describing how power consumption can be minimized during the

technology mapping stage of the FPGA CAD flow. In then describes EMap, a new power-aware

technology mapping algorithm. Finally, it compares EMap to other published technology

mapping algorithms.

4.1 Power and Technology Mapping

Existing power-aware technology mapping algorithms typically reduce power by minimizing the

switching activity of the wires between LUTs. In FPGAs, these wires are implemented using

routing tracks with significant capacitance; charging and discharging this capacitance consumes

a significant amount of power. Intuitively, by minimizing the capacitance of high activity wires,

the total power of the final implementation may be reduced. The capacitance of high activity

wires between LUTs can be minimized during technology mapping by implementing LUTs that

encapsulate high activity wires, thereby removing them from the netlist, as shown in Figure 4.1.

0.2

3-LUT
i i i

0.3

F i g u r e 4.1: Activity-aware mapping solution.

41

Figure 4.2: Non activity-aware mapping solution.

Figures 4.1 and 4.2 illustrate two different 3-LUT mapping solutions for the example Boolean

network. The edges of the Boolean networks are annotated with switching activity values. By

encapsulating the edge with the highest switching activity, the average activity of the edges of

the 3-LUT network in Figure 4.1 is minimized. In Figure 4.2, however, the highest activity edge

is not encapsulated and correspondly the average activity of the edges of the 3-LUT network is

higher.

Another power reduction technique, recently described in [6], is to minimize node duplication, as

described in Section 2.2.2. Technology mappers typically use node duplication to optimize for

depth. However, node duplication increases the number of nodes and connections in an

implementation, which increases the amount of power dissipated by the implementation. To

demonstrate this, we compare two existing technology mappers that are not power-aware:

FlowMap [67] and CutMap [11]. Both algorithms produce depth-optimal solutions. However,

CutMap also attempts to minimize area by avoiding unnecessary node duplication. The results

are shown in Table 4.1. On average, the 4-LUT circuits mapped using FlowMap have 12.6%

more 4-LUTs, 7.7% more connections, and correspondingly dissipate 9.3% more energy than

circuits mapped using CutMap. Similar results are obtained for LUT sizes of 5 and 6.

42

Table 4.1: Technology Mapping Results.

LUT
Size Algorithm

Nodes Connections Energy (nJ) LUT
Size Algorithm

Mean % Diff Mean % Diff Mean % Diff

4 FlowMap 2900 12.6 11576 7.7 2.39 9.3
4

CutMap 2576 0 10746 0 2.18 0

5
FlowMap 2554 18.5 11301 11.9 2.53 11.9

5
CutMap 2156 0 10102 0 2.26 0

6 FlowMap 2109 18.4 10179 11.6 2.59 12.1
6

CutMap 1782 0 9118 0 2.31 0

4.2 E M a p A l g o r i t h m

Our power-aware technology mapping algorithm, called EMap, incorporates the two techniques

described above to reduce power. The EMap algorithm also minimizes the critical path delay by

guaranteeing a depth-optimal solution. The algorithm has three phases.

4.2.1 Overview of the EMap Algorithm

The first phase of the algorithm begins by constructing the set of all "̂-feasible cuts for each

node in the network using the technique outlined in [64]. The nodes are processed in topological

order (beginning from the primary inputs) thereby guaranteeing that every node is processed

after all of its predecessors. After all the cuts are found, each node is labeled with the depth that

it would have in an optimal depth ^-LUT mapping solution. These labels are needed during the

second phase of the algorithm to determine the slack of each node. The slack is used to guide

the algorithm and produce a network with optimal depth.

The second phase of the algorithm evaluates the cuts of each node in the network in reverse

topological order (beginning from the primary outputs). For each node, it chooses the cut with

the lowest cost from one of two possible cut sets. If the node has no slack, only cuts that

produce a depth-optimal mapping solution are considered; however, if it does have slack, all K-

43

feasible cuts are considered. After selecting a cut, the nodes that fan into the cut are labeled as

root nodes and their slack is updated.

The third and final phase of the algorithm generates the final K-LUT network by traversing the

graph in reverse topological order and collapsing each node based on the cuts selected during the

second phase. The algorithm is outlined in Figure 4.3.

/* Phase 1 */
foreach node ve Afdo

enumerate_ALfeasible_cuts(v, K);
foreach node ve N do

labeliy) = compute_label(v);
if (v G primary_input(N) || v e primary_output(N))

rooted(v) = TRUE;
else

rootediy) = FALSE;
end for
Dop, = max({label(v) | v G N})
foreach node ve iV do

latest(v) = Dopl;
slacUy) = latest(v) - label(v);

end for

/* Phase 2 */
foreach node v e N do

if (rooted(v) == TRUE)
if slack(v) > 0

(Xv, Xv) = choose_cut(K-feasible_cut(v));
else _

(Xv, Xv) = choose_cut(min_height_K-feasible_cut(v));
foreach u e input (Xv, X„) do

rooted{u) = TRUE;
latest(u) = mm{latest{u), latest{v) - 1);
slackiu) = latest(u) - label(u);

end for
end if

end for

/* Phase 3 */
form_LUT_network(AO;

Figure 4.3: Pseudo-code of the EMap technology mapping algorithm.

44

4.2.2 The Cost Function

During the second phase of the algorithm, the cut with the lowest cost is selected from the cutset

of each node. The function used to determine the cost of each cut (Xv, Xv), is:

— l+\ rooted(Xv)\ ^ weight(u)• (1 + X• act(u)) ./v \ l-r ruuieuy^v \ \r-cost(Xv ,XV) = =± — • >
1+ | Xv | - | rooted(Xv) | . ^ — outputiu)

we input(Xv)

where Xv is the set of nodes encapsulated within the LUT that corresponds to cut (Xv, Xv),

rooted(Xv) is the set of nodes in Xv that have been labeled as root nodes, weight(u) is 0 if node

u has been (or is likely to be) labeled as a root node of a LUT and is 1 otherwise (to be explained

below), act(u) is the estimated switching activity of the net driven by node u, X is a constant that

controls the relative importance of the activity factor, and output(w) is the set of nodes that are

fanouts of node u.

The first part of the cost function is a quotient. Intuitively, the numerator of the quotient

penalizes node duplications by increasing the cost of cuts that encapsulate nodes that have

already been labeled as root nodes. The denominator, however, rewards cuts that encapsulate

many nodes that have not been labeled as root nodes. Both help to minimize the number of

LUTs and connections in the final solution.

The second part of the cost function is a summation over all the inputs nodes of Xv. The

numerator of the sum is the weight-activity product and the denominator is the fanout size of

input node u. The weight factor minimizes node duplication by favoring cuts that reuse nodes

that have already been cut, or that are likely to be cut in the future. The activity factor minimizes

the switching activity of the connections by favoring cuts with lower input activities. The fanout

45

size factor rewards cuts that have high-fanout input nodes. High-fanout nodes are difficult to

encapsulate entirely; attempting to encapsulate them results in unnecessary node duplication.

This is avoided by choosing high-fanout nets as root nodes. Finally, the summation implicitly

favors cuts with fewer inputs since the cuts with fewer inputs tend to have lower sums.

Using this cost function, nodes with large fanouts are likely to be chosen as root nodes. To

enhance the algorithms ability to minimize node duplication, the weight of nodes with large

fanouts (3 or more) are set to 0 prior to phase 2. This gives cuts with high fanout nets a lower

cost.

4.3 E x p e r i m e n t a l Me thodo logy

To evaluate the influence of the technology-mapper on the energy dissipation of the circuits

mapped onto FPGAs, we use the experimental framework described in Chapter 3. The

experimental FPGA CAD flow is the same as the baseline FPGA CAD flow, except that CutMap

is replaced with EMap. It is important to note that we take each benchmark circuit through the

entire FPGA CAD flow, and then estimate power and delay. This is different than in previous

works [1, 2, 3, 4, 5], where the reduction in average switching activity is used to evaluate power-

aware technology mapping. In our case, since we wish to compare these improvements to those

obtained in later CAD stages, we need to obtain post-route power estimates.

4.4 E x p e r i m e n t a l Results

Table 4.2 summarizes the effect of the EMap technology mapping algorithm on the power,

delay, and energy of each benchmark circuit. On average, the energy is reduced by 7.6%. In

some previous works, improvements of up to 17% have been reported; however, in these works,

46

either a simplified power model (obtained before placement and routing and that only considers

dynamic routing power) was employed, or else comparisons were made to FlowMap or another

similar technology mapper. Comparing our results to FlowMap using the simplified model

described in [1, 2, 3, 4, 5], our improvement is approximately 21%.

