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Reducing Power Dissipation in SRAM during Test 

Dilillo Luigi, Rosinger Paul, Al-Hashimi Bashir M. and Girard Patrick 

 

Abstract — In this paper we analyze the power consumption of SRAM memories and demonstrate 

that the full functional pre-charge activity is not necessary during test because of the predictable 

addressing sequence. We exploit this observation in order to minimize power dissipation during test 

by eliminating the unnecessary power consumption associated with the pre-charge activity. This is 

achieved through a modified pre-charge control circuitry, exploiting the first degree of freedom of 

March tests, which permits to choose a specific addressing sequence. Further, the modified pre-

charge logic allows also the switching between the normal functional mode and the low power test 

mode. We demonstrate that the modified pre-charge control circuitry has little or no effect on the 

memory performance.  We analyze the sources of power consumption in functional and low power 

test mode, and we show how the power dissipation is computed for bit and word-oriented SRAMs. 

The efficiency of the proposed solution is validated through extensive Spice simulations for both bit-

oriented and word-oriented SRAM. 
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1 INTRODUCTION 

Reducing power dissipation during testing of complex Systems-on-Chip (SoC) has been 

acknowledged as a major concern. Industrial research has shown that the power dissipation during 

test mode can be several times larger than in normal functional mode [1, 2]. We have chosen to focus 

our attention on memories because, as indicated by the ITRS’03 [3], by 2008 over 90% of SoC area 

will be employed by memories. Reducing power during test of memories is important because it can 

make possible to test several memories of the SoC at same time reducing significantly the test time. 

While numerous papers on constraining power dissipation during test exist [4-9], only few 

publications address the problem of reducing test power in memories. In fact, only two papers have 

been published in this field [10-11]. However, the authors outline techniques that mainly reduce 

power during functional mode and they indicate how their technique can be employed during test or 

error correction.  

In this paper, we propose a new method that minimizes test power in SRAM memories by exploiting 

the predictability of the addressing sequence. In [12], we have proposed a preliminary version of this 

study that we complete and generalize with this paper. It is shown in [13-14] that the pre-charge 

circuits are the main contributors to power dissipation in SRAM. These circuits have the role of pre-

charging and equalizing the long and high capacitive bit lines. This action is essential to ensure 

correct memory operation. In this work we have developed a technique that reduces the pre-charge 

activity during test. This technique is based on the fact that in functional mode the cells are selected 

in random sequence, and therefore all pre-charge circuits need to be always active, while during the 

test mode the access sequence is known, and consequently, only the columns that are to be selected 

need to be pre-charged. We implemented this low power test mode by using a modified pre-charge 

control circuitry. 

 



 
The rest of the paper is organized as follows. In Section 2, we describe the SRAM pre-charge 

operation in functional mode. In Section 3, we present the new method that allows reducing the pre-

charge activity during test mode, and its implementation in Section 4. Experimental validation of the 

proposed low power technique for bit-oriented and word-oriented SRAM is presented in Section 5. 

Final future work is discussed in section 6. Conclusions are given in Section 7.  

2 BACKGROUND: SRAM FUNCTIONAL MODE 

In random access memories during functional mode, the addressing sequence is unpredictable. 

Consequently, all bit lines need to be pre-charged (to VDD) in order to have all the array columns 

ready for a new operation. When a cell is selected for a read/write operation, the corresponding pre-

charge circuit is normally turned off during the time required for the operation. For the columns that 

are not involved in the operation, the pre-charge circuit is commonly left ON and the corresponding 

cells undergo a stress called RES (Read Equivalent Stress), as it has been demonstrated in [15]. For 

example, in an 8kx32 bit-oriented SRAM, organized as an array of 512 rows x 512 column, when a 

read/write operation is performed on a cell, the other 511 cells of the same row undergo RESs. This 

is illustrated in Figure 1. When the cell Ci,0 is selected for a read/write operation, the word line 

selection signal WLi is activated and all the cells of the ith row are selected, and thus connected with 

their bit lines. 

The actual operation is performed on cell Ci,0, while all the other cells in the row undergo RESs. 

