
HAL Id: hal-00872286
https://hal.science/hal-00872286

Submitted on 11 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new recursive multibit recoding algorithm for
high-speed an low-power multiplier.

Abdelkrim K. Oudjida, Nicolas Chaillet, Ahmed Liacha, Mohamed L.
Berrandjia

To cite this version:
Abdelkrim K. Oudjida, Nicolas Chaillet, Ahmed Liacha, Mohamed L. Berrandjia. A new recursive
multibit recoding algorithm for high-speed an low-power multiplier.. Journal of Low Power Electronics,
2012, 8, pp.579-594. �hal-00872286�

https://hal.science/hal-00872286
https://hal.archives-ouvertes.fr

Abstract—In this paper, a new recursive multibit recoding
multiplication algorithm is introduced. It provides a general
space-time partitioning of the multiplication problem that not
only enables a drastic reduction of the number of partial
products (n/r), but also eliminates the need of pre-computing
odd multiples of the multiplicand in higher radix (ß≥8)
multiplication. Based on a mathematical proof that any higher
radix ß=2r can be recursively derived from a combination of
two or a number of lower radices, a series of generalized radix
ß=2r multipliers are generated by means of primary radices:
21 , 22, 25, and 28. A variety of higher-radix (23 - 232) two’s
complement 64x64 bit serial/parallel multipliers are
implemented on Virtex-6 FPGA and characterized in terms of
multiply-time, energy consumption per multiply-operation,
and area occupation for r value varying from 2 to 64.
Compared to reference algorithm, savings of 8%, 52%, 63%
are respectively obtained in terms of speed, power, and area.
In addition, a new low-power and highly-flexible radix 2r
adapted technique for a multi-precision multiplication is
presented.

Index Terms— High-Radix Multiplication, Low-Power
Multiplication, Multibit Recoding Multiplication, Multi-
Precision Multiplication, Partial Product Generator (PPG)

I. BACKGROUND AND MOTIVATION
N multiplication-intensive applications, as in digital signal
processing or process control, multiply-time is a critical

factor that limits the whole system performance. When these
types of applications are embedded, energy consumption per
multiply operation becomes an additional critical issue.
Furthermore, in high-precision or large-operand-size
applications such as in cryptography, the need for a scalable
serial/parallel multiplier is essential as the multiplier size
grows quadratically O(n2) with operand size n.
Consequently, high-speed, low-power, and highly-scalable
architecture are the three major requirements for today’s
general purpose multiplier [1].

The continuous refinement of the mostly-used design
paradigm based on modified Booth algorithm [2] combined
to a reduction tree (carry-save-adder array , Dadda[3],
HPM[4]) has reached saturation. In [5] and [6] only slight
improvements are achieved. Both proposals reduce the
partial product number from n/2+1 to n/2 using different
circuit optimization techniques of the critical path.

Theoretically, only the signed multibit recoding
multiplication algorithm [7] is capable of a drastic reduction
(n/r) of the partial product number, given that r+1 is the
number of bits of the multiplier that are simultaneously
treated (1≤r≤n). Unfortunately, this algorithm requires the
pre-computation of a number of odd multiples of the
multiplicand (until (2r-1-1).X) that scales linearly with r. The
large number of odd multiples not only requires a
considerable amount of multiplexers to perform the

necessary complex recoding into PPG, but dramatically
increases the routing density as well. Therefore, a reverse
effect occurs that offsets speed and power benefits of the
compression factor (n/r). This is the main reason why the
multibit recoding algorithm was abandoned. In practice,
designs do not exceed r=3 (radix 8).

The current trend [8][9] relies upon advanced arithmetic
to determine minimal numeric bases that are representatives
of the digits resulting from larger multibit recoding. The
objective is to eliminate information redundancy inside r+1
bit-length slices for a more compact PPG. This is achievable
as long as no or just very few odd multiples are required.

In [8], Seidel et al. have introduced a secondary recoding
of digits issued from an initial multibit recoding for 5≤r≤16.
The recoding scheme is based on balanced complete residue
system. Though it significantly reduces the number of
partial products (n/r for 5≤r≤ 16), it requires some odd
multiples for r≥8. While in [9], Dimitrov et al. have
proposed a new recoding scheme based on double base
number system for 6≤r≤11. The algorithm is limited to
unsigned multiplication and requires a larger number of odd
multiples.

Instead of looking for more effective numeric bases,
which is a hard mathematical task, our approach consists in
exploiting already existing odd-multiple free recoding
algorithms (21 , 22, 25, and 28) to recursively build up
generalized odd-multiple free radix 2r recoding schemes.

To achieve such a goal, the multibit recoding
multiplication algorithm is revisited [7]. Its design space is
extended by the introduction of a new recursive version that
enables a hardware-friendly space-time partitioning of the
multiplication problem. Depending on r value ranging from
2 to n, highly-scalable signed multipliers with various levels
of parallelism and latencies can be systematically generated
with insignificant control-complexity. The new algorithm
has also the merit to recursively reduce the number of
partial products (n/r) without any limit for the parameter r
and any need for the odd multiples of the multiplicand. It
also allows the combination of different recoding schemes
proposed in the literature into the same architecture for
better performances of the multiplier. Several higher radix
(ß=23, 232) two’s complement 64x64 bit serial/parallel
multipliers based on combined recoding schemes are
implemented on Virtex-6 FPGA and characterized in terms
of speed, power, and area occupation for r values ranging
from 2 to 64. Compared to a new signed version of
Dimitrov et al. algorithm [9] and Seidel et al. algorithm [8],
outstanding results are obtained with the new multibit
recoding scheme for r=8 formed by the combination of
Seidel algorithm (r=5), MacSorley algorithm (r=2) [2] and
Booth algorithm (r=1) [10]. The respective savings are as

A New Recursive Multibit Recoding Algorithm
for High-Speed and Low-Power Multiplier

 A.K. Oudjida1, N. Chaillet2, A. Liacha1, and M.L. Berrandjia1

I

(1) Centre de Développement des Technologies Avancées, Algiers, Algeria
(2) Institut FEMTO-ST, Besançon, France

follows: 21%, 53%, 105% and 8%, 52%, 63% are obtained
in terms of multiply-time, energy consumption per multiply-
operation, and total gate count, respectively. In addition, a
new low-power and high-throughput radix 2r adapted
technique for multi-precision multiplication is introduced.
Contrary to existing techniques [11][12], this new one
allows a customized partitioning of the operands in any
number of sub-operands and in any sub-operand bit-sizes.

The paper is organized as follows. Section I outlines the
main requirement specifications for a generalized radix 2r
multiplication. Section II introduces the new recursive
multibit recoding multiplication algorithm. Afterwards,
some high-radix (ß=23, 28) variants of the new algorithm are
presented in Section III, while their implementation results
are discussed in Section IV. Higher radix (ß=28, 232)
algorithms are introduced in Section V. Section VI
describes the new low-power technique for multi-precision
multiplication. Finally, Section VII provides some
concluding remarks and suggestions for future work.

