Skip to main content

Differential Diagnosis of Malignant Thyroid Calcification Nodule Based on Computed Tomography Image Texture

Buy Article:

$107.14 + tax (Refund Policy)

Purpose: Calcification nodules in thyroid can be found in thyroid disease. Current clinical computed tomography systems can be used to detect calcification nodules. Our aim is to identify the nature of thyroid calcification nodule based on plain CT images. Method: Sixty-three patients (36 benign and 27 malignant nodules) found thyroid calcification nodules were retrospectively analyzed, together with computed tomography images and pathology finding. The regions of interest (ROI) of 6464 pixels containing calcification nodules were manually delineated by radiologists in CT plain images. We extracted thirty-one texture features from each ROI. And nineteen texture features were picked up after feature optimization by logistic regression analysis. All the texture features were normalized to [0, 1]. Four classification algorithms, including ensemble learning, support vector machine, K-nearest neighbor, decision tree, were used as classification algorithms to identity the benign and malignant nodule. Accuracy, PPV, NPV, SEN, and AUC were calculated to evaluate the performance of different classifiers. Results: Nineteen texture features were selected after feature optimization by logistic regression analysis (P <0.05). Both Ensemble Learning and Support Vector Machine achieved the highest accuracy of 97.1%. The PPV, NPV, SEN, and SPC are 96.9%, 97.4%, 98.4%, and 95.0%, respectively. The AUC was 1. Conclusion: Texture features extracted from calcification nodules could be used as biomarkers to identify benign or malignant thyroid calcification.

Keywords: Computed Tomography; Machine Learning; Normalization; Texture Featured; Thyroid

Document Type: Research Article

Affiliations: College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Zhoupu Town, Pudong New Area, Shanghai, 201318, China

Publication date: 01 March 2021

More about this publication?
  • Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content