Table 4.2: EMap results (K = 4).

Benchmark
CutMap EMap CutMap EMap CutMap EMap

Benchmark
Delay (ns) Power (mW) Energy (nJ)

alu4 15.6 15.2 105 104 1.64 1.58
apex2 17.3 17.1 98.1 93.4 1.70 1.60
apex4 17.0 19.0 55.6 50.1 0.94 0.95
bigkey 8.4 8.4 280 298 2.34 2.51
clma 32.7 32.2 262 234 8.56 7.56
des 13.7 14.7 228 214 3.12 3.15

diffeq 17.9 17.7 50.3 44.7 0.90 0.79
dsip 10.1 9.1 219 242 2.22 2.21

elliptic 24.5 25.3 111 87.5 2.73 2.21
ex1010 24.2 23.7 118 108 2.85 2.56

ex5p 15.9 15.2 63.4 63.7 1.01 0.97
frisc 29.3 33.7 65.2 49.2 1.91 1.66

misex3 14.4 14.7 96 89.0 1.38 1.31
pdc 31.3 27.3 86 90.6 2.69 2.47

s298 28.3 30.5 78.9 68.9 2.23 2.10
S38417 20.6 20.1 361 332 7.43 6.69

S38584.1 23.4 16.5 252 299 5.89 4.92
seq 15.2 15.2 108 97.0 1.64 1.47
spla 22.7 24.9 88.9 74.7 2.02 1.86

tseng 18.2 18.8 53.0 44.4 0.96 0.84
Geo. Mean 18.9 18.7 115 107 2.18 2.01

% Diff 0.0 -0.75 0.0 -6.89 0.00 -7.59

Table 4.3 compares the energy dissipation of circuits mapped using FlowMap, CutMap, and

EMap for various LUT sizes. As shown in the last column of the table, the energy improvement

averaged over all benchmark circuits, is 7.6%, 8.4%, and 8.2% for LUT sizes of 4, 5, and 6,

respectively.

47

Table 4.3: EMap Results.

LUT
Size Algorithm Nodes Connections Energy (nJ) LUT
Size Algorithm

Mean % Diff Mean % Diff Mean %Diff

4
FlowMap 2900 12.6 11576 7.7 2.39 9.3

4 CutMap 2576 0 10746 0 2.18 0 4
EMap 2441 -5.2 9705 -9.7 2.01 -7.6

5
FlowMap 2554 18.5 11301 11.9 2.53 11.9

5 CutMap 2156 0 10102 0 2.26 0 5
EMap 2079 -3.6 9102 -9.9 2.07 -8.4

6
FlowMap 2109 18.4 10179 11.6 2.59 12.1

6 CutMap 1782 0 9118 0 2.31 0 6
EMap 1771 -0.6 8331 -8.6 2.12 -8.2

The improvements of the new technology mapper come primarily from the minimization of node

duplication. As shown in columns 3 and 4 of Table 4.3, the EMap algorithm requires fewer

nodes and connections than FlowMap and CutMap. The switching activity improvements

account for only a small fraction of the gains. Figure 4.4 shows that as we increase the relative

importance of the switching activity factor, X, the average switching activity of the wires

between the LUTs decreases; however, node duplication increases. The resulting increase in the

number of nodes and the number of connections more than counteracts the benefit of the activity

reduction. The best results, shown in Table 4.2, where obtained when X is set to 0.25.

0 0.2 0.4 0.6 0.8 1
lambda

Figure 4.4: Energy versus the activity factor (lambda).

48

4.5 Summary
In this chapter, we described two methods of minimizing power dissipation during the

technology mapping stage of the FPGA CAD flow. We then described EMap, a new depth-

optimal power-aware technology mapping algorithm that reduces power by minimizing the

amount of interconnect between LUTs and by hiding high activity signals within LUTs. Finally,

using very detailed post-route power and delay models, we compared the performance of EMap

to that of other published technology mappers. Specifically, we obtained an energy reduction of

7.6% and determined that most of the reductions were attributed to the minimization of node

duplication. In the next chapter we use a similar approach to investigate power reduction during

the clustering stage of the FPGA CAD flow.

49

Chapter 5

POWER-A WARE CLUSTERING

We begin this chapter by describing how energy dissipation can be minimized during the

clustering stage of the FPGA CAD flow. We then describe a new power-aware clustering

algorithm called P-T-VPack, which is a straightforward enhancement of the T-VPack clustering

algorithm. Finally, we compare the energy dissipation of circuits clustered using P-T-VPack to

that of circuits clustered using T-VPack.

5.1 Energy and Clustering

Minimizing energy during the clustering stage of the FPGA CAD flow is similar to minimizing

energy during technology mapping. The goal is to encapsulate high activity wires within

clusters, where the connections dissipate less energy. Intuitively, we would expect clustering to

be more effective than technology mapping at reducing power, since clusters are typically larger

than LUTs (commercial parts contain as many as 10 LEs per cluster). On the other hand,

encapsulating high activity connections within clusters does not eliminate these connections

entirely, as it does in technology mapping. An interconnection between LUTs within a cluster

still requires a connection; however, the capacitance of this intra-cluster connection is much

smaller than the capacitance of the inter-cluster connections. Figure 5.1 illustrates an inter-

cluster and an intra-cluster connection. Using KPM with the benchmark circuits and the FPGA

50

architecture described in Section 3.2, the average capacitance of intra-cluster and inter-cluster

connections were found to be 25 fF and 450 fF, respectively.

Logic Blocks

• r
-7

Inter-cluster
Connection

Intra-cluster
Connection

Figure 5.1: Inter-cluster and Intra-cluster connections.

To investigate the tradeoffs outlined above, we enhance the T-VPack algorithm, described in

Section 2.2.3, to minimize energy. The T-VPack algorithm is enhanced in two ways. The first

enhancement is to recalibrate the original T-VPack algorithm to minimize energy. The second is

to modify the attraction functions employed by T-VPack to consider the switching activity of

connections between LEs. These enhancements are described in the following two subsections.

5.2 Recalibrating the T-VPack Algorithm

The T-VPack algorithm simultaneously minimizes the amount of interconnect between clusters

and the critical-path delay of user circuits, as described in Section 2.2.3. In T-VPack, the

relative importance of the interconnect and delay minimization objectives is controlled with a

timing-tradeoff parameter, denoted a. The T-VPack algorithm was originally calibrated to

minimize the critical-path delay of user circuits. A default a value of 0.75 was shown to

produce fast circuits. However, since minimal delay does not imply minimal energy, we begin

our enhancement of T-VPack by recalibrating the algorithm to minimize energy. Specifically,

51

we find the value for the timing-tradeoff parameter, a, of the T-VPack attraction function that

produces the lowest energy results. The results are shown in Figure 5.2.

2.4

1.9 I • • • • 1
0 0.2 0.4 0.6 0.8 1

Timing-Tradeoff (alpha)

Figure 5.2: Energy versus timing-tradeoff.

Figure 5.2 is a plot of energy with respect to the timing-tradeoff parameter, a. When a is 0, the

clustering algorithm focuses entirely on minimizing the amount of interconnect between clusters.

When oris 1, the clustering algorithm focuses entirely on minimizing the critical-path delay. The

results indicate that the default a value of 0.75 is not good in terms of energy. The lowest

energy results are obtained when a is 0.2. When a is changed to 0.2 instead of 0.75 (default

value), the energy dissipation is reduced by 7.0%.

5.3 E n h a n c i n g the T - V P a c k A l g o r i t h m

In the previous subsection, we recalibrated the baseline clustering algorithm for energy by

changing the timing-tradeoff parameter, a. In this subsection, we enhance the baseline

52

clustering algorithm for energy by modifying the algorithm's attraction functions to consider the

switching activity of connections while packing clusters.

The first attraction function, which selects the first LE that is packed into each cluster, is

modified to select the LE whose input and output wires have high switching activities. By

initializing a cluster with an LE that has high activity input and output wires, high activity wires

are more likely to be encapsulated within the cluster.

The second attraction function, which selects the remaining LEs that are packed into each

cluster, is modified as follows (for an LE B being considered for cluster C) :

where Crit(B) is a measure of how close LE B is to being on the critical path, Nets(B) is the set

of nets connected to LE B, Nets(C) is the set of nets connected to the LEs already selected for

cluster C, Activity(i) is the estimated switching activity of net i, Activity^ is the average

switching activity of all the nets in the user circuit, a and /5 are user-defined constants which

determine the relative importance of each attraction component, and G is a normalizing factor.