With the pre-charge circuits (Prj) active and the word line command being high on the unselected 

columns, the cells fight against the pre-charge circuits, that pull-up the voltage level at VDD. In 

Figure 2, we show the operational diagrams of a pre-charge circuit of a selected and an unselected 

column. In the following, we will identify the two main sources of power consumption in the 

unselected columns related to the pre-charge activity. Firstly, the cells in the unselected columns 

 



 
consume power due to the RES. Secondly, there is power dissipation in the pre-charge circuits of 

these columns because they are always ON. In the normal operation mode of a random access 

memory, this pre-charge activity is essential and the RES is tolerated, because at the end of each 

operation all the columns of the array, including the current selected column, need to be ready for the 

next operation, whose location is unpredictable. 

During the memory test mode, however, the addressing order to access the cells (and the columns) 

is known. Consequently the power dissipation due to pre-charge and RESs could be significantly 

reduced by pre-charging only the necessary columns as it will be shown in the following section. In 

Section 3, we will consider bit-oriented SRAM to explain the proposed low power test method, then 

we will show how the method can be extended to word-oriented memories in Section 5. 

3 REDUCING TEST POWER 

Memories are mainly tested with fault-oriented algorithms, such as March tests [16]. All March 

tests are characterized by six Degrees Of Freedom (DOF) and the first one states: any arbitrary 

address sequence can be defined as an ⇑ sequence, as long as all addresses occur exactly once (⇓ is 

the reverse of ⇑). The fault detection properties are independent of the utilized address sequence [17-

18]. This means that we can choose the addressing sequence of a March test without changing its 

capability to cover the target faults, for most March algorithms. We exploit this property of March 

tests in order to minimize power dissipation during test by eliminating the unnecessary pre-charge 

activity. 

For this purpose, we have chosen the addressing sequence ‘word line after word line'. For example, 

let us consider an SRAM organized as an array of n rows and m columns. The read and write 

operations of each March element need to be acted first on all the m cells of the first word line, then 

on the m cells of the second word line, and so on, as shown in Figure 3. The BIST structure that can 

 



 
produce this addressing sequence can be easily implemented by two counters that we call counter A 

and counter B. The first counter A should increment at each March element operation. This counter 

gives the part of address useful to select a column in the array. The terminal count (overflow) signal 

of this first counter A can be used as clock signal of the second counter B, which gives the address 

useful to select a row in the array. In practice, the counter B starst with 00…00  selecting the first 

row of the array and holds on this selection during the time that the counter A produces all the 

addresses of the cells in the row in the order from 0 to m-1, where m is the number of columns. When 

counter A reaches the number m-1 the terminal count (overflow) signal is high enabling the counter 

B to increase of one unit. This means that the second row is now selected and counter A produces 

again all the addresses of the cells in the row. The process goes on until all rows and all the columns 

of the array are selected and it is repeated for all the elements of the March test to be run. 

With this particular addressing sequence, word line after word line, when one March element is 

operated on a certain cell, and thus in a certain column of the array, the following cell to be selected 

is placed in the column that immediately follows. This means that, for a bit-oriented SRAM, the pre-

charge action is required only in two columns of the entire memory array: 

• The selected column, because the bit line restoration is needed for each following operation of 
the current March element.  

• The column that immediately follows, because the next cell to be accessed is placed there. 

Considering the scenario of a 512x512 SRAM array configuration, we have: 

• In the selected column: pre-charge is OFF during the first half of the cycle. Pre-charge is ON 
during the second half of the clock cycle, see Figure 2a and 2b. 

• In next column to be selected, the pre-charge is ON during the entire clock cycle, see Figure 2c 
and 2d. 

• In all the other 510 columns the pre-charge circuit can be turned OFF, because the cells of 
these columns are not involved in the immediately following operation. This leads to a 
significant saving in cell array power consumption, as it will be shown in the experimental 
section. 

