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Abstract 

Undersampling k-space data is an efficient way to reduce the acquisition time of magnetic resonance 

imaging (MRI). This paper proposes a compressed sensing (CS) method for reconstructing magnetic 

resonance (MR) images from highly undersampled k-space data. The method is based on the combined use of 

data-driven tight frame (TF) and total generalized variation (TGV) regularization. The data-driven TF is used 

to adaptively learn a set of filters from the under-sampled data to provide a better sparse approximation of 

images. The TGV allows selectively regularizing different image regions to avoid staircase effect. The 

proposed reconstruction problem is solved by Fast Composite Splitting Algorithm (FCSA). The results on 

various MR images demonstrated that, for a large range of sampling ratios from 10% to 50%, the proposed 

method improves reconstruction quality and preserves different image features including edges and textures in 

comparison with other commonly used CS-MRI methods based on predefined transforms such as the discrete 

wavelet transform, framelets and shearlet. 
 

Keywords MR image reconstruction, compressed sensing (CS), data-driven tight frame (TF),·total generalized variation 

(TGV), Fast Composite Splitting Algorithm (FCSA) 

 

 

 

1. Introduction 

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique widely used to investigate 

the anatomy and function of the body in clinical diagnosis. However, the imaging speed of MRI is often 

limited because of the important quantity of k-space data to acquire. Reducing the acquisition time of MRI 

therefore remains a great challenge for clinical applications. Numerous efforts have been dedicated to 

designing fast acquisition sequences and reducing the amount of data required as much as possible while 

maintaining reconstruction quality [1–8]. Among them, parallel imaging (PI) emerged as the most widely used 

technique in clinical routine. There are a variety of PI methods such as simultaneous acquisition of spatial 

harmonics (SMASH) [9], sensitivity encoding (SENSE) [10], generalized autocalibrating partially parallel 

acquisitions (GRAPPA) [11], and iterative self-consistent parallel imaging reconstruction (SPIRiT) [12]. 

However, the PI techniques are typically limited by Nyquist sampling rate and the achieved acceleration is 

limited to low factor values [8]. 

Recently, the emergence of compressed sensing (CS) [13,14] methods provides a new approach to 

reconstructing magnetic resonance (MR) images with high quality from significantly under-sampled k-space 

data, called the CS-MRI, which assumes that MR images have a sparse representation in certain domain 

(image or transform domain) [15,16]. CS-MRI exploits the sparsity of signals or images to reconstruct the MR 

images from far fewer samples than conventional methods, and consequently, it allows reducing MRI 

scanning time efficiently without degrading image quality [8,17,18]. 

Sparsity or compressibility is a fundamental premise underlying CS-MRI. The first CS-MRI reconstruction 

method was proposed in [17], which achieved reconstruction by combining total variation (TV) and wavelets 

as sparsifying transforms. However, since the TV model favours piecewise constant image structures, such 

TV model-based methods blur details and cause blocking effect with fine structures lost, although the edges 

are preserved in reconstruction. To overcome the intrinsic drawback of the TV model, various extensions of 

this model have been proposed for CS-MRI image reconstruction, such as nonlocal total variation (NLTV) 
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[19,20] and total generalized variation (TGV) [21–23]. These methods can avoid the staircase artifacts that are 

common to TV and wavelet regularizations, while better preserving image edges and details. 

Another common sparsity used for CS-MRI reconstruction is based on the discrete wavelet transform 

(DWT) [24–28]. It is well known that traditional wavelets transform appropriately point-like singularities, but 

generally lack performance when dealing with singularities in higher dimension, such as edges, contours or 

regular textures in two-dimensional (2D) images [29]. To overcome the limitation, multi-scale geometric 

analysis method is introduced into CS-MRI in order to more sparsely represent piecewise smooth images 

containing rich geometric information (e.g. edges, curves, etc.), such as contourlets [30,31], framelets [32], 

and shearlets [23,33]. 