II. THE NEW RECURSIVE MULTIBIT RECODING
MULTIPLICATION ALGORITHM

The equation (2.1.2) of the original multibit recoding
algorithm presented in [7] (see Appendix) does not offer
hardware visibility. Let us rewrite it in a simpler hardware-
friendly form, as follows:

(∑
−

=
++− ⋅⋅⋅++++=

1

0
2

2
1

10
1 222

r
n

j
rjrjrjrj yyyyY

) ∑
−

=
−+

−
−+

− =−+
1

0
1

1
2

2 2222
r
n

j

rj
j

rj
rrj

r
rrj

r Qyy (1)

 Where 01 =−y and *Ν∈r . For simplicity purposes and
without loss of generality, we assume that r is a divider of n.

In this general case, the multiplier Y is split into n/r slices,
each of r+1 bit length. Each pair of two contiguous slices
has one overlapping bit. In literature, equation (1) is referred
to by radix ß=2r, to which corresponds a digit set D(2r) such
as { }11 2022 −−−=∈ rrr

j ,...,,...,)(DQ .

Thus, the signed multiplication between X and Y
becomes:

 rj
r
n

j
j .Q.XY.X 2

1

0
∑
−

=

=

Where each partial product can be expressed as follows:
() ()XmQX esrj

j ..2.12.. −= , with

() { }12312 1 −=∈ −rr
m ...,,,Om . Om(2r) represents the

required set of odd multiples of the multiplicand (m.X) for
radix 2r . Hence, the partial product generation process
consists first in selecting one odd multiple (m.X) among the
whole set of pre-computed odd multiples, which is then

submitted to a hardwired shift of e positions, and finally
conditionally complemented (-1)s depending on the bit sign
s of Qj term. Table I provides a picture on how the number
of odd multiples grows when the radix becomes higher.
While lower m.X can be obtained using just one addition
(3X=2X+1X), the calculation of higher ones may require a
number of computation steps (11X= 8X+2X+1X).

To bypass the hard problem of odd multiples, let us
announce the two following theorems accompanied with
their respective proofs:
Theorem 1. Any digit)(DQ r

j 2∈ can be represented in a

combination of digits)(s
ji DP 2∈ , such as s is a divider of r.

Proof. Equation (1) is recursively applied on Qj term of
equation (1). Thus, equation (1) becomes:

([∑
−

=
++− ⋅⋅⋅++++=

1

0
2

2
1

10
1 2.22

r
n

j
rjrjrjrj yyyyY

) +−+ −+
−

−+
− 0

1
1

2
2 222 srj

s
srj

s yy

 (⋅⋅⋅++++ +++++−+ 2
2

1
10

1 222 srjsrjsrjsrj yy.yy

) +−+ −+
−

−+
− s

srj
s

srj
s yy 222 12

1
22

2
 . . .
 (⋅⋅⋅+++++ +−++−+−+−−+ 22

2
12

1
2

0
21 2.22 srrjsrrjsrrjsrrj yyyy

) +−+
⎟
⎠
⎞

⎜
⎝
⎛ −

−−+
−

−−+
−

2

1
1

2
2 222 s

rs

srrj
s

srrj
s yy

 (⋅⋅⋅++++ ++++++−+−−+ 2
2

1
10

1 222 srrjsrrjsrrjsrrj yy.yy

) rjs
rs

rrj
s

rrj
s yy 2222

1

1
1

2
2

⎥
⎥
⎦

⎤
−+

⎟
⎠
⎞

⎜
⎝
⎛ −

−+
−

−+
−

 (...222 2
2

1
10

1

0

1

0
1 ++++

⎢
⎢
⎢

⎣

⎡
= +++++

−

=

−

=
+−∑ ∑ sirjsirjsirj

r
n

j

s
r

i
sirj yyyy

)] rjsi
sisrj

s
sisrj

s yy 2222 1
1

2
2

+−+
−

+−+
− −+

 rj
r
n

j

s
r

i

si
jiP 22

1

0

1

0
∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

 Where () { }11 2022 −−−=∈ sss
ji ,...,,...,DQ with

() { }12312 1 −=∈ −ss
m ...,,,Om and

rj
r
n

j

s
r

i

si
jiPXYX 22..

1

0

1

0
∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

Theorem 2. Any digit)2(r
j DQ ∈ can be represented in a

combination of digits Pji+Tjk such as)(s
ji DP 2∈ and

)(t
jk DT 2∈ with s+t a divider of r , and t < s.

Proof. Equation (1) can also be rewritten as follows:

([∑ ∑
−

=

−
+

=
+++++++−

⎢
⎢
⎢

⎣

⎡
⋅⋅⋅+++=

1

0

1

0
1

10
1 22

r
n

j

ts
r

i
i)ts(rji)ts(rji)ts(rj y.yyY

) +−+ ++−+
−

++−+
−

itssrj
s

itssrj
s yy)(1

1
)(2

2 22

 (⋅⋅⋅+++ +++++++++−+ i)ts(srji)ts(srji)ts(srj y.yy 1
10

1 22

)] ()] rjitss
i)ts(rrj

t
i)ts(rrj

t yy 22222 1
1

2
2 +

++−+
−

++−+
− −+

TABLE I
MAIN FEATURES OF THE MULTIBIT RECODING MULTIPLICATION ALGORITH
Radix Nbr. of Partial Products Odd Multiples (m.X)

21 n 1X
22 n/2 1X
23 n/3 1X, 3X
24 n/4 1X, 3X, 5X, 7X
25 n/5 1X, 3X, 5X, 7X, 9X, 11X, 13X, 15X

In radix 2r, the multiplier Y is divided into n/r slices, each of r+1 bit
length. Each pair of two contiguous slices has one overlapping bit.

(3)

(4)
(2)

 [] () rj
r
n

j

ts
r

i

itss
jiji TP 222

1 1

0
∑ ∑
− −

+

=

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

 Where () { }11 2,...,0,...,22 −−−=∈ sss
ji DP with

() { }12312 1 −=∈ −ss
m ...,,,Om and

() { }11 2,...,0,...,22 −−−=∈ ttt
ji DT with

() { }12312 1 −=∈ −tt
m ...,,,Om and

 [] () rj
r
n

j

ts
r

i

itss
jiji T.XP.XY.X 222

1 1

0
∑ ∑
− −

+

=

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

As a result of theorems (1) and (2), much less odd
multiples are needed in partial products of equations (4) and
(6) than in equation (2), but at the expense of a number of
additions. The advantage by far outweighs the cost, as
practically shown in the next section. The translation of
equation (4) into architecture is depicted by Fig. 1, where
each PPGj is built up using identical PPGji. This is not the
case for equation (6) which requires two different PPGji.
Theorem (1) and (2) can be merged to produce PPGj made
of a number of different PPGji.