 



 
Figure 4 shows the proposed “low power test” scenario when the memory array column ‘0’ is 

selected. For the 510 columns where the pre-charge circuit is inactive, the cells are still selected by 

the common word line selection signal. This implies that these cells are still interacting with their 

corresponding bit lines. These bit lines behave like floating capacitors, which are not driven any 

longer by the pre-charge circuits, but by the cells. We have studied this interaction with Spice 

simulations using the following parameters: technology: 0.13µm; clock cycle: 3ns; voltage supply: 

1.6 V. The scheme used in the simulation is depicted in Figure 5, while the results are shown in 

Figure 6. The scheme in Figure 5 shows two cells Ci, j and Ci+1, j placed in the same column. Cell Ci, j 

stores ’0’ (node S at ‘0’and node SB at ‘1’) and Ci+1, j stores the opposite value ’1’ (node S at ‘1’and 

node SB at ‘0’). In the first part of the simulation, cell Ci j is selected (WLi at VDD) and interacts 

with the bit lines. After a certain delay, cell Ci, j is deselected (WLi at ‘0’), and cell Ci+1, j selected 

(WLi+1 at VDD). The waveforms in Figure 6a and 6b show that the contact between node SB of cell 

Ci,j and bit line BLB has no effect on the voltage levels of BLB and node SB, because both of them 

are at VDD. On the other hand, the contact between cell node S active at ‘0’ and bit line BL floating 

at VDD produces the progressive discharge of BL to 0V (logic value ‘0’) in nearly nine clock cycles. 

This implies that, after a short time, in all the unselected columns, the cells are not stressed anymore 

by the bit lines. The consequence is that in the unselected cells there is no more power consumption 

associated with RES, as shown in Figure 6b.  

Although the proposed scenario greatly reduces the test power consumption, it should be pointed 

out that the transition from the current array row i to i+1 may lead to a problem as shown in Figure 7. 

In this figure we analyze the case in which two cells Ci, j and Ci+1, j are placed in the same column j 

and in consecutive rows i and i+1; These cells stores opposite values and are indirectly accessed, i.e. 

other cells of their row are accessed. The cell Ci, j , stores a ‘0’ and during its indirect accesses has 

driven its bit lines BL and BLB respectively at ‘0’ and ‘1’. The cell Ci+1, j stores a ‘1’, an opposite 

 



 
value with respect to the value stored in Ci, j. With the transition from the ith row to the (i+1)th row, 

these bit lines of column j, with BLB at VDD and BL driven to ‘0’ by cell Ci, j, are connected to Ci+1, j 

which is indirectly accessed due to the operation in the first cell of row i+1. As the bit lines drive the 

value of the cell Ci+1, (their equivalent capacitances are much larger than the cell nodes capacitances), 

this event causes the faulty swap of cell Ci+1, j. The occurrence of this faulty swap is shown in Figure 

6c. The solution that we propose for this problem is: in the last operation on the last cell on the 

current row, the bit line level of all columns is restored at VDD by activating their pre-charge circuits 

for only this clock cycle (Figure 7). The advantage of this solution is that it preserves the data 

background independency, which means that any value can be stored in the cells. Note that when 

both bit lines are at VDD the indirect access of a cell can not cause its faulty swap.   

4 PRE-CHARGE CONTROL CIRCUITRY MODIFICATION 

According to the proposed low power test technique the SRAM memory can operate in two 

different modes: a functional mode in which the memory acts normally and a low power test mode in 

which the addressing sequence is fixed to ‘word line after word line’ and the pre-charge activity is 

restricted to two columns for each clock cycle (in bit oriented SRAM): the selected column and the 

following one. During the final operation on the last cell of each row, the memory returns to 

functional mode for only one clock cycle to restore the voltage level of all the bit line at VDD. This is 

necessary in order to prepare the operations in the next row.  

We propose a practical implementation of this method consisting in a modification of the pre-

charge control circuitry. The modified pre-charge control logic contains an additional element for 

each column (Figure 8). This element consists of one multiplexer (two transmission gates and one 

inverter) and one NAND gate. The additional cost of the added logic is ten transistors.  The signal 

LPtest allows the selection between the functional mode and low power test mode. The signal Prj is 

 



 

the original pre-charge signal, while NPrj is the modified pre-charge signal and jCS  is the 

complementary of the column selection signal. The multiplexer performs the mode selection, while 

the NAND gate forces the functional mode for the column when it is selected for a read/write 

operation. When LPtest is ON (LPtest = 1), the signal jCS of a selected column j drives the pre-

charge of the next column j+1. Note that the pre-charge is active with the input signal NPrj at ‘0’. 