Data adaptive transforms can sparsify images better than those explored in various image-processing 

problems in recent years. Instead of predefined transforms, Hong et al [34] proposed a data-adaptive 

sparsifying transform using singular value decomposition (SVD) for CS-MRI image reconstruction. This 

method can be applied to a broader range of MR images to improve image reconstruction quality effectively. 

In [35], an adaptive data-driven tight frame (data-driven TF) was proposed to solve image restoration 

problems, and has been successfully applied to image denoising and seismic data restoration problems . 

Dictionary learning approaches learn a dictionary as a sparse basis from the elemental patches of particular 

image instance or class of images to achieve better sparsity of the input image in CS-MRI [36,37]. However, 

these methods ignored the relationship between image patches in dictionary learning and sparse coding. 

Meanwhile, an adaptive nonlocal processing was also introduced for image restoration [38–40]. By combining 

the notion of patches and nonlocal processing, a patch-based nonlocal operator was introduced for CS-MR 

image reconstruction [41]. This kind of methods is based on grouping similar 2-D image patches into 3-D data 

arrays, and then 3-D transforming the data arrays to obtain sparsity. Since the methods exploit the nonlocal 

self-similarity of images, it becomes possible to achieve lower reconstruction errors and higher visual quality, 

compared with the conventional CS-MRI reconstruction methods.  

In this paper, we propose a CS method for reconstructing MR images from highly undersampled k-space 

data. The method is based on the combined use of data-driven tight frame (TF) and total generalized variation 

(TGV) regularization. The data-driven TF is used to adaptively learn a set of filters from the under-sampled 

data to provide a better sparse approximation of images. The TGV allows selectively regularizing different 

image regions to avoid staircase effect. The proposed reconstruction problem is solved by Fast Composite 

Splitting Algorithm (FCSA). 

The rest of the paper is organized as follows. The proposed CS-MRI reconstruction method is detailed in 

Section 2. The experiments and results are presented in Section 3, followed by conclusion in Section 4. 

2. Methodology 

2.1. Preliminaries 

Tight Frame (TF) [42,43] : The frame is a generalized concept of the basis formed of linearly dependent 

vectors. Specifically, a set of vectors  
n

i i
H   is a frame in Hilbert space H , if there exist two positive 

constants A  and B , such that for any vector x H : 

 
22 2

2 2
,i

i

A x x B x  .   (1) 

when the constants 1A B  , the frame  
n

i i
  is called the tight frame (TF). 

For a given frame  
n

i i
 , two associated operators can be defined: the analysis operator   defined by 

    2: , ix H x l N    ,   (2) 

and the synthesis operator (adjoint operator of the analysis operator): 

    2:T

i i i

i

c l N c H    .   (3) 

The sequence  
n

i i
  forms a tight frame if and only if T I   with I  designating the identity operator.  

A tight frame can be constructed from a set of filters based on the Unitary Extension Principle (UEP) 

proposed in [44]. Given a set of filters  
n

i i
a , the analysis operator   can be defined as 
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1 2
, , ,

n

T
T T T

a a aS S S        (4) 

and its adjoint operator (synthesis operator) T  by 

 
1 2
, , ,

n

T

a a aS S S     .  (5) 

here, 
aS  refers to the linear convolution operator. For a filter with finite support, the convolution operation 

can be represented by a block-wise Toeplitz matrix under Neumann boundary conditions [45]. For example, 

the discrete wavelet tight frame is one of the widely used tight frames, which is generated by a set of filters 

called framelet filter ih  (corresponding to ia ).  

Data-driven TF [35] : A tight frame simply constructed from predefined filters can sparsely represent 

certain classes of data. However, it is not efficient when the image structure is complex (for example for 

complex geometric structures, rich textures, etc.). The data-driven TF is then proposed that is constructed 

from a set of filters adaptively learned from the input data itself to sparsely represent the given data. Given an 

image x , a set of filters  
n

i i
a  (the size of ia  is n n ) can be learned by solving the following 

minimization problem [35] 

 
2

2 0,
min ,    subject to  Tx I


  


      ,   (6) 

where   is the coefficient vector that sparsely approximates the tight frame coefficients x , and 0   a 

regularization parameter. The detailed and complete description of the data-driven TF construction scheme 

and numerical solver can be found in [35]. An example of the data-driven TF filters constructed with two 

different sizes is shown in Fig. 1 (a small image block represents a filter). 