The first term of the new attraction function is the same as before, the second is modified, and

the third is new. Instead of measuring the cardinality of the set of shared nets for each LE, the

second term sums the weight of each shared net. The weight of a net is 1 for most nets; however,

Attraction(B) = a • Crit(B) +

+

53

the weight is 2 for nets that are likely to be fully encapsulated into the current cluster. A weight

of 2 is assigned to nets that are small (fewer than 4 pins) and that have not already been

connected to any other cluster. The weight factor increases the probability of encapsulating nets

entirely within a cluster by favoring nets that are more easily encapsulated. The third term of the

attraction function minimizes the switching activity of connections between logic blocks by

attracting high activity nets inside the logic blocks. The term favors LEs that share high activity

nets with the LEs that are already packed in the current logic block.

5.4 E x p e r i m e n t a l Me thodo logy

To compare the influence of the power-aware clustering algorithm on the energy dissipation, we

use the experimental framework described in Chapter 3, with T-VPack replaced with P-T-

VPack. In both cases, the baseline technology mapper, placer, and router were used. Again,

each benchmark circuit is passed through the entire FPGA CAD flow before the estimating the

power and critical-path delay of each circuit.

5.5 E x p e r i m e n t a l Results

The enhanced algorithm, called P-T-VPack, has two parameters, a and p\ which control the

relative importance of each term in the second attraction function. Before measuring the energy

reductions achieved by the new algorithm, we experimentally determine the value of each

parameter that results in the lowest overall energy.

5.5.1 Calibrating the P-T-VPack Algorithm

Figure 5.3 is a plot of energy with respect to the timing-tradeoff parameter, a, and the power-

tradeoff parameter, p\ When a is 0, the attraction function focuses entirely on the wiring

54

component of the attraction function, and when a is 1, it focuses entirely on minimizing critical-

path delay. Similarly, when (3 is 0, the wiring component of the attraction function focuses on

minimizing the amount of interconnect between clusters, and when (3 is 1, it focuses on

minimizing the switching activity of interconnect between clusters. The results indicate that the

lowest energy results are obtained when a is 0.0 and P is between 0.4 and 0.8.

2.6 , ,

0 0.2 0.4 0.6 0.8 1

Power-Tradeoff (beta)

Figure 5.3: Energy versus alpha and beta.

5.5.2 Final Results

Table 5.1 summarizes the effect of the power-aw are clustering algorithm on the power, delay,

and energy of each benchmark circuit. On average, the energy is reduced by 12.6% (5.6% more

than the recalibrated T-VPack algorithm).

Table 5.1: P-T-VPack results (N = 4).

55

Benchmark
T-VPack P-T-VPack T-VPack P-T-VPack T-VPack P-T-VPack

Benchmark
Delay (ns) Power (mW) Energy (nJ)

alu4 15.6 16.2 105 96.3 1.64 1.56
apex2 17.3 19.1 98.1 78.4 1.70 1.50
apex4 17.0 16.0 55.6 51.9 0.94 0.83
big key 8.4 9.0 280 267 2.34 2.40
clma 32.7 37.4 262 198 8.56 7.39
des 13.7 15.8 228 198 3.12 3.13

diffeq 17.9 19.5 50.3 38.7 0.90 0.76
dsip 10.1 8.0 219 255 2.22 2.04

elliptic 24.5 25.2 111 82.0 2.73 2.07
ex1010 24.2 24.3 118 101 2.85 2.46

ex5p 15.9 15.6 63.4 56.0 1.01 0.87
frisc 29.3 34.3 65.2 42.6 1.91 1.46

misex3 14.4 16.1 96 77.1 1.38 1.24
pdc 31.3 27.9 86 83.3 2.69 2.32

s298 28.3 29.4 78.9 60.0 2.23 1.76
s38417 20.6 29.1 361 227 7.43 6.60

S 3 8 5 8 4 . 1 23.4 18.4 252 282 5.89 5.19
seq 15.2 15.1 108 92.6 1.64 1.40
spla 22.7 30.6 88.9 56.4 2.02 1.73

tseng 18.2 18.1 5 3 . 0 46.8 0.96 0.85

Geo. Mean 18.9 19.7 115 96.4 2.18 1.90

% Diff 0.0 4.48 0.0 -16.4 0.00 -12.6

Figure 5.4 compares the energy reductions of the P-T-VPack algorithm for different clusters

sizes. The graph illustrates that the energy minimization becomes more effective as the cluster

size is increased. Larger clusters encapsulate more wires allowing the algorithm to remove more

high activity wires from global routing.

56

B T-VPack • P-T-VPack •% PDP Reduction

3 4 5 6 7
Cluster Size (N)

10

Figure 5.4: Energy dissipation versus cluster size.

Finally, in Table 5.2 we examine the gains in more detail. For clusters with four LEs, the power-

aware packer reduces the number of inter-cluster connections by 1.0% and the average inter-

cluster switching activity by 20.8%. In contrast with the technology mapper, the improvements

from the clustering algorithm come primarily from the minimization of switching activity.

Table 5.2: Clustering gain components.

T-VPack P-T-VPack % Diff.

Connections 6268 6206 -1.0

Average Activity 0.298 0.236 -20.8

Energy (nJ) 2.18 1.88 -12.6

5.6 Summary

In this chapter, we described two methods of reducing energy dissipation during the clustering

stage of the FPGA CAD flow. We then described P-T-VPack, a new power-aware clustering

57

algorithm that is based on the T-VPack algorithms. The P-T-VPack algorithm reduces power by

minimizing the amount of interconnect between logic blocks and by hiding high-activity signals

within logic blocks. Finally, we compared the energy dissipation of circuits clustered using P-T-

VPack to that of circuits clustered using T-VPack. Our experimental results indicate that

clustering is well suited for power optimization, with average energy reductions of 12.6% for

clusters with four LEs. In the next chapter, we investigate energy minimization during the

placement stage of the FPGA CAD flow.

58

Chapter 6

POWER-A WARE PLACEMENT

We begin this chapter by describing how energy dissipation can be minimized during the

placement stage of the FPGA CAD flow. We then describe how we enhanced our baseline

placement algorithm to be power-aware. Finally, we compare the performance of the enhanced

algorithm to that of the baseline algorithm, T-VPlace.

6.1 Energy and Placement

Intuitively, a good placement can have a significant impact on power. If clusters connected by

high activity nets are placed near each other, these high activity nets will likely be short, and thus

consume less power.

a) Placement solution 1 b) Placement solution 2

Figure 6.1: Two example placement solutions.

59

Figure 6.1 illustrates two possible placement solutions for the same user circuit. The connection

between logic blocks (a) and (b) has a switching activity of 0.2, while the connection between

logic blocks (a) and (c) has a switching activity of 0.9. In the first placement solution, (b) is

adjacent to (a), and in the second placement solution, (c) is adjacent to (a). The second

placement solution is better in terms of power since the high activity connection between (a) and

(c) is likely to be shorter and thus consume less power.

On the other hand, unlike technology mapping, a placement algorithm can not eliminate high

activity nets all together; it can only make these nets shorter. In cases when there are many high

activity nets, it may not be possible to place all clusters connected by high-activty nets close

together. Similarly, in cases when there are timing-critical nets that also have low switching

activity, the delay of the circuit may increase. This delay increase may counteract the power

reductions, thereby reducing the overall energy reductions. To investigate these tradeoffs, we

enhanced an existing timing-aware placement algorithm, called T-VPlace, to minimize energy.

6.2 Recalibrating the T-VPlace Algorithm

The T-VPlace algorithm, described in section 2.2.4, simultaneously minimizes the overall wire

length and the critical-path delay of user circuits during the placement stage of the FPGA CAD

flow. A user-defined timing-tradeoff parameter, denoted X, determines the relative importance

of the wiring and delay minimization objectives. The T-VPlace algorithm was originally

calibrated to minimize circuit delay, not energy. Therefore, we begin our enhancement of T-

VPlace by recalibrating the algorithm to minimize energy. Specifically, we find the value for X,

which produces the lowest energy placements. The results are shown in Figure 6.2.

60

2.4

co c
LU

2.1

2.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T i m i n g - T r a d e o f f (l a m b d a)

Figure 6.2: Energy versus timing-tradeoff.