The CS  signal of the last column is not connected to the first column pre-charge control, because it 

is not necessary. As stated above, for the transition from a row to the next one, the functional mode is 

restored for one clock cycle, making the first column ready to be accessed for a read/write operation, 

and avoiding faulty cell swaps in the other columns. 

We have studied the effect of the modified pre-charge logic and we have found that it has little or 

no effect on the memory performance during normal operation. The switching between the functional 

mode and the low power test mode is achieved by a multiplexer implemented by two transmission 

gates (Figure 8). When the functional mode is selected, one of the transmissions gates (on the right of 

the pre-charge control element, Figure 8) allows signal Prj to drive the pre-charge circuit. We have 

chosen to use transmission gates (two transistors), instead of a single pass transistor, in order to 

ensure the minimum delay in the transitions (0→1 and 1→0) of the Prj signal during the normal 

functional mode, as well as the CSj-1 signal during low power test mode. 

The proposed method assumes ‘word line after word line’ addressing sequence. It should be noted 

that there are algorithms that require different addressing sequence or that rely on normal operation 

power consumption [15, 17, 19, 20]. In order to run properly these algorithm, the normal function 

mode can be selected and all the normal condition of the memory are restored, in particular the 

normal power consumption and the possibility to use any possible addressing sequence. 

 



 

5 EXPERIMENTAL RESULTS 

We first analyze (Subsection 5.1) the sources of power consumption in the normal (without the test 

power awareness) and proposed test scenario.  Next, based on this analysis we show how the power 

dissipation is computed for bit-oriented (Subsection 5.2) and word-oriented (Subsection 5.3) SRAM 

memories. 

5.1 Power analysis 

Our analysis shows that there are five main sources of power dissipation during test: 

1. Pre-charge circuits. Apart from the selected columns, all pre-charge circuits are ON in the 
functional mode (Figure 1), while in low power test mode the number of pre-charge circuits that 
are ON is equal to the number of selected columns (only one in the case of bit-oriented memories, 
Figure 4). 

2. Array row transition. The activation of the normal mode, for one clock cycle at the row transition, 
involves significant power dissipation, due to the restoration at VDD voltage level of  50% of all 
the bit lines in the unselected columns of the array. This is because in the unselected columns one 
of the two bit lines is driven to ‘0’ by the indirectly selected cells (Figure 6a). Even though this 
event involves significant power dissipation, its impact on the average power per clock cycle is 
reduced because of its infrequent occurrence. This line is charged and discharged only once for 
each row transition, thus its frequency is very low: 

columns)memory (#)operations element March(#
 )transitionF(Row 

⋅
=

1  

Considering a bit-oriented memory with a structure of 512 columns, where we perform a March 
element, composed by one operation, there is a row transition once for each 512 (=512*1) clock 
cycles. For a four operations element there is one row transition every 2048 (=512*4) clock 
cycles. Due to its low occurrence the average power increment per clock cycle can be neglected. 

3. Driver of signal LPtest (Figure 8). The line that carries this signal has the same equivalent 
capacitance of a word line, because it has the same length and it drives the same number of MOS 
transistors. This line is charged and discharged only once for each row transition, thus its 
frequency is very low (see point 2) and therefore its contribution to the average power per clock 
cycle that it brings can be neglected.  

4. Read Equivalent Stress consumption. In functional mode, all the cells on the row of the selected 
cells are indirectly selected and undergo RESs. In low power test mode, the number of cells 
undergoing a RES is equal to the number of selected columns (one in the case of bit-oriented 
memories). These cells are placed in the columns immediately after the selected ones. We have 
performed Spice simulations indicating that the cell power dissipation during a RES is 
approximately three orders of magnitude smaller than the pre-charge power dissipation during the 

 



 
RES. Consequently the cell power dissipation can be neglected in the computation of the overall 
power dissipation. 