III. SOME VARIANTS OF THE NEW RECURSIVE MULTIBIT
RECODING MULTIPLICATION ALGORITHM

Theorems (1) and (2) permit to build up any higher radix
multiplication algorithm based on lower radices. But the
objective is to generate higher radix multiplication without
odd multiples. To achieve such a goal, a number of odd-
multiple free low-radix algorithms are used, such as Booth
algorithm [10] (radix 21), modified Booth algorithm [2]
(radix 22), Seidel et al. algorithms [8][13] (radix 25 and
radix 28).

Booth and modified Booth recoding are respectively
derived form equation (3) for (r,s)=(1,1) and (r,s)=(2,2).
They are respectively summarized as follows:

() ∑∑
−

=

−

=
− =−=

1

0

1

0
1 22

n

j

j
j

j
n

j
jj QyyY (7)

With () { }1012 ,,D −= and () { }12 =mO

 () ∑∑
−

=

−

=
+− =−+=

1)2/(

0

22
1)2/(

0
12212 222

n

j

j
j

j
n

j
jjj QyyyY (8)

 With () }{ 2,1,0,1,222 −−=D and () { }122 =mO

Higher radices are obtained as follows.

A. Radix 23 recoding
Radix 23 recoding based on equation (1) gives:

 () ∑∑
−

=

−

=
++− =−++=

1)3/(

0

33
1)3/(

0
23

2
13313 2222

n

j

j
j

j
n

j
jjjj QyyyyY

With () { }4...,,0,...,423 −=D and () { }3,123 =mO
While radix 23 recoding based on equation (5) delivers:

)([()] j
jj

n

j
jjj yyyyyY 32

2313

1)3/(

0
13

1
3

0
13 2222 ++

−

=
+− −+−+= ∑

 []
()

j
n

j
jj TP 3

13/

0

2 22∑
−

=

+= (9)

In fact, equation (9) is a combination of Booth
(() { }121 =mO) and modified Booth algorithms

(() { }122 =mO). Hence, for equation (9), () { }123 =mO .
Furthermore, equation (9) is recursively used to generate

any radix 2r recoding with () { }12 =r
mO based on radix 23,

as follows:

)([∑ ∑
− −

=
++++−

⎢
⎢
⎢

⎣

⎡
+−+=

1 1
3

0
313

1
33

0
313 22

r
n

j

r

i
ijijij yyyY

 ()]] rji
ijij yy 222 32

323313 ++++ −+

 [] j
r
n

j

r

i

i
jiji TP 3

1 1
3

0

32 222∑ ∑
− −

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+= (ß23)

This equation is referred to by ß23 for later comparison
with other general radix algorithms based on lower radices.
Its corresponding architecture is illustrated by Fig. 2.

B. Radix 24 recoding
For r=4, equation (1) needs an () { }7,5,3,124 =mO , while

equation (3) with (r,s)=(4,2) requires an () { }124 =mO .
Three odd multiples are eliminated at the expense of one
addition. The general radix (2r) recoding with () { }12 =r

mO

based on radix 22 is: rj
r
n

j

r

i

i
jiQY 22

1

0

1
2

0

2∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= (ß22)

C. Radix 25 recoding
For r=5, eq. (1) needs an () { }15,13,11,9,7,5,3,125 =mO .

In this case we do recourse to Seidel et al. algorithm [8][13]:
 []

()
j

n

j
jj PQY 5

15/

0
2.7∑

−

=

+= (10)

With { } { }421012421012 ,,,,,,P;,,,,Q jj −−−∈−−∈

and () { }125 =mO
 Equation (10) is integrated into equation (3), which gives
the following general recursive form with () { }12 =r

mO :

[] rj
r
n

j

i

r

i
jiji .PQ.Y 227

1

0

5

1
5

0
∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+= (ß25)

 Fig. 1. Generalized n×n bit radix 2r parallel multiplier based on
 sub-radix 2s. Space partitioning according to r and s values

n X

r bits
PP1

∑

. . .

.

.

.

PPG00

. . .
PPG01

PPG0(r/s)-1

 PPG0

. . .

PPG10

. . .
PPG11

PPG1(r/s)-1

 PPG1

∑ . . .

PPG(n/r)-1 1

. . .
PPG(n/r)-1 2

PPG(n/r)-1 (r/s)-1

PPG(n/r)-1

∑ . . .

Y-1 , r-1

r+1

Yr-1 , 2r-1

r+1

Yn-r-1 , n-1

r+1

r
r
n

⎟
⎠
⎞

⎜
⎝
⎛ −1 bits

PP0

PP(n/r)-1

(5)

(6)

As application, radix 210= 1024 with () { }1210 =mO and
just five additional adders is obtained with:

() ()[]
()

rj
/n

j
jjjj .PQ.PQ.Y 2277

110

0

5
1100∑

−

=

+++=

D. Radix 28 recoding
Seidel et al. [13] recoding for radix 28 with () { }128 =mO

is: []
()

j
n

j
jjj TPQY 8

18/

0

2 2.11.11∑
−

=

++= (11)

With { } and,,,,Q j 21012 −−∈

{ }1684210124816 ,,,,,,,,,,T,P jj −−−−−∈

Equation (11) is incorporated into equation (3) to obtain
the general recursive form with () { }12 =r

mO . It gives:

[] rj
r
n

j

i

r

i
jijiji TPQY 2.2.11.11

1

0

8
1

8

0

2∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++= (ß28)

For performance comparison, we developed a new signed
radix 28 recoding with () { }7,5,3,128 =mO based on
unsigned radix 27 recoding with () { }7,5,3,127 =mO
proposed by Dimitrov et al. in [9]. The new recoding is:

()()()
i

n

j
j

he
j

k PQY 8
18/

0
2.21.2∑

−

=

−+= (12)

With { } { } { }1,07,6,5,4,3,2,1,0,;7,5,3,1, ∈∈∈ eandhkPQ jj

Likewise, equation (12) is integrated into equation (3). The
general recursive form with () { }75312 ,,,O r

m = becomes:

()() jr
r
n

j

i

r

i
ji

he
ji

k PQY 2.2.21.2
1

0

8
1

8

0
∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+= (ß'28)

IV. DISCUSSION OF THE IMPLEMENTATION RESULTS
In the preceding section, we introduced five generalized

multibit space-time partitioning schemes, which are:
ß22, ß23, ß25, ß28, and ß'28. They all require () { }12 =r

mO
except ß'28 that needs () { }75312 ,,,O r

m = .
In this paper, only the serial/parallel form is explored

(Fig. 3), targeting applications where the serialization of
multiplication is mandatory. This is the case for instance in
embedded digital PID (Peripheral Integral Derivative)

controller where five multiplication cores are
required [14], or for high-precision or very large
operand size applications (cryptography) where a
fully-parallel n×n bit implementation is excluded.

In signed serial/parallel multiplication, r-bit
slices of the multiplier are processed each clock
cycle, which induces a theoretical multiply time of
n/r for a double precision product (2n bits). The
special cases where r=n and r=rmin correspond to
fully-parallel and fully-sequential multiplier,
respectively. In between (r=2rmin , n/2), partially-
parallel multipliers are obtained. In fact, the lower
limit of r depends on the recoding scheme used
(ex: for ß25, rmin=5). Reader is referred to [8], [13],
and [9] for recoding tables used respectively in ß25,
ß28, and ß'28.