 
 

 

Fig. 1. Illustration the data-driven TF filters constructed with two different sizes. (a) Filter (atom) 

size 8×8, (b) Filter (atom) size 16×16. 

Total generalized variation (TGV) [21,22] : Unlike TV regularization, which preserves sharp edges but 

blurs some details and causes blocking effect with fine structures lost, the TGV is a direct extension of the 

classical TV semi-norm and the regularization term is convex. The TGV selectively regularizes different 

image regions at different levels and thus leads to better performance by preserving edges and suppressing the 

staircase effect [21,22]. The discrete TGV of second-order formulated by [22] is 

    2

1 0TGV minu u v dx v dx   
 

        (7) 

where    
1

2

Tv v v     denotes the symmetrized derivative, 0  and 1  are the positive weights.  

2.2. Proposed model 

Assuming that x  is a MR image and uF  is a partial Fourier transform which can be expressed by 

uF P F  , with F  the Fourier transform and P  the common under-sampling pattern (mask). The under-
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sampled measurements b  of the image x  with an unknown observation noise   in k-space is then defined as 

[18]: 

 +ub F x  .  (8) 

For the under-sampling case, Eq. (8) is highly underdetermined and has therefore an infinity of solutions. In 

order to find the optimal solution to this problem, additional constraints are introduced into the CS framework 

according to some prior knowledge. Thus, the CS-MRI reconstruction can be formulated as the following 

optimization problem 

  
2

2
argmin u

x

x F x b J x    ,   (9) 

where  J x  is a regularizing functional and 0   denotes a balancing parameter. 

Now, by introducing the above-stated data-driven TF and TGV regularization, we can formulate the CS-

MRI reconstruction as the following optimization problem 

  
2 2

12

1
argmin TGV

2
u

x

x F x b x x 
 

       
 

.   (10) 

In the formula, the first term uF x b  is a data fidelity term, the second term 
1

x  and the third term 

 2TGV x  are regularization terms, and   and   are the regularization parameters.   is the data-driven TF 

described above,  2TGV x  refers to the second-order TGV of the image x , where, according to [22], the 

weights 0  and 1  appearing in Eq. (7) do not need to be tuned and are set to 2 and 1, respectively. 

The proposed optimization problem (Eq. (10)) can be solved by the Fast Composite Splitting Algorithm 

(FCSA) proposed in [46]. Let  
2

2

1

2
uf x F x b  , which is a convex and smooth function with Lipschitz 

constant L , and    2

1
TGVg x x x       denoted as a regularizing functional. According to the 

FCSA algorithm framework, the  g x  problem can be divided into two sub-problems: the regularization of 

l1-norm and TGV. Thus,  g x  can be expressed as      1 2g x g x g x  , where  1 1
g x x    and 

   2

2 TGVg x x  . Each sub-problem is actually a convex function which can be solved by a proximal 

mapping operation. Given a continuous convex function  x , the proximal map is described as [46]: 

     
2

2

1
argmin

2
prox x u u x  



 
   

 
,  (11) 

where scalar 0   is the inverse of the Lipschitz constant L  of f defined [46] by 

 
2

2

1

2

T

u u uf F x b F F x b
x

  
     

  
, with 

T

uF  denotes the inverse partial Fourier transform.  

Then, the regularization of l1-norm sub-problem is achieved via solving the following minimization 

   
2

1 2 1

1
argmin

2

k

u

prox g x u x u 


 
     

 
.   (12) 

Eq. (12) is solved using an iterative thresholding algorithm under a tight frame [35]. 

The TGV regularization sub-problem is formulated as 

     
2 2

2 2

1
argmin

2u

prox g x u x TGV u 


 
    

 
.  (13) 

Eq. (13) can be solved using the first-order primal-dual algorithm. More details about this algorithm can be 

found in [22]. 