5. Modified pre-charge control logic. The gates used to realize this logic are designed with minimal 
dimensions because their output load is very low. The capacities driven by these gates are about 
three orders of magnitude smaller than a single bit line capacitance. Moreover, there is only one 
control element switching for each column changing.  For these reasons, the contribution of the 
new control elements to the overall power dissipation can be considered negligible. 

Based on the previous analysis, it can be concluded that the power dissipation reduction depends 

on the memory array organization (#row and #col) and on the March algorithm that is being run 

(#elements and # operations per element).  Also the number of read (#read) and write (#write) 

operations of the algorithm is important in the computing, because the power dissipation of a read 

action is lower than that of a write action. The power reduction per operation given by the method is 

independent on the type of performed operation (read or write).  

5.2 Bit-oriented SRAM 

The power dissipation during functional and low power test mode in the case of bit-oriented 

memories is computed. The average power dissipations per clock cycle during functional mode and 

low power test mode (respectively PF, BO and PLPT, BO) are: 

operations #
Pwrite#Pread # P wr

BO F,
⋅+⋅

=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅
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elements #1)-col(#row#P2)-col(#- P  P

 

where Pr denotes the memory power consumption during a read operation. Pw is the memory power 

consumption during a write operation. PA is the power consumption of one pre-charge circuit for a 

single column restoration, VBL = VBLB = VDD. This parameter is proportional to the length of the bit 

lines, i.e. with the number of cells per column. PB is the power consumption of a column restoration 

during the row transition, VBLi = VBLBi = VDD ∀i ∈{0, 1, 2, …, m-1}. This parameter is proportional 

 



 
to length of the column and the number of columns per row. PC is the power consumption of the 

LPtest signal driver. 

The second equation can be simplified as follows: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅= BABO F,BO LPT, P 

operations #
elements #P2)-col(# - P  P  

because PC << PB and it is multiplied by a coefficient hundreds times lower than PB. We define the 

Power Reduction Ratio (PRRBO) as 

  
P

P
 -1  PRR

BO F,

BO LPT,
BO =  

To give insight into the test power reduction, we have run a set of well-known March tests in the 

functional and low power test modes, on a 512x512 0.13µm SRAM.  We have chosen these 

algorithms, because they consist of different number of elements and operations. The Spice 

simulation results, with the following operational parameters (3ns clock cycle and 1.6V voltage 

supply), are shown in Table 1. The experimental results show that this method leads to a significant 

reduction in terms of overall power consumption (∼50%) for the considered SRAM memory.  

5.3 Word-oriented SRAM 

The proposed method can be employed in word-oriented SRAM memories. The modified control 

logic (Figure 8) is the same as for bit-oriented memories, but due to the multiple cells selection the 

structure of the memory is different. Consequently also the power reduction that the method ensures 

is different. To compute the power dissipation during functional and test mode in the case of word-

oriented SRAM, it is necessary to take into account other parameters. In word-oriented memories, the 

columns that are selected for the read/write operation are more than one. Normally, embedded word-

 



 
oriented memories are programmed to operate with different word lengths. One structure that allows 

this flexibility is characterized by a memory arrays divided in blocks. We propose as an example a 

four-block SRAM (Figure 9), with four columns for each block. Each row (word line) includes four 

4-bits words. The column selection is operated by pre-decoders and multiplexers. The read operation 

is made by a sense amplifier (SA in Figure 9) and the write operation is made by Write Driver (Wr 

Dr in Figure 9). When a read or write operation is performed, a word line is activated and one cell for 

each block is selected, e.g. the cell in the first column of each block. At block level, the column 

selection is done by multiplexers. Most of embedded SRAMs are organized in standard rectangular 

arrays, whose number of rows and columns is fixed while the number of bits of the word can be 

chosen in relation with the application and the compatibility with the devices connected to the 

memory. This flexibility is allowed in memory composed by blocks. The number of bits of the word 

can be set by fixing the number of levels of multiplexers for the column selection. Consider a 8kx32 

SRAM, organized as an array of 512 rows x 512 column, ordered in 128 blocks, with four columns 

per block. This memory can be programmed to work with maximum word length of 128 bits (four 

words per row). The memory can be programmed to work with shorter word length and in this case 

more levels of multiplexers are needed for the column selection. Irrespectively of the word length, 

the read operation is always performed in 128 columns, i.e. the number of blocks. The selection is 

similar in case of write operation.  