Before comparison, all recoding schemes
proposed in this paper underwent several steps of
verification. First all equations were validated with a
random C-program. Then, they were implemented at RTL
level in Verilog-2001 (IEEE 1364) as technology-
independent reusable IP-cores [1], using exactly the same
optimized coding style for an equitable comparison. They
are compile-time reconfigurable according to n and r. All
RTL codes went through a severe cycle-accurate functional
verification procedure using Modelsim SE-6.3f logic
simulator. They were first challenged against a set of special
and severe test cases (visual simulation), and then submitted
to a random test for a very large number of vectors. After a
successful functional verification, physical tests were
performed. They were integrated into an FPGA evaluation
board for an ultimate validation.

Afterwards, all equations were synthesized and mapped
to the same Virtex-6 FPGA circuit (XC6VSX475t-
2FF1156) using Xilinx ISE 13.2 release version [15]. Two’s
complement 64x64 bit radix 2r serial/parallel multipliers
with r varying from rmin to 64 were characterized in terms of
area occupation (number of occupied Virtex-6 slices),
maximum multiply time, and maximum energy consumption
per multiply operation. The results are depicted in Fig. 4, 5
and 6, respectively.

A. Area Occupation
Three basic components are necessary for the

implementation of the proposed multipliers: a) multiplexers
to decode the digit terms Qji , Pji , … ; b) shifters for partial
product generation; c) and adders for partial product
summation. Whereas the exact number of adders can be
known in advance, we need to develop heuristics for the two
others. Multiplexer complexity depends on: a) the lower
radix 2s used to build up the higher radix 2r; b) the number
(i) of “case” statements used to decode the digit terms; c)
the number of entries (ei) in each “case” statement; d) the
number (di) of digit terms; e) and on the number of odd
multiples (|Omi|) used to calculate the digit terms. Hence, we

Fig. 3. Generalized radix 2r serial/parallel multiplier based on
sub-radix 2s . Space-time partitioning according to r and s values

PPGj0

...
PPGj1

PPGj (r/s)-1

 PPGj

∑ ... Yrj-1 , rj+r-1

r+1

nX

 P
P j

+
 << rj

R
eg

j = 0 , (n/r)-1

Fig. 2. Two’s complement 12×12 bit parallel multiplier based on equation (ß23).
Space partitioning according to: r=3 (a) and r=6 (b)

3 bits

X

"0"
P0

PPG0

T0

y0 y1

y2

P1
PPG1

T1

y3 y4

y5

P2
PPG2

T2

y6 y7

y8

P3
PPG3

T3

y9 y10

y11

PP2

PP3

PP1

PP0

6 bits

X

"0"
P00

T00

y0 y1

y2

PPG00

y3 y4

y5

P01

T01

PPG01

PPG0

P10

T10

Y6 y7

y8

PPG10

y9 y10

y11

P11

T11

PPG11

PPG1

PP1

PP0

(a) (b)

12 12

+

+

+

+

+

+

+

+

+

+

6 bits

9 bits

can announce that: ()∑=
i

mii
e Od

s
rMux i || ..2.1 .

For ß'28, this gives: s=8, i=1, e1 =9, d1 =2, and |Om1|=4. Thus,
Mux1 = 512 r.

The synthesis of the “shift” statement infers multiplexers
whose complexity depends on the number of different shift
operations (bi) for all odd-multiples involved in the
calculation of each digit term (i). Thus, we can write:
 ()∑=

i
mii Ob

s
rMux || ..2 . For ß'28, this gives: s = 8, i = 2,

b1 = b2 = 8, and |Om1| = |Om2| = 4. Thus, Mux2 = 8r.
Hence, the total multiplexer complexity becomes:
Mux = Mux1+Mux2.

The total number of adders comprises () 1/ −sr adders to
sum up the sr / partial products, plus one adder to
accumulate the rn / intermediate summations (Fig. 3), plus
the necessary adders included in the sr / PPGs. This latter
depends on the recoding scheme used. For example, in ß28
the term jijiji TPQ ++11112 is calculated as follows:

() () jijijijijijiji TPPPQQQ +−+++− 2337 2222 , which

requires 6 adders. Hence, the total number of adders
required by ß28 is: Add = () () rrr)8/7(8/68/ =+ . Table II
provides the area occupation for each recoding algorithm.
To determine which factor, Mux or Add, exerts more
influence on the area occupation, let us compare their
respective ratios for ß28 and ß'28:

() () 7.22/2' 88 =ββ MuxMux and () () 5.32'/2 88 =ββ AddAdd
Significant conclusion: the area occupation is dominated

by the Mux factor, and becomes larger (Fig. 4) as Mux
number becomes higher (Table II). This correlation is
advantageously used to minimize the area occupation and
power consumption as will be shown in the next section.

B. Energy consumption
While energy consumption is function of the switched

capacitance, Fig. 4 and 5 show a direct correlation between
area occupation and energy consumption. Making Mux
indicator lower, will result in a less energy-consumer
recoding algorithm.

C. Delay
The delay (T) along the critical path is the summation of

PPG delay and reduction tree delay. While the former is
constant, the latter depends on the topology used: either
linear or logarithmic. The number of levels for each case is
given in Table II and the performance of each algorithm is
depicted in Fig. 6. The total multiply time is equal to (n/r)T.
Note that all results presented in this paper are based on
linear implementation of the reduction tree.

Based on theory and implementation results, it is set clear
that ß22 algorithm is the best in terms of area and energy
consumption. As for speed, ß22 is the fastest until r=16.

Beyond this value, it is surpassed by ß28. ß22
algorithm served to design a scalable 16-bit set-
point PID controller employing five multiplication
cores. The implementation results outperformed
the published ones at all levels [14].

V. HIGHER RADIX MULTIBIT RECODING
MULTIPLICATION ALGORITHMS

Further performance requires higher r values
(r ≥ 8) necessarily. Guided by Mux and Add
indicators, the objective is to generate a recoding
scheme that outperforms ß22 in area and power,
and ß28 in speed.

TABLE II
THEORETICAL ESTIMATION OF AREA OCCUPATION AND DELAY
Area Occupation Delay (levels)

Linear Logarithmic Recoding
Algorithm Mux Add PPG

delay
PPG

Adders
Reduction

Tree
PPG

Adders
Reduction

Tree
ß22 r5 2/r d2 0 2/r 0 () 12/log 2 +r
ß23 r5 ()r/ 32 d2 1 3/r 1 () 13/log 2 +r
ß25 r27 ()r/ 53 d5 2 5/r 2 () 15/log 2 +r
ß28 r194 ()r/ 87 d8 6 8/r 3 () 18/log 2 +r
ß'28 r520 4/r d'8 1 8/r 1 () 18/log 2 +r

 di is the critical delay through PPG. It depends on Mux factor (d2 < d5 < d8 < d'8)

2 4 8 16 32 64

1k

2k

3k

4k

5k

6k

7k

A
re

a
O

cc
up

at
io

n
 (

N
br

. o
f V

irt
ex

-6
 S

lic
es

)

Slice Size of the Multiplier (r Bits)

 ß22

 ß23

 ß25

 ß28

 ß'28

 Fig. 4. Area occupation versus r

2 4 8 16 32 64
1

2

3

4

5

6

7

8

9

10

11
 ß22

 ß23

 ß25

 ß28

 ß'22

M
ax

. E
ne

rg
y

pe
r M

ul
t.

