Skip to main content

Open Access SmartDPM: Machine Learning-Based Dynamic Power Management for Multi-Core Microprocessors

To address the power management challenge in multi-core microprocessors, we present a lightweight machine learning based dynamic power management (SmartDPM) scheme in which the voltage–frequency levels of the cores are dynamically adjusted along with online learning based workload prediction in an observer-controller loop. To enable scalability, our SmartDPM employs a per-application autonomous power management policy, in which online machine learning principles are employed for predicting the workload and capturing sporadic variations under the constraints of accurate yet lightweight. Further, applications are assigned appropriate voltage–frequency level towards an efficient power management. The learning helps in dynamically reducing prediction error. Compared to the non-DVFS implementation, SmartDPM achieves nearly 35% power saving and nearly 15% higher power savings on average compared to the existing machine learning based power management schemes for a microprocessor with up to 32-cores.

Keywords: CONTROL THEORY; DYNAMIC; ENERGY EFFICIENCY; MACHINE LEARNING; MULTI-CORE MICROPROCESSOR; ONLINE LEARNING; POWER MANAGEMENT; PREDICTION; SCALABILITY; VOLTAGE FREQUENCY SCALING

Document Type: Research Article

Publication date: 01 December 2018

More about this publication?
  • The electronic systems that can operate with very low power are of great technological interest. The growing research activity in the field of low power electronics requires a forum for rapid dissemination of important results: Journal of Low Power Electronics (JOLPE) is that international forum which offers scientists and engineers timely, peer-reviewed research in this field.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content