Figure 6.2 is a plot of energy with respect to the timing-tradeoff parameter, X. When X is 0, the

placement algorithm focuses entirely on minimizing wire length. When A. is 1, the placement

focuses entirely on minimizing critical-path delay. The results indicate that the default X value

of 0.5 is good in terms of energy; the results are only slightly improved (by 0.1%) when X is 0.2.

6.3 E n h a n c i n g the T - V P l a c e A l g o r i t h m

As described above, the energy reductions of the original algorithm can also be improved by

considering the switching activity of the nets during placement. Signals that toggle more often

consume more power. By placing logic blocks that are connected by high activity nets closer

together, the energy dissipated within the global routing fabric may be reduced. To make the

algorithm activity-aware, we modify the cost function of the original algorithm as follows:

ATimingCost + (1-A)- (1-y). AWiringCost APowerCost
PreviousTimingCost PreviousWiringCost PreviousPowerCost

61

The timing and wiring cost component are the same as before (see section 2.2.4). However, as

described in [8], a power cost component is added to the cost function and a power-tradeoff

parameter, y, is added to control the relative importance of the power cost with respect to the

wiring cost. The power cost component estimates the power consumption of each net by

multiplying their bounding box and switching activity:

where the bounding box term, q(i)-[bbx(i)+bby(i)], is the same as before and estimates the

capacitance of net i, and Activity(i) estimates the switching activity of net i. Like the timing and

wiring components, the power component of the cost function is auto-normalized with a

PreviousPowerCost factor, which is updated once every temperature.

6.4 Experimental Methodology

To compare the influence of the power-aware placement algorithm on energy dissipation, we use

the experimental framework described in Chapter 3, with T-VPlace replaced with P-T-VPlace.

Each benchmark circuit is passed through the entire FPGA CAD flow before the estimating the

power and critical-path delay of each circuit. The results are then compared to those obtained

using the baseline the CAD flow.

6.5 Experimental Results

The enhanced algorithm, called P-T-VPlace, has two parameters, X and y, which control the

relative importance of each term of the cost function. Before measuring the energy reductions of

the enhanced algorithm, we determine the lowest energy value for each parameter

experimentally.

nets
Power Cost =

62

6.5.1 Calibrating the P-T-VPlace Algorithm

Figure 6.2 is a plot of energy with respect to the timing-tradeoff parameter, A, and the power-

tradeoff parameter, y. When A is 0, the attraction function focuses entirely on the wiring

component of the attraction function, and when A is 1, it focuses entirely on minimizing critical-

path delay. Similarly, when yi& 0, the wiring component of the attraction function focuses on

minimizing the amount of interconnect between clusters, and when ^ is 1, it focuses on

minimizing the switching activity of interconnect between clusters. The results indicate that

setting X to 0.2 and y to 0.8 is the best in terms of energy.

2.40

2.35

2.30

£ 2.25
<D C LU

2.20

2.15

2.10

0.2 0.4 0.6 0.8 1

Power-Tradeoff (gamma)

Figure 6.3: Energy versus power-tradeoff (gamma).

Timing-Tradeoff

63

6.5.2 Final Results

P-T-VPlace produces marginal but consistent improvements in terms of energy when compared

with T-VPlace, as shown in Table 6.1. On average the power-aware algorithm reduces energy

by 3.0%, where all benchmarks showed improvement. Examining the results further, the power-

aware placer reduces global routing power by 6.7% compared to the baseline placer. The

critical-path delay, however, increases by 4.0%, thereby counteracting much of the power

reductions. The delay increase is incurred when critical-path nets have low switching activity.

When switching activity is not considered, all critical-path nets are kept short in order to reduce

delay. However, when switching activity is considered, critical-path nets with low switching

activity are not kept as short as before.

Table 6.1: P-T-VPlace results.

Benchmark
T-VPlace P-T-VPlace T-VPlace P-T-VPlace T-VPlace P-T-VPlace

Benchmark
Delay (ns) Power (mW) Energy (nJ)

alu4 15.6 16.3 105 99.6 1.64 1.62

apex2 17.3 19.3 98.1 85.4 1.70 1.64

apex4 17.0 19.9 55.6 44.9 0.94 0.90

bigkey 8.4 8.8 280 264 2.34 2.33

clma 32.7 36 .2 262 225 8.56 8.15

des 13.7 14.6 228 212 3.12 3.08

diffeq 17.9 19.2 50.3 45.9 0.90 0.88

dsip 10.1 8.5 219 258 2.22 2.19

elliptic 24.5 24.7 111 106 2.73 2.61

ex1010 24.2 23.7 118 119 2.85 2.81

ex5p 15.9 16.5 63 .4 59.4 1.01 0.98

frisc 29.3 33.3 65.2 52.8 1.91 1.76

misex3 14.4 16.2 96 84.6 1.38 1.37

pdc 31 .3 32.9 86 77.2 2.69 2.54

s298 28.3 30.0 78.9 72.3 2.23 2.17

S 3 8 4 1 7 20.6 21.6 361 3 3 6 7.43 7.25

S38584.1 23.4 15.3 252 380 5.89 5.82

seq 15.2 15.0 108 106 1.64 1.59

spla 22.7 32.1 88.9 59.4 2.02 1.91

tseng 18.2 18.5 53.0 50.9 0.96 0.94

Geo. Mean 18.9 19.6 115 108 2.18 2.11

% Diff 0.0 3.96 0.0 -6.68 0.00 -2.99

64

Intuitively, the P-T-VPack algorithm attempts to place clusters connected with high activity nets

close to each other. To investigate to what extent this is happening, we examined the

relationship between the switching activity and the capacitance of each net after routing. We

divided the nets of each circuit into groups, based on their activities (the first group consisted of

nets with an activity of 0.0 to 0.1, the second group consisted of nets with an activity of 0.1 to

0.2, etc.). For each net, we found the post-routing capacitance for both the baseline and the

power-aware placement algorithms. The total capacitance of all the nets in each group was then

summed, and the results are plotted in Figure 6.4. This plot shows that high activity nets are

more likely to have a low capacitance when the power-aware placement algorithm is used,

compared to when the baseline placement algorithm is used.

• Baseline Racer (ZZZI Row er-aw are Racer - A — % Cap. Difference

LL C
a> u

o
co
a
co

O

1.2

1.0

0.8

0.6

2 0.4

0.2

0.0

0)
o
c
0)

CL
CO

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Activity Ratio

Figure 6.4: P-T-VPlace (wire cap. vs. switching activity).

65

6.6 Summary

In this chapter we described how to reduce power consumption during the placement stage of the

FPGA CAD flow. We then described P-T-VPlace, a power-aware placement algorithm that is

based on the T-VPlace algorithm. P-T-VPlace reduces power by placing logic blocks that are

connected by nets with high switching-activity close together. Finally, we compared the energy

dissipation of circuits placed using P-T-VPlace to that of circuits placed using T-VPlace. Our

experimental results indicate that placement is not as well suited for energy minimization as are

technology mapping and clustering, with energy reductions of only 3.0%. We found that much

of the power reductions achieved by the power-aware algorithm were counteracted by an

increase in the critical-path delay. In the next chapter we investigate power reduction during the

routing stage of the FPGA CAD flow.

66

Chapter 7

POWER-AWARE ROUTING

This chapter begins with a description of how energy dissipation can be minimized during the

routing stage of the FPGA CAD flow. It then describes how the VPR routing algorithm was

enhanced to minimize energy. Finally, it compares the energy dissipation of circuits routed

using the power-aware VPR router to that of circuits routed using the original VPR router.

7.1 Energy and Routing

The ideal routing solution, in terms of energy, is one where each net is routed as directly as

possible. In practice, however, it is not possible to route every net directly since FPGA routing

channels have a limited number of tracks. When routing channels become congested, some

connections must use alternative routes that are less direct, as shown in Figure 7.1.

a) Congested interconnect b) Indirect connection

Figure 7.1: Routing example 1: (a) congested interconnect and (b) indirect connection.

67

a) Uncongested interconnect b) Direct connection

Figure 7.2: Routing example 2: (a) uncongested interconnect and (b) direct connection.

In Figure 7.1 and Figure 7.2, the dark routing tracks are occupied, the dotted routing tracks are

not occupied, and the double lined routing tracks indicate the path taken to route the connection

between logic block a and logic block b. In Figure 7.1, the connection between a and b is routed

indirectly because the channels between the logic blocks are congested. In Figure 7.2, however,

the connection can be routed directly since the channels are not congested. The indirect

connection requires four routing wires and three switch blocks, whereas, the direct connection

requires only two routing wires and one switch block. Correspondingly, the indirect connection

dissipates significantly more energy than a direct connection.