O
pe

ra
tio

n
(p

J)

Slice Size of the Multiplier (r Bits)
 Fig. 5. Max. energy consumption per mult. operation versus r

2 4 8 16 32 64

10

20

30

40

50

M
ill

io
n

M
ul

tip
lic

at
io

ns
 p

er
 S

ec
. (

M
M

PS
)

Slice Size of the Multiplier (r Bits)

 ß22

 ß23

 ß25

 ß28

 ß'28

 Fig. 6. Max. multiply operations versus r

A. Radix 28 recoding
Based on theorem (2), ß23 and ß25 are merged to build up

a new (ß''28) radix 28 recoding algorithm (Table III and
Fig. 7). ß''28 exhibits (Table IV) Mux and Add values of 19r
and r/4, respectively. It outperforms ß28 at all aspects (Fig.
8, 9, 10). Result summary with regard to Dimitrov and
Seidel algorithms is given in Table V.

B. Radix 213 recoding
As ß28 and ß25 show good results for speed and power

respectively, they have been merged (ß213) for a better
compromise. However, the Mux saving (130r) is not
important enough compared to Mux value (192r) of ß28.
This explains the closeness of the results between ß213 and
ß28.

C. Radix 216 recoding
To achieve a significant Mux saving, ß28 is combined

with ß22 based on theorem (1) and (2) simultaneously. ß216

exhibits a Mux value of 100r, which is almost the half

required by ß28. Better results are obtained in
terms of area and energy. The fact that ß216 is
little bit slower than ß28 is due to the higher
PPG adder number required (10). For r greater
than 64, ß216 will surpasses ß28 since the total
number of adder levels will be lower. Higher
radices provide more speed.

D. Radix 224 recoding
To push lower the energy consumption

while increasing the speed, lower Mux values
with higher radices are required. This can be
achieved using the mixture of: ß28 , ß25 , ß23 ,
and ß22 . In this case, for ß224 Mux = 74r,
which yields to more interesting results.

E. Radix 232 recoding
Even more attractive results (Mux=60r) are

obtained with ß232 composed of ß28 , ß25 , ß23 ,
and ß22 (Fig. 11). At this level, some useful
conclusions can be drawn depending on the
topology of the reduction tree used, either
linear or logarithmic (Table VI). In the case of
a linear tree, ß22 is the most area and energy
efficient algorithm for any value of r. For r
ranging from 8 to 64, ß''28 is the fastest
algorithm, but it will be outperformed by ß232

for r values greater than 64. In the case of logarithmic
reduction tree, ß22 is by far the best at all aspects since it
always requires the lowest number of adder levels
(() 12/log 22 ++ rd) whatever r value (Table VI).

8 16 32 64

10

20

30

40

50

M
ill

io
n

M
ul

tip
lic

at
io

ns
 p

er
 S

ec
. (

M
M

PS
)

Slice Size of the Multiplier (r Bits)

 ß22

 ß28

 ß''28

 ß213

 ß216

 ß224

 ß232

 Fig. 10. Max. multiply operations versus r

8 16 32 64
1

2

3

4

5

6
 ß22

 ß28

 ß''28

 ß213

 ß216

 ß224

 ß232

M
ax

. E
ne

rg
y

pe
r M

ul
t.

O
pe

ra
tio

n
(p

J)

Slice Size of the Multiplier (r Bits)
 Fig. 9. Max. energy consumption per mult. operation versus r

8 16 32 64

1k

2k

3k

4k

5k

A
re

a
O

cc
up

at
io

n
 (

N
br

. o
f V

irt
ex

-6
 S

lic
es

)

Slice Size of the Multiplier (r Bits)

 ß22

 ß28

 ß''28

 ß213

 ß216

 ß224

 ß232

 Fig. 8. Area occupation versus r

Fig. 7. Two’s complement 32×32 bit multiplier based on equation (ß''28).
Space partitioning according to: r=8 (a) and r=16 (b)

(a)

8 bits

X 32

R0
+

S0

Y-1 , 4 Q0 P0

+ Y4 , 6

Y6 , 7

PPG0

R1
+

S1

Y7 , 12 Q1 P1

+ Y12 , 14

Y14 , 15

PPG1

R2
+

S2

Y15 , 20 Q2 P2

+ Y20 , 22

Y22 , 23

PPG2

R3
+

S3

Y23 , 28 Q3 P3

+ Y28 , 30

Y30 , 31

PPG3

PP3

PP2

PP1

PP0

16 bits

PP0

X 32

R00
+

S00

Y-1 , 4 Q00 P00

+ Y4 , 6

Y6 , 7

PPG00

R01
+

S01

Y7 , 12 Q01 P01

+ Y12 , 14

Y14 , 15

PPG01
+

PPG0

R10
+

S10

Y15 , 20 Q10 P10

+ Y20 , 22

Y22 , 23

PPG10

R11
+

S11

Y23 , 28 Q11 P11

+ Y28 , 30

Y30 , 31

+

PPG1

PP1

(b)

16 bits

24 bits

Recoding
Algorithm

Recoding Equation and Main Features

r2β ∑
−

=
=

1

0
2

r
N

j

jr
j .QY ; BR: r2 ; OM: { }1231 1 −−r...,,, ; DV: { }11 202 −−−∈ rr

j ,...,,...,Q ;

22β jr
r
N

j

r

i

i
ji .QY 22

1

0

1
2

0

2∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= ; BR: 22 ; OM: { }1 ; DV: }{ 21012 ,,,,Q ji −−∈ ;

32β () jr
r
N

j

r

i

i
jiji ..PQY 222

1 1
3

0

32∑ ∑
− −

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+= ; BR: 12 , 22 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ , { }101 ,,Pji −∈

52β () jr
r
N

j

i

r

i
jiji .PQ.Y 227

1

0

5
1

5

0
∑ ∑

−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+= ; BR: 52 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ , { }4210124 ,,,,,,Pji −−−∈

82β () jr
r
N

j

i

r

i
jijiji .TP.Q.Y 221111

1

0

8
1

8

0

2∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++= ;
BR: 82 ; OM: { }1 ;

DV: { }21012 ,,,,Q ji −−∈ ,

 { }1684210124816 ,,,,,,,,,,T,P jiji −−−−−∈ ;

82'β ()() jr
r
N

j

i

r

i
ji

he
ji

k .P.Q.Y 22212
1

0

8
1

8

0
∑ ∑

−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+=
BR: 82 ; OM: { }7531 ,,, ;