The proposed algorithm is outlined in Table 1. 
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Table 1  

Outline of the proposed CS-MRI reconstruction algorithm 

INPUT： 

K  : the maximum number of iterations; 

n  : the filter size of data-driven TF; 

,   : the regularization parameters; 

  : the tolerance parameter; 

INIT: 

Set 1 0 11 , 1, 0, 0;t x r k
L

       

OUTPUT: 

x  : reconstructed image. 

REPEAT: 

k = k + 1; 

Generate the analysis operator 
k  according to Eq. (6); 

 

   

    

 

 

1
1

2

2

1 2

2

1

1 1

1

;

2 ;

2 ;

;
2

1 1 4
;

2

1
;

k k

g

k

g

g

k

k

k

k
k k k k

k

x r f r

x prox x x

x prox TGV x x

x x
x

t
t

t
r x x x

t



 









 



  

 

 




 



  

 

UNTIL k K  OR 

1

2

2

k k

k

x x

x


 
  

 

3. Experiments results and Discussion 

3.1. Experimental setup 

To evaluate the performance of the proposed method, the MR images of size 256×256 from [20,24,46] were 

used, as shown in Fig. 2(b)-(e). In Fig. 2(a) is shown the k-space sampling mask where the k-space data is 

sampled with a rate of 15% (i.e. keeping 15% of the complete k-space data) using variable density 

undersampling pattern [17]. The proposed method was also compared with existing state of the art CS-MRI 

methods based on the commonly used sparsifying transforms, including the SparseMRI [17], FCSA [46], 

Framelet+NLTV [32], Shearlet+TGV [23]. For fair comparisons, all codes were downloaded from the 

authors’ website and the corresponding experimental setup was carefully followed. 

 
Fig. 2. k-space undersampling mask and MR images. (a) k-space sampling mask, (b) Coronal brain, (c) Cardiac, (d) 

Shoulder, (e) Renal arteries. 
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The observation measurement b  was modeled as ub F x   , where   represents complex Gaussian 

white noise with standard deviation n . The associated input SNR (ISNR) [47] is defined as 

10ISNR 20log x

n





 
  

 
, with x  denoting the standard deviation of the original image. In the proposed 

method, the filter size of data-driven TF was set as 8×8, the regularization parameter   in the soft-

thresholding operator as 0.1× n , the regularization parameter   as 0.05, and the ISNR as 30 dB. Note that, 

in the proposed method, since the filter size of data-driven TF has non negligible influence on computation 

time, to assess the influence of filter size on reconstruction results, several filter sizes were tested, including 

2×2, 4×4, 8×8, 10×10, 16×16. 

In addition to the visual assessment, three quantitative indices were calculated for the MR images 

reconstructed with different methods. They are the peak-signal-to-noise ratio (PSNR), relative l2 norm error 

(RLNE) [28] and mean structural similarity (MSSIM) [48]. PSNR and RLNE are used for measuring 

reconstruction accuracy, and MSSIM is used for evaluating the structural similarity between reconstructed and 

reference images. 

The PSNR is defined as 

 10PSNR 20log xMAX

MSE

 
  

 
,   (14) 

where    
2

1 1

1
MSE , ,

M N

i j
x i j x i j

M N  
  
 

  and xMAX  is the maximum possible pixel value of the 

image, which is set to be 1 or 255. 

The RLNE is given by 

 2

2

RLNE
ref rec

ref

x x

x


    (15) 

where refx  and recx  denote the images reconstructed from respectively full and partial k-spaces. 

The SSIM is defined as  

  
  

  
1 2

2 2 2 2

1 2

2 2
SSIM ,

x y xy

x y x y

C C
x y

C C

  

   

 


   
   (16) 

where the parameters 1C  and 2C  are constants that avoid instability when the local means x , y  and local 

standard deviations x , y  are close to zero. The mean SSIM (MSSIM) is a single value that represents an 

overall quality measure of the entire image. The MSSIM values exhibit much better consistency with 

qualitative visual appearance [48]. 