Although it is not possible to route every net directly, the energy dissipated within the routing

fabric of the FPGA may be reduced by routing high activity nets more directly than low activity

nets. Intuitively, we would expect the energy reductions obtained from such a power-aware

router to be similar to those obtained from the power-aware placement algorithm described in

Chapter 6. In both cases, the power-aware algorithm can not eliminate high activity nets all

together. Instead, they can only make the high activity nets shorter. Also, in both cases, there is

68

a tradeoff between power and delay. When there are timing-critical nets that have low switching

activity, the delay of the circuit may increase since the low switching activity of the net reduces

the net's priority. This delay increase may counteract the power reductions, thereby reducing the

overall energy reductions. To investigate these issues, we enhanced the timing-aware VPR

routing algorithm that is described in section 2.2.5.

7.2 The P-T-VRoute Algorithm

The new enhanced routing algorithm, called P-T-VRoute, is nearly the same as the timing-aware

VPR routing algorithm. Only the cost function of the algorithm is modified to consider the

switching activity of the nets, as follows:

Cost(n) = Critii, j) • delayElmore (") +

(1 - Crit(i, j)) • [ActCrit(i) • k • cap(n) + (1 - ActCritQ.)) • bin) • h(n) • p(n)]

where Crit(i,j), delayEimore(n), b(n), h(n), and p(n) are the same as before (see section 2.2.5), k is

a power-tradeoff parameter which determines the relative importance of the new power term,

cap(n) is the normalized capacitance associated with routing resource node n, and ActCrit(i) is

the activity criticality. The activity criticality of net i is defined as:

Activity(i)
ActCrit(i) = mm(,MaxActCrit),

MaxActivity

where Activity(i) is the switching activity in net i, MaxActivity is the maximum switching activity

of all the nets, and MaxActCrit is the maximum activity criticality that any net is permitted to

have. Setting MaxActCrit to 0.99 prevents nets with very high activity from completely ignoring

congestion.

69

The delay term of the cost function is left unchanged; when the timing criticality of a connection

is high, the router focuses on minimizing the Elmore delay of the connection. The second term

of the cost function, however, is modified to consider switching activity. When the switching

activity of a net is high, the power-aware router searches for the path from the source to the sink

of the net with the lowest capacitance. Otherwise, the router behaves as it did before, searching

for low congestion paths.

7.3 E x p e r i m e n t a l M e t h o d o l o g y

Again, we use the experimental framework described in Chapter 3, with T-VRoute replaced with

P-T-VRoute, to compare the influence of the power-aware routing algorithm on energy

dissipation. Each benchmark circuit is passed through the entire FPGA CAD flow before

estimating the power and critical-path delay of each circuit. The results are then compared to

those obtained using the baseline CAD flow.

7.4 E x p e r i m e n t a l Results

The P-T-VRoute algorithm has a power-tradeoff parameter, k, which controls the relative

importance of the power term in the cost function. Before measuring the energy reductions of

the enhanced algorithm, we experimentally determine the best value for this parameter.

7.4.1 Calibrating the P-T-VRoute Algorithm

Figure 7.3 is a plot of the power, delay, and energy reductions of the power-aware router with

respect to the power-tradeoff parameter, k. When k is 0, the algorithm does not consider

switching activity. As k increases, however, the algorithm increasingly focuses on minimizing

the capacitance of high activity nets. Figure 7.3 clearly illustrates the relationship between

70

power and delay. As k increases, power consumption decreases but critical-path delay increases.

The delay increase counteracts most of the energy reductions. The power-aware router achieves

the maximum energy reductions (3.0%) when k is 3; however, the critical-path delay when k is 3

increases significantly (8.2%). On the other hand, the power-aware router achieves comparable

energy reductions (2.7%) when k is 1.5, while only increasing the critical-path delay by 3.8%.

Therefore, the default k value is set to 1.5.

Figure 7.3: Energy, Delay, and Power versus Power Weight.

7.4.2 Experimental Results

The energy reductions of the power-router were similar to those achieved during placement. The

average energy dissipation was reduced by 2.7%, where all of the 20 benchmarks showed an

improvement. The power-aware router reduces global interconnect power by 6.2% compared to

the baseline placer. The critical-path delay, however, increases by 3.8%, thereby counteracting

much of the power reductions. Again, the delay increase is incurred when critical-path nets have

71

low switching activity. When switching activity is not considered, all critical-path nets are kept

short in order to reduce delay; however, when switching activity is considered, critical-path nets

with low switching activity are not kept as short as before.

Table 7.1: P-T-VRoute results.

Benchmark
T-VRoute P-T-VRoute T-V Route P-T-VRoute T-V Route P-T-VRoute

Benchmark
Delay (ns) Power (mW) Energy (nJ)

alu4 15.6 15.3 105 103 1.64 1.58
apex2 17.3 17.2 98.1 95.1 1.70 1.64

apex4 17.0 15.3 55.6 60.5 0.94 0.93

bigkey 8.4 8.7 280 263 2.34 2.29
clma 32.7 32.9 262 248 8.56 8.15

des 13.7 14.4 228 212 3.12 3.05

diffeq 17.9 18.4 50.3 47.4 0.90 0.87

dsip 10.1 19.3 219 114 2.22 2.21

elliptic 24.5 23.4 111 113 2.73 2.63

ex1010 24.2 24.7 118 113 2.85 2.78

ex5p 15.9 15.8 63.4 62.4 1.01 0.98

frisc 29.3 31.4 65.2 59.2 1.91 1.86
misex3 14.4 14.3 96 96.0 1.38 1.37

pdc 31.3 28.1 86 93.2 2.69 2.62

s298 28.3 31.3 78.9 68.7 2.23 2.15
S38417 20.6 33.3 361 218 7.43 7.27

S38584.1 23.4 16.0 252 359 5.89 5.76

seq 15.2 14.7 108 107 1.64 1.58

spla 22.7 22.6 88.9 86.6 2.02 1.96

tseng 18.2 18.2 53.0 51.8 0.96 0.94

Geo. Mean 18.9 19.6 115 108 2.18 2.12

% Diff 0.0 3.77 0.0 -6.17 0.00 -2.63

Intuitively, this algorithm attempts to route high activity nets using routing resources that are less

capacitive, such as pass-transistor switched tracks rather than tri state-buffered tracks. To

investigate to what extent this is happening, the same technique described in section 6.5.2 was

used to examine the relationship between wire capacitance and switching activity of nets routed

with the power-aware router. Again, as shown in Figure 7.4, the nets with high switching

activity are more likely to have a low capacitance when the power-aware routing algorithm is

used, compared to when the baseline routing algorithm is used.

72

E H Baseline Router CZZD Power-aware Router + — % Cap. Difference

4

8
c

a
o
(0
a.

3
a
o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Activity Ratio

Figure 7.4: P-T-VRoute results (wire cap. vs. switching activity).

7.5 Summary

This chapter described how energy dissipation can be minimized during the routing stage of the

FPGA CAD flow. It then described a new power-aware router that is based on the original VPR

router. The power-aware routing algorithm minimizes energy by minimizing the amount of

routing circuitry used to route high activity nets. Finally, the energy dissipation of circuits

routed using the power-aware router was compared to that of circuits routed using the original

VPR router. The results were similar to those achieved by the power-aware placement

algorithm. The average energy dissipation was reduced by 2.6%, where all of the 20

benchmarks showed an improvement. The following chapter examines the energy reductions

when the power-aw are algorithms are applied within the same CAD flow.

73

Chapter 8

COMBINED RESULTS

The four previous chapters considered each FPGA CAD algorithm in isolation in order to

determine how suitable each algorithm is to energy minimization. This chapter combines the

power-aware algorithms described in the previous chapters in order to examine the interactions

between the reductions of each power-aware algorithm.

8.1 Discussion

Intuitively, we would not expect the energy reductions of the individual power-aware algorithms

to be perfectly cumulative when the algorithms are combined. All the power-aware algorithms

described in the previous chapters minimize energy using similar techniques. Generally, each

algorithm reduces the capacitance of the high activity nets or the total number of nets. When

these algorithms are applied successively, the later algorithms are likely to be less effective at

minimizing energy since they have fewer high activity nets to minimize.

8.2 Experimental Methodology

To compare the influence of the power-aware clustering algorithm on the energy dissipation, we

use the experimental framework described in chapter 3; however, instead of replacing only one

algorithm at a time, we replace two or more algorithms with their power-aware counterparts.