DV: { }7531 ,,,P,Q jiji ∈

{ }76543210 ,,,,,,,h,k ∈ ; { }10 ,e ∈

82''β

() ()[] jr
r
N

j

r

i

i
jijijiji ...SRPQ.Y 22227

1

0

1
8

0

852∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++=
BR: 12 , 22 , 52 ; OM: { }1 ;

DV: { }21012 ,,,,Q ji −−∈ , { }4210124 ,,,,,,Pji −−−∈ ,

 { }21012 ,,,,R ji −−∈ , { }101 ,,S ji −∈

132β () ()[] jr

r
N

j

r

i

i
jijijijiji ...SR.TP.Q.Y 22271111

1

0

1
13

0

1382∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++++=
 BR: 52 , 82 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ ,

{ }1684210124816 ,,,,,,,,,,T,P jiji −−−−−∈ ,
 { }21012 ,,,,R ji −−∈ , { }4210124 ,,,,,,S ji −−−∈

162β () jr
r
N

j

r

i

i

k

k
kjijijijiMTP.Q.Y 22221111

1

0

1
16

0

168
3

0

22∑ ∑ ∑
−

=

−

= = ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++=

BR: 22 , 82 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ ,

{ }1684210124816 ,,,,,,,,,,T,P jiji −−−−−∈ ,

{ }21012 ,,,,M kji −−∈

242β

() () () jr
r
N

j

r

i

i
jijijiji

k

k
kjijijiji ...VU.SR...MTP.Q.Y 222227221111

1

0

1
24

0

24212168
3

0

22∑ ∑ ∑
−

=

−

= = ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++=

 BR: 12 , 22 , 52 , 82 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ , { }1684210124816 ,,,,,,,,,,T,P jiji −−−−−∈ ,

{ }21012 ,,,,M kji −−∈ , { }21012 ,,,,R ji −−∈ , { }4210124 ,,,,,,S ji −−−∈ , { }21012 ,,,,U ji −−∈ , { }101 ,,V ji −∈

322β
() () ()() jr

r
N

j

r

i

i

k

k
kjikji

k
kjikji

k

k
kjijijiji ...VU.SR...MTP.Q.Y 222227221111

1

0

1
32

0

32
1

0

82128168
3

0

22∑ ∑ ∑∑
−

=

−

= =

++

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++=

BR: 12 , 22 , 52 , 82 ; OM: { }1 ; DV: { }21012 ,,,,Q ji −−∈ , { }1684210124816 ,,,,,,,,,,T,P jiji −−−−−∈ ,

{ }21012 ,,,,M kji −−∈ , { }21012 ,,,,Rkji −−∈ , { }4210124 ,,,,,,S kji −−−∈ , { }21012 ,,,,U kji −−∈ , { }101 ,,Vkji −∈

BR: Based on Radix ; DV: Digit Variations ; OM: Odd-Multiples

TABLE III
SUMMARY OF OUR NEW RADIX-2r MULTIBIT RECODING ALGORITHMS

 Fig. 11. Two’s complement 128x128 bit multiplier based on equation (ß232). Space partitioning according to : r=32 (a) and r=64 (b)

(a) (b)

 : partial product bit; : product bit; : sign bit; : sum of sign
bits; : negative one inserted into carry-in of the adder; #i : step i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+
=

 +
=

+
0 0 0 0 0 0 0 0 0

=
0

1

#2

#3

Fig. 12. Low-power sign-extension technique for the particular
case (n, r)=(8, 2)

+
=

r=2

Based on higher radix recoding algorithms proposed so
far (ß28, ß216, ß224, and ß232) as well as on Mux and Add
indicators, the generation process of advanced higher radix
algorithms (ß264, ß2128, ß2256,…) with { }1=mO can be
recursively pursued farther for very large-operand-size
applications (n >>). The number of adder levels required by
a ß2x algorithm will be: () 1/log2 ++ xra , where a is a
constant depending on the level number of PPG adders.
Thus, ß2x will outperform ß22 for aex 4≥ .

VI. NEW RADIX 2r MULTI-PRECISION MULTIPLICATION
TECHNIQUE

Prior to develop a highly-scalable multi-precision
multiplier, the need for a flexible and low-power sign-
extension technique is mandatory.

A. New radix 2r sign extension technique
Though many low-power sign extension techniques exist

in the literature, they are not adapted to reconfigurability.
The reason for this shortcoming is that the correction bits
must be calculated for each value of operand-size n
[11][16]. Besides, to the authors’ knowledge, no sign-
extension solution exists for radix based multiplication (r).
In what follows, we propose a generic low-power solution
that circumvents these two obstacles. It is illustrated by Fig.
12 for n=8 and r=2, but can be systematically extended to
any n and r values. Intuitively, we are not simultaneously
performing the sum of the partial products, but each partial
product of current step j is added to the sum of the
preceding ones (from 0 to j-1). The rationale for the number
of sign-bits to the left can be done locally, step by step, row
by row. In other words, we have to take advantage of the
fact that the partial sum already contains the sum of the sign
bits of previous partial products. We must simply ensure
that the sum output of the sign bit of current step j is added
to the two most-significant bits of the next step (j+1). To
generalize to radix ß2r multiplication, the sign-bit (nth
position bit) of each partial product is extended with r bits
to the left (r-1 for a maximum shift, plus one bit for the

sign), and the sum output of the sign bit of step j is
added to the r most-significant bits of the next step
(j+1).

B. New Radix 2r Multi-precision multiplication
technique
In traditional n×n bit multi-precision multipliers,

there is possibility to perform either a single n×n
double precision, or a single n/2×n/2 simple
precision, or a twin parallel n/2×n/2 simple
precision multiplication. This is made possible by
partitioning the two operands X and Y into
respectively most and less significant sub-operands
XH YH , and XL YL. A number of solutions exist and

are summarized in [11][12]. Unfortunately, they are either
restricted to unsigned multiplication, or they do not take
power consumption into consideration, or they are not
flexible enough. We propose hereafter a new technique that
not only overcomes all above-mentioned shortcomings, but
also allows a customized partitioning of the operands into
any number of slices as well as in any slice sizes. Besides,
this new technique is well adapted to radix based
multiplication. Its features are compared to the technique
presented in [11].