The experiments were performed on a PC computer with Intel (R) Core (TM) i5-2400 3.1GHz CPU, 

4.00GB memory and Windows 7 SP1, MATLAB Version 7 platform. 

3.2. Visual comparison 

Figs. 3-6 show the visual comparison of the MR images reconstructed using different methods. The 

sampling ratio was set to be approximately 15%. It is seen that the proposed method provides more satisfying 

results with clear contours, sharp edges and fine image details. 
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Fig. 3. Results of reconstruction on the coronal brain MR image using different methods with 

15% sampling. (a) Original MR images, images reconstructed by, (b) SparseMRI, (c) FCSA, (d) 

Framelet+NLTV, (e) Shearlet+TGV, (f) Data-driven TF+TGV (proposed). 

 

 

Fig. 4. Results of reconstruction on the cardiac MR image using different methods with 15% 

sampling. (a) Original MR images; images reconstructed using, (b) SparseMRI, (c) FCSA, (d) 

Framelet+NLTV, (e) Shearlet+TGV, (f) Data-driven TF+TGV (proposed). 
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Fig. 5. Results of reconstruction on the shoulder MR image using different methods with 15% 

sampling. (a) Original MR images; images reconstructed using, (b) SparseMRI, (c) FCSA, (d) 

Framelet+NLTV, (e) Shearlet+TGV, (f) Data-driven TF+TGV (proposed). 

 

 

Fig. 6. Results of reconstruction on the renal arteries MR image using different methods with 

15% sampling. (a) Original MR images; images reconstructed using, (b) SparseMRI, (c) FCSA, 

(d) Framelet+NLTV, (e) Shearlet+TGV, (f) Data-driven TF+TGV (proposed). 
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More quantitatively, the PSNR, RLNE and MSSIM indices calculated for the MR images reconstructed 

with the different methods are given in Tables 2 to 4. It can be observed that the proposed method improves 

the reconstruction performance in comparison with existing methods, by providing higher PSNRs, smaller 

RLNEs, and greater MSSIMs. 

 
Table 2  

PSNR of reconstruction on MR images using different methods with 15% sampling 

 
SparseMRI FCSA Framelet+NLTV Shearlet+TGV Proposed 

Coronal Brain 20.79 26.07 26.25 27.21 27.59 

Cardiac 30.08 32.44 31.25 33.60 34.30 

Shoulder 23.86 31.94 25.05 35.08 38.27 

Renal arteries 26.97 32.21 32.34 33.46 35.28 
 

 

Table 3  

RLNE of reconstruction on MR images using different methods with 15% sampling 

 SparseMRI FCSA Framelet+NLTV Shearlet+TGV Proposed 

Coronal Brain 0.26 0.14 0.14 0.13 0.12 

Cardiac 0.19 0.15 0.17 0.13 0.12 

Shoulder 0.37 0.15 0.32 0.10 0.07 

Renal arteries 0.16 0.09 0.09 0.08 0.06 
 

 

Table 4  

MSSIM of reconstruction on MR images using different methods with 15% sampling 

 SparseMRI FCSA Framelet+NLTV Shearlet+TGV Proposed 

Coronal Brain 0.53 0.84 0.85 0.87 0.88 

Cardiac 0.75 0.80 0.79 0.84 0.86 

Shoulder 0.82 0.89 0.89 0.96 0.97 

Renal arteries 0.58 0.88 0.88 0.89 0.93 
 

 

3.3. Effect of sampling rates 

In order to investigate the effect of sampling rates on MR image reconstruction, experiments were 

performed with sampling rates varying from 10% to 50% (corresponding to 0.1~0.5 on the x-axis in the Figs.). 

The curves of PSNR, RLNE and MSSIM versus different sampling rates for all the MR images reconstructed 

with different methods are shown in Figs. 7-9. It can be seen that the proposed method almost always 

outperforms SparseMRI, FCSA, Framelet+NLTV and Shearlet+TGV for different MR image and different 

sampling rates. For example, as illustrated in Fig. 7(a), Fig. 8(a) and Fig. 9(a) on the coronal brain MR image, 

the proposed method delivers higher PSNR and MSSIM and lower RLNE than the other methods. These 

results also imply that, for the same image reconstruction quality, the proposed method requires even fewer 

samples and as a result allows further shortening acquisition time. 