For each combination of power-aware and baseline algorithm, however, each benchmark circuit

74

is still passed through the entire FPGA CAD flow before estimating the power and critical-path

delay of each circuit.

8.3 Experimental Results
The results for all twelve possible CAD algorithm combinations are presented in Table 8.1.

Table 8.1: Combined Results (Energy nJ).
Tech. Map baseline baseline baseline baseline baseline power power power power power power power
Clustering baseline baseline power power power baseline baseline baseline power power power power
Placement baseline power baseline power power baseline power power baseline baseline power power

Routing baseline power power baseline power power baseline power baseline power baseline power

alu4
apex2
apex4
bigkey
clma
des

diffeq
dsip

elliptic
ex1010

ex5p
frisc

misex3
pdc

s298
S 3 8 4 1 7

S 3 8 5 8 4 . 1
seq
spla

tseng

1.64
1.70
0.94
2.34
8.56
3.12
0.90
2.22
2.73
2.85
1.01
1.91
1.38
2.69
2.23
7.43
5.89
1.64
2.02
0.96

1.56
1.59
0.88
2.29
7.77
3.02
0.84
2.17
2.52
2.73
0.96
1.72
1.32
2.50
2.11
7.08
5.68
1.51
1.84
0.92

1.51
1.44
0.81
2.36
7.03
3.03
0.73
2.00
2.02
2.41
0.86
1.42
1.20
2.29
1.72
6.46
5.06
1.36
1.69
0.83

1.52
1.45
0.79
2.39
6.90
3.08
0.73
2.01
1.93
2.31
0.85
1.36
1.18
2.25
1.70
6.48
5.09
1.34
1.59
0.83

1.48
1.40
0.78
2.37
6.60
2.98
0.71
2.00
1.89
2.27
0.82
1.33
1.14
2.19
1.68
6.37
4.97
1.30
1.57
0.81

1.54
1.53
0.94
2.47
7.25
3.07
0.77
2.18
2.14
2.52
0.95
1.61
1.26
2.42
2.04
6.55
4.83
1.42
1.83
0.81

1.56
1.54
0.90
2.49
7.39
3.12
0.78
2.21
2.10
2.52
0.94
1.52
1.29
2.32
2.06
6.59
4.87
1.42
1.77
0.83

1.52
1.48
0.89
2.45
7.00
3.02
0.75
2.16
2.04
2.46
0.91
1.49
1.25
2.31
2.01
6.44
4.78
1.35
1.72
0.81

1.53
1.37
0.86
2.48
6.66
3.13
0.69
2.03
1.88
2.21
0.87
1.38
1.16
2.11
1.72
6.26
4.31
1.30
1.59
0.77

1.50
1.31
0.84
2.44
6.39
3.03
0.68
2.00
1.83
2.18
0.87
1.36
1.13
2.08
1.69
6.13
4.22
1.24
1.56
0.75

1.52
1.32
0.81
2.46
6.40
3.04
0.66
2.01
1.76
2.07
0.85
1.24
1.13
2.02
1.70
6.13
4.24
1.24
1.51
0.75

1.47
1.26
0.80
2.42
6.09
2.96
0.65
1.98
1.70
2.04
0.84
1.22
1.08
1.98
1.66
5.99
4.13
1.19
1.49
0.73

Geo.
Mean. 2.18 2.05 1.85 1.83 1.79 1.96 1.95 1.90 1.79 1.75 1.73 1.68

% Diff 0.00 -5.72 -14.8 -15.9 -17.9 -9.95 -10.19 -12.6 -17.6 -19.5 -20.6 -22.6

The energy reduction obtained when all the power-aware algorithms are combined is 22.6%. If

the reductions of each stage were perfectly cumulative, the total reduction would be 25.8% (sum

of the individual reductions). In other words, the reductions of the entire power-aware CAD

flow are mostly cumulative, with only 3.2% overlap. To further investigate this, we examine the

overlap between each power-aware algorithm separately.

75

For example, consider the interaction between the power-aware technology mapping and

clustering algorithms. By itself, the power-aware technology mapping algorithm leads to a 7.6%

reduction in energy. The power-aware clustering algorithm, by itself, leads to a 12.6% reduction

in energy. Experimentally, by combining the two enhanced algorithms, we obtained an

improvement of 17.6% (compared to 20.2% if the reductions had been perfectly cumulative). In

other words, there is an overlap of 2.6% between the reductions achieved by the technology-

mapper and the reductions achieved by the clusterer.

Using the same approach, we determine the overlap for all remaining power-aware pairings. The

results are shown in Table 8.2.

Table 8.2: Overlap between power-aware algorithms.

Overlap (%) Emap P-T-Vpack P-VPR Placer

P-VPR Router 0.27 0.04 -0.10

P-VPR Placer 0.39 -0.33

P-T-VPack 2.61

The results suggest that most of the overall overlap occurs between the technology mapping and

clustering algorithms. The overlap between the other algorithms is very small. A negative

overlap implies that combining the algorithms introduces additional energy reductions; however,

the negative values in Table 8.2 are very small and can be attributed to variance in the

experimental results. It is intuitive that most of the overlap occurs between the technology

mapping and clustering algorithms since the two algorithms account for most of the overall

energy reduction. The overlap occurs when the technology mapping algorithm reduces the size

of the netlist, leaving fewer wires for the clustering algorithm to work with. Generally, the

overlap between the two stages increases proportionally with respect to the reductions of the

76

technology mapper. This trend is illustrated in Figure 8.1, where each point corresponds to one

benchmark circuit and the line is a linear regression trend line.

14 n

12 - •

10 -

"6 J

EMap Reduction (%)

Figure 8.1: EMap/P-T-VPack Overlap.

Although not shown, the interactions between the other algorithms are similar; however, the

effect is less dramatic since the reductions of the placement and routing algorithm are less

significant.

8.4 Summary

This chapter combined the power-aware algorithms describes in the previous chapter in order to

investigate the interactions between the reductions achieved by each C A D algorithm. The

results indicate that the reductions of the entire power-aware C A D flow are mostly cumulative,

with only 3.2% overlap overall. Most of the overlap originates from the interaction of the

technology mapping and clustering stages, since the two algorithms account for most of the

77

overall reductions. Finally, is was shown that the overlap between stages increases

proportionally with respect to the reductions of the previous stages.

78

Chapter 9

CONCLUSIONS AND FUTURE WORK

9.1 Summary and Contributions

In this thesis, we have investigated the interactions between various power-aware FPGA CAD

algorithms. The energy reduction of the individual and combined algorithms was measured

using very detailed models, which estimate the power dissipation and critical-path delay of

circuits after they have been placed and routed onto FPGAs. The individual energy reductions of

the power-aware technology-mapping, clustering, placement, and routing algorithms were 7.6%,

12.6%, 3.0%, and 2.6% respectively. The majority of the overall energy reduction was achieved

during the technology mapping and clustering stages of the power-aware FPGA CAD flow.

Furthermore, we observed that the energy reductions achieved during the earlier stages

(technology mapping and clustering) originated primarily from minimizing the amount of

connections between logic blocks, whereas the energy reductions achieved during the later

stages (placement and routing) originated primarily from minimizing the capacitance of high-

activity connections.

After measuring the energy reduction of each power-aware algorithm in isolation, the algorithms

were combined to determine if the energy reductions were cumulative. The results indicate that

the energy reductions, when the power-aw are algorithms are combined, are mostly cumulative,

with only 3.2% overlap overall. Furthermore, we observed that most of the overlap originates

79

from the interaction between the technology mapping and clustering stages, since these two

algorithms account for most of the overall reductions. Of course, the numerical results are

specific for our algorithms; however, we expect that other power-aware FPGA CAD flows

would produce similar conclusions. We have not yet considered high-level synthesis, but we

expect that the reductions achieved there could be significant.

Finally, the 22.6% energy reduction that is achieved when all four power-aware algorithms are

employed corresponds to a 32% power reduction and a 14% critical-path delay increase. To

achieve the same power reduction by simply slowing the system clock, circuit delay would have

to be increased by 47%. Therefore, for designs constrained by a power budget, using a power-

aware FPGA CAD flow to reduce power has significantly less impact on performance than

slowing the system clock (33% less for this CAD flow).