Let us take equation (1) and apply it to X and Y for r=n/2,

we obtain:
LH

n

j

jn

j XXQQQX +=+== ∑
=

0
2

1

1

0

2 22 . Hence,

00
2

10
2

0111 222. PQPQPQPQYX
nn

n +++=
 LLHLLHHH YXYXYXYX +++= (13)
Note that Q1 and Q0 are (n/2)+1 bit size, but x-1 can be

omitted from Q0 since it is stuck at zero. Thus, we obtain
four independent signed multipliers: XH.YH , XH.YL , XL.YH ,
XL.YL which are respectively (n/2)+1×(n/2), (n/2)+1×n/2,
n/2×(n/2), n/2×n/2 bit size. Fig. 13 illustrates the
implementation of equation (13) for a signed 16x16 bit
multiplier based on recoding algorithm ß22 with r=2.
Equation (13) eliminates the cumbersome term (EV×2n/2) in
equation (6) of [11] as well as the necessary logic for its
generation. More importantly, in Fig. 13, four 8x8 bit
multiplications can be performed simultaneously, whereas
in [11] only two are allowed because of the shared terms

TABLE IV
THEORETICAL ESTIMATION OF AREA OCCUPATION AND DELAY

Area Occupation Delay (levels)
Linear Logarithmic Recoding

Algorithm Mux Add PPG
delay

PPG
Adders

Reduction
Tree

PPG
Adders

Reduction
Tree

ß''28 r19 4/r d5 4 8/r 3 () 18/log 2 +r

ß213 r130 ()r/ 138 d8 9 13/r 4 () 113/log 2 +r

ß216 r100 ()r/ 1611 d8 10 16/r 4 () 116/log 2 +r

ß224 r74 ()r24/15 d8 15 24/r 4 () 124/log 2 +r

ß232 r60 ()r32/21 d8 20 32/r 5 () 132/log 2 +r

di is the critical delay through PPG. It depends on Mux factor (d5 < d8)

TABLE VI
DELAY IN ADDER LEVELS FOR r = 64

Recoding Algorithm Reduction
Tree ß22 ß23 ß25 ß28 ß'28 ß''28 ß213 ß216 ß224 ß232

Linear 32 23 15 14 9 12 14 14 18 22
Logarithmic 6* 7 7 7 5* 7 8 7 7 7

Total delay = PPG delay (di) + Reduction Tree Delay.
*: Note that d2<<d'8

TABLE V
RESULT COMPARISON FOR r = 64

Recoding Algorithm Implem-
entation
results

Seidel [8]
ß28

Dimitrov [9]
ß'28

Ours
ß''28

Savings / ß28

%
Savings / ß'28

%
Area1 5251 6599 3219 63 105

Energy2 2.49 2.48 1.63 53 52
Speed3 48.62 43.17 52.4 8 21

1: Area occupation in number of Virtex-6 slices
2: Energy consumption per multiplication operation (pJ)
3: Million multiplications per second (MMPS)

(EV×2n/2) and CV required for the sign extension. Without
counting the necessary EV generation logic and the use of
inverters for the negation of the sign bits, the partitioning
proposed in [11] consumes a total bit count of 205 for a
16x16 bit multiplier, while ours requires 198 bits.

Note that equation (5) can be advantageously used to
partition XH and XL with different bit lengths. For instance,

with r=n, s=3n/4 and t=n/4, we obtain: 4
3

2
n

TPX +=

2
3

4
3

4
3

2'2'2''.
nnn

TTPTTPPPYX +++=
 HHLHHLLL YXYXYXYX +++= (14)
Four independent signed multipliers are generated: XH.YH,

XH.YL , XL.YH , XL.YL, which are respectively (n/4)+1×(n/4),
(n/4)+1×(3n/4), (3n/4)+1×(n/4), and (3n/4)×(3n/4) bit size.
The translation of equation (14) into architecture is depicted
by Fig. 14. Both partitioning schemes (Fig. 13 and Fig 14)
needs the same amount of bits (198).

More efficiently, equation (13) can be combined with
ß''28 algorithm for the recoding of YH and YL sub-
multiplicands to produce a faster partitioning (Fig. 15) for
operand sizes larger than 16 bits according to the
implementation results shown in Fig. 10.

More importantly, equation (1) can be used to partition
the X and Y operands into any desired number of slices
depending on r value. Choosing for instance r=n/4 results
into the following partitioning:

0
4

1
2

2
4

3

3

3

0

4 2222 QQQQQX
nnn

j

jn

j +++== ∑
=

. Hence,

4
3

0313
4

5

23
2

3

33 2222.
n

n
nn

PQPQPQPQYX +++=

 2
02

4
3

1222
4

5

32 2222
nn

n
n

PQPQPQPQ ++++

 4
01

2
11

4
3

2131 2222
nnn

n PQPQPQPQ ++++

 00
4

10
2

20
4

3

30 222 PQPQPQPQ
nnn

++++
 LLHHLHHHHLHHHHHH YXYXYXYX +++=
 LLHLLHHLHLHLHHHL YXYXYXYX ++++
 LLLHLHLHHLLHHHLH YXYXYXYX ++++
 LLLLLHLLHLLLHHLL YXYXYXYX ++++ (15)
Equation (15) generates sixteen independent signed

multipliers. All are (n/4)+1×(n/4) bit size, except XLL.YHH,
XLL.YHL , XLL.YLH , XLL.YLL which are (n/4)×(n/4) bit size. The
implementation details of equation (15) for n=16 based on
ß22 with r=2 are described in Fig. 16. Equation (15)
requires a total bit count of 254 which induces an overhead
of 28% compared to equation (13).

Finally, equation (1) and (5) can be combined with any
proposed recoding algorithm (ß2r) to produce any desired
multi-precision multiplication scheme.

VII. CONCLUSION AND FUTUR WORK
We developed a recursive version of the multibit

recoding multiplication algorithm which enabled to solve
two hard problems: radix 2r signed multiplication and radix
2r multi-precision signed multiplication. The former is odd-
multiple free solution with advanced capabilities for
multiplication-intensive applications that must dissipate
minimal power while operating at high speed. In addition,
the solution is highly-scalable allowing a hardware-friendly

partitioning that can be tailored to the desired performance
and power budget.

We deliberately opted for FPGA implementation to
rapidly explore a large number of variants of the recursive
algorithm. Only ten recoding algorithms have been selected
and reported in this paper. We first gave priority to a
serial/parallel implementation as it is the most appropriate to
designing embedded finite-word-length controllers, which is
our ultimate objective. A fully-parallel implementation will
be given the same attention for further investigation and
optimization.

Guided by Mux and Add indicators, even higher odd-
multiple free recoding algorithms (ß264, ß2128, ß2256,…) can
be generated to efficiently cope with large-operand-size
applications, such as in cryptography. However, for large r
values, the use of advanced optimization heuristics becomes
mandatory in order to determine the primary radix (21, 22,
25, and 28) configuration that leads to the optimal
implementation of the desired radix. This issue is being
explored at present time and we plan to report our results in
a forthcoming paper.

As for the multi-precision solution, this latter would not
have been possible without the development of a flexible
sign-extension technique. Based on the new recursive
algorithm, we proposed a generic partitioning scheme that
can be adapted to any size combination of the operands in
order to reduce the power consumption while increasing the
computational throughput. This new solution will be deeply
explored for further optimizations using the proposed
radix 2r algorithms.

APPENDIX
A. Multibit Recoding Algorithm

Let X be an n-bit two's complement format binary integer.
The value of X can then be found from:3
 qxxX

n

q
q

n
n 2.2.