3.4. Effects of filter size 

The influence of filter size on reconstruction results are illustrated in Figs. 10-12. We observe that the 

reconstruction performance (PSNR, RLNE and MSSIM) of the proposed method on different images changed 

little when the filters size was larger than 2×2. This means that the proposed method is little sensitive to the 

filter size. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Comparison of PSNR as a function of sampling rate on different MR images. (a) Coronal brain image, (b) Cardiac 

image, (c) Shoulder image, (d) Renal arteries image. 

 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 8. Comparison of RLNE as a function of sampling rate on different MR images. (a) Coronal brain image, (b) 

Cardiac image, (c) Shoulder image, (d) Renal arteries image. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9. Comparison of MSSIM as a function of sampling rate on different MR images. (a) Coronal brain image, (b) 

Cardiac image, (c) Shoulder image, (d) Renal arteries image. 
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Fig. 10. Comparison of PSNR curves with different filters size. (a) Coronal brain image, 

(b) Cardiac image, (c) Shoulder image, (d) Renal arteries image. 

 

 

 

Fig. 11. Comparison of RLNE curves with different filters size. (a) Coronal brain image, 

(b) Cardiac image, (c) Shoulder image, (d) Renal arteries image. 
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Fig. 12. Comparison of MSSIM curves with different filters size. (a) Coronal brain image. 

(b) Cardiac image, (c) Shoulder image, (d) Renal arteries image. 

 

 

3.5. Computation time 

Concerning computation time, the comparison between the proposed method and the other methods is given 

in Table 5 with a sampling ratio of 10%. It can be clearly seen that the FCSA method is the fastest among the 

four methods, and the proposed method takes the longest time. Moreover, the computation time of the 

proposed method increases with the increase of the filter size. 

 

Table 5  

Comparison of computation time (in second) of different methods on different images 

with a sampling ratio of 10% 

                                image 

methods 
Coronal brain Cardiac Shoulder Renal arteries 

FCSA 6.2 5.9 5.9 5.2 

SparseMRI 16.7 20.1 19.9 18.1 

Shearlet+TGV 87.2 88.6 100.3 58.9 

Framelet+NLTV 291.0 288.7 291.8 292.3 

Proposed (filters size 2×2) 491.2 491.3 491.4 490.1 

Proposed (filters size 4×4) 1559.9 1565.5 1564.2 1567.8 

Proposed (filters size 8×8) 6158.6 6172.6 6157.3 6153.0 

Proposed (filters size 10×10) 9638.6 9662.9 9653.6 9639.6 
 

 

4. Discussion and Conclusion 

Reducing acquisition time and keeping image quality of MRI remains a great challenge for clinical 

applications. Many attempts have been made to shorten the acquisition time, such as parallel imaging, partial 
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k-space imaging and simultaneous multi-slice (SMS) imaging. Compressed sensing MRI is an acceleration 

technique based on sparse data sampling and iterative reconstruction that allowing scan time reduction while 

maintaining acceptable image quality. 

We have proposed a CS method for reconstructing various types of MR images from highly undersampled 

k-space data. The method presents the particularity of combining the data-driven TF and TGV to form a new 

regularization approach, which has enabled us to adaptively generate a set of filters from the undersampled 

data, obtain a better sparse approximation of MR images, and avoid staircase effects commonly present in TV 

regularization. The experimental results demonstrated that the proposed method presents better performance 

than existing state of the art CS-MRI methods for various MR images by preserving edges, suppressing under-

sampling artifacts, delivering higher PSNR and MSSIM and lower RLNE at a wide range of sampling rates 

from 10% to 50%. The improved CS MR image reconstruction method proposed in this work has been shown 

to produce better reconstruction results for a broad range of MR images, which suggests its potential clinical 

utility.”. In the future work, it would be interesting to work on how to accelerate the computation time of the 

proposed method.  
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