9.2 Future Work

Although very relevant to industry, this work is only a preliminary step towards a complete

power-aware CAD flow for modern FPGAs. In the study, FPGA CAD algorithms were

optimized to minimize energy dissipation of FPGAs that consist of programmable logic blocks

and programmable routing only. Similarly, the performance of these algorithms was measured

using power and delay models that are also based on this academic model. Modern FPGAs

being introduced by the leading FPGA companies are deviating increasingly from this model. In

addition to programmable logic blocks and programmable routing, new FPGAs have additional

features, such as multiple clock domains, embedded memories, embedded arithmetic logic units,

and even embedded processors, as shown in Figure 9.1. These new features introduce new

power consumption issues, many of which can only be tackled at the system level. Moreover, as

80

process technology continues to scale, static power consumption caused by transistor leakage

current is becoming increasingly important [65]. Thus, power should be optimized in two ways:

by examining how higher-level FPGA CAD tools can optimize for power at the system level,

and by examining how CAD tools can reduce the amount of static power dissipated by an FPGA

implementation.

Dedicated Clock

Circuitry

E m b e d d e d C P U

mmm
• • • •
• • • •
• • • •
B
B

mmm
•

mramm • • •
• • • ;
• • •
• • • • • • • • •
• • •

L^mmm
mm

mm
• • B
• • B
• • B :
• • B
• •
• •
• • •
• • B
mm

High Speed l/Os

Embedded Mult ipl iers E m b e d d e d A L U s

Figure 9.1: Modern FPGA with Embedded System-Level Blocks.

9.2.1 System-Level Power Optimization for FPGAs

Although there is room for power optimization at the physical design level, significant energy

reductions can only be achieved by optimizing the design at the system level. Modern FPGAs

contain processors, memories, DSP blocks, and other system-level components. High-level

design tools must partition systems between these tasks. Unlike existing system-level power

optimization tools, which can select high-level blocks from a library, these blocks are pre

fabricated in an FPGA. The task is therefore to use existing blocks in the most energy-efficient

way. In many cases, the blocks are configurable. Memories, for example, can usually be used in

81

one of many modes; the mode used will significantly impact the way data structures can be

stored in the memory. As another example, processors in FPGAs are flexible; finding the right

balance between these flexible (but pre-fabricated) processors and FPGA logic has not received

significant attention.

A related feature found in modern FPGAs is the complex clock distribution system. Modern

FPGAs typically contain support for many clock domains. In [16], it was shown that the clock

distribution system in an FPGA with only a single clock domain consumes a significant amount

of power; it is likely that the amount of power consumed by clock distributions with more clock

domains is even more significant. The use of these domains to optimize for power is another

system-level issue that has not received attention.

An important part of this future work will be the use of very detailed power models. The

existing model we have been using, while very detailed, does not take into account processors,

memories, and multiple clock domains. Thus, this model should be extended to accurately

estimate the power consumption of these system-level blocks.

9.2.2 Static Power Optimizations

As process technology continues to scale, static power consumption caused by transistor leakage

current is becoming increasingly important. FPGA vendors estimate that static power will

account for half of the total power dissipated by the next generation of FPGAs.

Circuit level techniques, such as increasing transistor length and increasing threshold voltage,

can be used to reduce transistor leakage current; however, these techniques typically incur area

82

and performance penalties. A given FPGA architecture could hypothetically contain some high

speed programmable circuitry and some low-power programmable circuitry. Power-aware CAD

tools could then implement critical-path logic using high-speed circuitry and the remaining logic

using low-power circuitry to reduce overall power consumption while maintaining the same

performance.

Another technique, which involves turning off parts of a design while they are not required, is

promising as well. By disconnecting a sub-circuit from the power supply, static power

consumption is eliminated. This technique can be applied to fixed integrated circuits in a

relatively straight forward manner. However, this technique is more intricate for circuits

implemented using programmable logic. Circuits implemented using FPGAs are partitioned into

small logic elements and then placed to physical locations on the FPGA. To enable this power

saving scheme, the FPGA would need to be divided into regions that could be turned on or off.

During the placement stage of the FPGA CAD flow, logic elements that are likely to be turned

on and off at the same time would then need to be placed together, thereby increasing the

likelihood that a section can be turned off. As the division size becomes smaller this likelihood

increases; however, the overhead incurred by the added circuitry, required to turn the regions on

or off, increases.

The feasibility of static power reducing techniques such as these can only be determined by

careful analysis at the system-level.

83

REFERENCES

[I] A.H. Farrahi, and M. Sarrafzadeh, "FPGA technology mapping for power minimization",
International Workshop on Field-Programmable Logic and Applications, pp. 167-174,
1994.

[2] M.J. Alexander, "Power Optimization for FPGA Look-Up Tables", ACM International
Symposium on Physical Design, pp. 156-162, 1997.

[3] C-C. Wang, and C-P Kwan, "Low Power Technology Mapping by Hiding High-Transition
Paths in Invisible Edges for LUT-Based FPGAs", IEEE International Symposium on
Circuits and Systems, pp. 1536-1539, June 1997.

[4] H. Li, W-K. Mak, and S. Katkoori, "LUT-Based FPGA Technology Mapping for Power
Minimization with Optimal Depth", IEEE Computer Society Workshop on VLSI, Orlando,
pp.123-128, 2001.

[5] Z-H. Wang, E-C. Liu, J. Lai, and T-C. Wang, "Power Minimization in LUT-Based FPGA
Technology Mapping", ACM Asia South Pacific Design Automation Conference, pp. 635-
640, 2001.

[6] J. Anderson, and F.N. Najm, "Power-Aware Technology Mapping for LUT-Based FPGAs",
IEEE Internaltional Conference on Field-Programmable Technology, pp. 211-218, December
2002.

[7] A. Singh, and M. Malgorzata, "Efficient Circuit Clustering for Area and Power Reduction in
FPGAs", Proc. ACM International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, pp. 59-66, February 2002.

[8] K. Roy, "Power-Dissipation Driven FPGA Place and Route Under Timing Constraints",
IEEE Transactions on Circuits and Systems, vol. 46, no. 5, pp. 634-637, May 1999.

[9] N. Togawa, K. Ukai, M. Yanagisawa, and T. Ohtsuki, "A Simultaneous Placement and
Global Routing Algorithm for FPGAs with Power Optimization" IEEE Asia Pacific
Conference on Circuits and Systems, pp. 125-128, 1998.

[10] B. Kumthekar, and F. Somenzi, "Power and Delay Reduction via Simultaneous Logic and
Placement Optimization in FPGAs", Design, Automation, and Test in Europe Conference,
pp. 202-207, 2000.

[II] J. Cong, and Y. Hwang, "Simultaneous Depth and Area Minimization in LUT-Based FPGA
Mapping", ACM International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, pp. 68-74, February 1995.

[12] A. Marquardt, V. Betz, and J. Rose, "Using Cluster-based Logic Blocks and Timing-Driven
Packing to Improve FPGA Speed and Density", ACM International Symposium on Field-
Programmable Gate Arrays, pp. 37-46, February 1999.

84

[13] A. Marquardt, V. Betz, and J. Rose, "Timing-Driven Placement for FPGAs", ACM
International Symposium on Field-Programmable Gate Arrays, Monterey, CA, pp. 203-213,
February 2000.

[14] V. Betz, "Architecture and CAD for the Speed and Area Optimization of FPGAs", Ph.D.
Dissertation, University of Toronto, 1998.

[15] V. Betz, J. Rose, and A. Marquardt, "Architecture and CAD for Deep-Submicron FPGAs",
Kluwer Academic Publishers, 1999.

[16] K. Poon, A. Yan, and S. Wilton, "A Flexible Power Model for FPGAs", International
Conference on Field-Programmable Logic and Applications, September 2002.

[17] J. Greene, E. Hamdy, and S. Beal, "Antifuse Field Programmable Gate Arrays",
Proceedings of the IEEE, pp. 1042-1056, Julyl993.

[18] S. Brown, "An Overview of Technology, Architecture and CAD Tools for Programmable
Logic Devices", Custom Integrated Circuits Conference, pp. 69-76, 1994.

[19] J. Rose, R.J. Francis, D. Lewis, and P. Chow, "Architecture of Field-Programmable Gate
Arrays: The Effect of Logic Functionality on Area Efficiency", IEEE Journal of Solid-
State Circuits, 1990.

[20] E. Ahmed and J. Rose, "The effect of LUT and Cluster Size on Deep-Submicron FPGA
Performance and Density", ACM International Symposium on Field-Programmable Gate
Arrays, pp. 3-12, 2001.

[21] E. Lin, "Product Term Mode Embedded Memory Arrays: Architectures and Algorithms",
M.A.Sc. Thesis, University of British Columbia, 2001.