2

0

1
1 ∑

−

=

−
− +−= (2.1.1)

Note that this is a uniform representation for both positive
and negative numbers. X is positive if xn-l = 0 and is
negative if xn-l =1. An SD representation of X in radix 2k (k
≥ 1) will have n/k signed digits4 Dn/k-l, Dn/k-2,…,D 1, Do. In
this new radix (2k) the value of x can be rewritten as
 ki

kn

i
iDX 2.

1/

0
∑

−

=

= (2.1.2)

where digits Di are found from bits xi of X according to

 1
1)1(

1
1

1
11 2.2. −

−+
−

−

=
−+− −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑ k

ik
j

k

j
jkikii xxxD (2.1.3)

And x-1 = 0 (2.1.4)

ACKNOWLEDGMENT
This work is supported by “Centre de Développement des

Technologies Avancées, CDTA,” Algiers, Algeria, under
project contract number: 21/CRSOC/DMN/CDTA/2011.
The project progresses under a close cooperation with
“Franche Comté Electronique Mécanique Thermique et
Optique - Sciences et Technologies, FEMTO-ST ”
Besançon, France.

The authors wish to thank D. Bouchaffra and B. Djezzar
for their careful review of this manuscript.

 Fig. 14. Low-power multi-precision multiplier for the particular case (n,r) =(16, 2) with 12 and 4 bit sub-operand sizes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

12x12 bits

XL .YL
+ =

=

=

+

+

=

+ =
=

+

+

XL .YH 12x4 bits
+ =

+

+

= =
5x12 bits

XH .YL +

=
=

=

+
+

+
+

=
=

XH .YH 5x4 bits
+ =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R0
+

S0

Y-1 , 4 Q0 P0

+ Y4 , 6

Y6 , 7

PPG0

Fig. 15. Low-power multi-precision multiplier for the particular case (n,r) =(16,8) with 8-bit sub-operand size

X0 , 7

+

XL .YL

+

8x8 bits

+

X7 , 15

R2
+

S2

Y-1 , 4 Q2 P2

+ Y4 , 6

Y6 , 7

PPG2 XH.YL

X0 , 7

R1
+

Y7 , 12 Q1 P1

+ Y12 , 14

Y14 , 15

PPG1

S1

XL .YH

8x8 bits

9x8 bits

X7 , 15 PPG3

R3
+

Y7 , 12 Q3 P3

+ Y12 , 14

Y14 , 15 S3

XH.YH

9x8 bits

=

Fig. 13. Low-power multi-precision multiplier for the particular case (n,r) =(16,2) with 8-bit sub-operand size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8x8 bits

XL .YL

+ =
=

=

+

+

=
+

8x8 bits

XL .YH
=

=

= +

=

+
+

 XH .YH

9x8 bits

+ =

+

=

=
+

+
 = =

= +
=

= + XH .YL

9x8 bits
 +

+

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

=

+

+

+

+

+

+

Fig. 16. Low-power multi-precision multiplier for the particular case (n,r) =(16,2) with 4-bit sub-operand size

4x4 bits

=

XLL .YLL

+ =

4x4 bits

4x4 bits

4x4bits

=

XLL .YLH

+ =

=

XLL .YHL

+ =

=

XLL .YHH

+ =

+

+

=

+

=

=
= XLH .YLL

5x4 bits +

=
=

XLH .YLH

5x4 bits +

=
=

XLH .YHL
5x4 bits +

=
=

XLH .YHH

5x4 bits +

=
=

XHL .YLL

5x4 bits +

=
=

XHL.YLH
5x4 bits +

=
=

XHL.YHL
5x4 bits +

=
=

XHL.YHH

5x4 bits +

XHH .YLL

XHH .YLH

XHH .YHL

XHH .YHH

=
= 5x4 bits +

=
= 5x4 bits +

=
= 5x4 bits +

=
5x4 bits +

+

+

+

+

+

REFERENCES
[1] Reports on System Drivers of the International Technology Roadmap

for Semiconductors (ITRS), 2009 and 2010.
Available: www.itrs.net/reports.html

[2] O.L. MacSorley, “High-Speed Arithmetic in Binary Computers,”
Proceedings of the IRE, Vol. 49(1), pp. 67-91, January 1961.

[3] L. Dadda, “Some Schemes for Parallel Adders,” Alta Frequenza, vol.
34, N° 5, pp. 349-356, May 1965.

[4] Z. Huang and M.D. Ercegovac, “Two-Dimensional Signal Gating for
Low-Power Array Multiplier Design,” Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 489-
492, May 2002.

[5] F. Lamberti, “Reducing the Computation Time in (Short Bit-Width)
Two’s Complement Multiplier,” IEEE Trans. on Computers, vol. 60,
N° 2, pp. 148-156, February 2011.

[6] S.R. Kuang, J.P. Wang, and C.Y. Guo, “Modified Booth Multipliers
with a Regular Partial Product Array,” IEEE Trans. on Circuit and
Systems II, Express Brief, vol. 56, N° 5, May 2009.

[7] H. Sam, and A. Gupta, “A Generalized Multibit Recoding of Two’s
Complement Binary Numbers and its Proof with Application in
Multiplier Implementation,” IEEE Trans. on Computers, vol. 39, N° 8,
August 1990.

[8] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Secondary Radix
Recodings for Higher Radix Multipliers,” IEEE Trans. on Computers,
vol. 54, N°2, February 2005.

[9] V.S. Dimitrov, K.U. Järvinen, and J. adikari, “Area Efficient
Multipliers Based on Multiple-Radix Representations,” IEEE Trans.
on Computers, vol. 60, N° 2, pp 189-201, February 2011.

[10] A. D. Booth, “A Signed Binary Multiplication Te:chnique,” Quarterly
J. Mech. Appl. Math., Vol. 4, part 2, pp. 236-240,1951.

[11] S.R. Kuang, J.P. Wang, “Design of Power-Efficient Configurable
Booth Multiplier,” IEEE Trans. on Circuit and Systems I, vol. 57, N°
3, March 2010.

[12] M. Själander and P. Larsson-Edefors, “Multiplication Acceleration
Through Twin Precision,” IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, Vol. 17, N° 9, September 2009.

[13] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Binary
Multiplication Radix-32 and Radix-256,” Proceedings of the IEEE
Symposium on Computer Arithmetic (ARITH-15), ISBN: 0-7695-
1150-3, pp. 23-32, USA, June 2001.

[14] A.K. Oudjida, N. Chaillet, A. Liacha, M. Hamerlain, and M.L.
Berrandjia, “High-Speed and Low-Power PID Structures for
Embedded Applications” Proceedings of the 21th edition of the
International Workshop on Power and Timing Modeling,
Optimization and Simulation PATMOS, LNCS 6951, pp. 257-266,
Springer-Verlag Editor. Madrid, Spain, Sep. 26-29 2011.

[15] E. Manmasson et al., “FPGA in Industrial Control Applications,”
IEEE Trans. on Industrial Informatics, vol. 7, N° 2, May 2011.

[16] M. Annaratone, “Digital CMOS Circuit Design,” Kluwer Academic
Publisher, 1986.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