[22] G. Lemieux and D. M. Lewis. Analytical framework for switch block design. In
International Conference on Field-Programmable Logic (FPL), pages 122-131, 2002.

[23] G. Lemieux, "Efficient Interconnection Network Components for Programmable Logic
Devices", Ph.D. Dissertation, University of Toronto, 2003.

[24] L.R. Ford and D.R. Fulkerson, "Flows in Networks", Princeton, NJ: Princeton University
Press, 1962.

[25] J. Cong, Y. Ding, "On Area/Depth Trade-off in LUT-Based FPGA Technology Mapping",
IEEE Transactions on VLSI Systems, Vol. 2, No'. 2, pp. 137-148, June 1994.

[26] J. Cong, and Y. Hwang, "Structural Gate Decomposition for Depth-Optimal Technology in
LUT-based FPGA Designs", TODAES , Vol. 5, no. 3, July 2000.

[27] F.N. Najm, "Transition Density, A New Measure of Activity in Digital Circuits", Texas
Instruments Technical Report #7529/0032, August 1991.

[28] M. Nemani and F. Najm, "Towards a High-Level Power Estimation Capability", IEEE
Transactions on Computer-Aided Design, Vol. 15, No. 6, pp. 588-598, June 1996.

85

[29] G.K Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Publishers,
2001.

[30] D. Lewis, V. Betz, et al., "The Statix™ Routing and Logic Architecture", ACM
International Symposium on Field-Programmable Gate Arrays, pp. 12-20, February 2002.

[31] Xilinx, Vertex-II Pro Platform FPGAs: Functional Description, ver. 2.0, June 13, 2002.

[32] J. Cong, L.W. Hagen, and A.B. Kahng, "Random Walks for Circuit Clustering", IEEE
Conference on Application Specific Integrated Circuits, pp. 14.2.1-14.2.4, June ,1991.

[33] J. Cong and M. Smith, "A Parallel Bottom-up Clustering Algorithm with Applications to
Circuits Partitioning in VLSI Design", ACM/IEEE Design Automation Conference,
pp.755-60, 1993.

[34] J. Cong and S.K. Lim, "Edge Separability based Circuit Clustering with Application to
Circuit Partioning", ACM/IEEE Asia South Pacific Design Automation Conference, pp.
429-434, 2000.

[35] L.W. Hagen and A.B. Kahng, "Combining Problem Reduction and Adaptive Multi-Start:
A New Technique for Superior Iterative Partitioning", IEEE Transactions on Computer-
Aided Design, pp. 709-717, 1997.

[36] D.J.H Huang and A.B. Kahng, "When Clusters Meet Partitions: New Density-Based
Methods for Circuit Decomposition", European Design and Test Conference, pp. 60-64,
1995.

[37] B.S. Landman and R.L. Russo, "On a pin versus block relationship for partitions of Logic
Graphs", IEEE Transactions on Computers, C-20, pp. 1469-1479, 1974.

[38] A. Dunlop and B. Kernighan, "A Procedure for Placement of Standard-Cell VLSI
Circuits", IEEE Transactions on Computer-Aided Design, pp. 92-98, 1985.

[39] D. Huang and A. Kahng, "Partitioning-Based Standard-Cell Global Placement with an
Exact Objective," ACM Symposium on Physical Design, pp. 18-25, 1997.

[40] J. Rose, W. Snelgrove and Z. Vranesic, "ALTOR: An Automatic Standard Cell Layout
Program", Canadian Conference on VLSI, pp. 169-173, 1985.

[41] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich, "Gordian: VLSI Placement by
Quadratic Programming and Slicing Optimization", IEEE Transactions on Computer-
Aided Design, pp. 356-365, 1991.

[42] A. Srinivasan, K. Chaudhary, and E. Kuh, "Ritual : A Performance Driven Placement
Algorithm for Small Cell ICs", International Conference on Computer Aided Design, pp.
48-51, 1991.

[43] B. Riess and G. Ettelt, "Speed: Fast and Efficient Timing Driven Placement", IEEE
International Symposium on Circuits and Systems, pp. 377-380, 1995.

86

[44] S. Kirkpatrick, C. Gelatt, and M. Vecchi, "Optimization by Simulated Annealing",
Science, pp. 671-680, 1983.

[45] C. Sechen and A. Sangiovanni-Vincentelli, "TimberWolf Placement and Routing
Package", JSSC, pp. 510-522, 1985.

[46] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, "An Efficient General Cooling
Schedule for Simulated Annealing", International Conference on Computer Aided Design,
pp. 381-384, 1986.

[47] J.S. Rose, "Parallel Golbal Routing for Standard Cells", IEEE Transactions on Computer
Aided Design, pp. 1085-1095, 1990.

[48] Y. Chang, S. Thakur, K. Zhu, and D. Wong, "A New Global Routing Algorithm for
FPGAs", International Conference on Computer Aided Design, pp. 356-361, 1994.

[49] S. Brown, J. Rose, Z.G. Vranesic, "A Detailed Router for Field-Programmable Gate
Arrays", IEEE Transactions on Computer Aided Design, pp. 620-628, 1992.

[50] G. Lemieux, S. Brown, "A Detailed Router for Allocating Wire Segments in FPGAs",
ACM Physical Design Workshop, pp. 215-226, 1993.

[51] G. Lemieux, S. Brown, D. Vranesic, "On Two-Step Routing for FPGAs", ACM
Symposium on Physical Design, pp. 60-66, 1997.

[52] M. Placzewski, "Plane Parallel A* Maze Router and Its Application to FPGAs", ACM
Design Automation Conference, pp. 691-697, 1990.

[53] L. McMurchie, and C. Ebeling, "PathFinder: A Negotiation-Based Performance-Driven
Router for FPGAs", ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Monterey, CA, pp. 111-117, February 1995.

[54] Y.-L. Wu, M. Marek-Sadowska, "An Efficient Router for 2-D Field-Programmable Gate
Arrays", European Design Automation Conference, pp. 412-416, 1994.

[55] Y.-S. Lee, A. Wu, "A Performance and Routability Driven Router for FPGAs Considering
Path Delays", ACM Design Automation Conference, pp. 557-561, 1995.

[56] L. Shang, A.S. Kaviani, K. Bathala, "Dynamic Power Consumption in Vertex-II FPGA
Family", Tenth ACM International Symposium on Field-Programmable Gate Arrays, pp.
157-164, February 2002.

[57] K.C. Chen, J. Cong, Y. Ding, A.B. Kahng, and P. Trajmar, "DAG-Map: Graph-Based
FPGA Technology Mapping for Delay Optimization", IEEE Design and Test of
Computers, pp.7-20, September 1992.

[58] T. Okamoto and J. Cong, "Buffered Steinet Tree Construction with Wire Sizing for
Interconnect Layout Optimization", International Conference on Computer Aided Design,
pp. 44-49, 1996.

87

[59] F.N. Najm, "Low-pass Filter for Computing the Transition Density in Digital Circuits",
IEEE Transactions on Computer-Aided Design, vol. 13, no. 9, pp. 1123-1131, September
1994.

[60] S.J.E Wilton, N.P. Jouppi, "CACTI: An Enhanced Cache Access and Cycle Time Model",
IEEE Journal of Solid-State Circuits, vol. 31, no. 5, pp. 677-687, May 1996.

[61] Altera, Stratix Programmable Logic Device Family Data Sheet, ver. 2.0, April 2002.

[62] J.M. Rabaey, "Digital Integrated Circuits: A Design Perspective", Prentice-Hall, 1996.

[63] K.Y. Toh, P.K. Ko, and R.G. Meyer, "An Engineering Model for Short-Channel MOS
Devices", IEEE Journal of Solid-State Circuits, vol. 23, no. 4, August 1988.

[64] J. Cong, C. Wu, and E. Ding, "Cut Ranking and Pruning: Enabling A General And Efficient
FPGA Mapping Solution", ACM International Symposium on Field-Programmable Gate
Arrays, pp. 29-35, February 1999.

[65] T. Tuan and B. Lai, "Leakage Power Analysis in a 90nm FPGA", to appear in the IEEE
Custom Integrated Circuits Conference, 2003.

[66] J. Rose and S. Brown, "Flexibility of interconnection structures for field-programmable
gate array", ISSC, Vol. 26, pp. 277-282, Mar. 1991.

[67] J. Cong and Y. Ding, "FlowMap: An Optimal Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Designs", IEEE Trans, on Computer-Aided
Design, vol. 13, no. 1, pp. 1-12, January 1994.

88