For the application of the method, while for bit-oriented SRAMs only a column at a time is 

selected, and only one column needs to be pre-charged for the next operation, in word-oriented 

memories with block organization one column is selected for each block, and one column per block 

needs to be pre-charged for the next operation. This means that the number of columns where the pre-

charge circuit can be switched off during test mode is smaller than in bit-oriented memories. The 

power dissipations per clock cycle during functional mode and low power test mode (respectively PF, 

 



 

WO and PLPT, WO) are: 

PF, WO = 
operations #

Pwrite#Pread # wr ⋅+⋅

and 

PLPT, WO = PF, WO - 
( )
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col#operations #
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where #w_bits  is the number of bit of one word; #blocks is the number of block in the memory 

array; Pr , Pw, PA and PB have been described in the previous sub-section. Note that we have presented 

the above equation already simplified. 

The equation to calculate the Power Reduction Ration (PRRWO) for word-oriented memories is: 

PRRWO = 
WO,F

WO,LPT

P

P
−1   

To give insight into the PRRWO in the case of word-oriented SRAM, we have run a set of well-

known March tests in the functional and low power test modes, on a 8kx32 0.13µm SRAM, 512 rows 

x 512 columns, with array organized in 128 blocks, 64 blocks and with word length of 16 bits and 8 

bits. These configurations are the most suitable for this kind of embedded memory. The Spice 

simulation results, using the same operational parameters described above (3ns clock cycle and 1.6V 

voltage supply), are shown in Table II. The first column of the table provides the different March 

tests run in the simulations. Columns two and three give the number of elements and operation of 

each algorithm.  In the remaining columns the values of the PRRWO for the different memory 

configurations are presented: 128 and 64 blocks, with 16 and 8 bits words. To facilitate the 

interpretation of the results, the experimental data of Table II are shown in the histogram of Figure 

10. 

 



 
The analysis of the experimental data for word-oriented memories shows that the test power 

reduction is inversely proportional to the number of blocks. This is because of the fact that for each 

block there is always one column active, independently of the length of the word. A higher number of 

active columns involves a higher number of columns that need to be prepared for the next operation, 

leaving a reduced number of columns where the pre-charge circuit can be turned off. The test power 

reduction is also inversely proportional to the number of bits in a word. This is because the larger the 

word length is, the more frequent the row transitions are, leading to high power consuming global bit 

line restorations. 

To summarize the main results of the proposed test technique, we can observe a significant reduction 

in terms of overall power consumption for both bit-oriented (∼50%) and word-oriented (22% up to 

35%) SRAMs. The test power reduction in bit-oriented memories is higher than in word-oriented 

memories. For each operation in word-oriented memories, different locations (cells/columns) are 

selected a time, consequently the number of columns where the pre-charge circuits can be turned off 

is reduced, and thus power reduction is lowered. The reduced performance of the application in 

word-oriented memories is compensated by the fact that in these devices the quantity of data in 

input/output is a multiple of that of a bit-oriented one. We have validated our technique with 

extensive simulations on 8kx32 0.13µm SRAMs. We believe that this technique can be applied to 

other SRAMs achieving good results, because it always ensures a high reduction of the pre-charge 

dissipation, which, irrespectively of the structure, represents up to 70%-80% of the overall power 

consumption of SRAM memories, as demonstrated in [13]. 

6 FUTURE WORK 

In our future work we aim to address the two points. As mentioned in Section 3, the row transition 

is a sensitive moment of the application of the method. In order to prevent faulty swap of the cells in 

 



 
the next selected row, we have proposed to activate the functional mode for a clock cycle, in order to 

charge all the bit lines at VDD. This solution presents the limitation of a high drain of current in a 

short time and it may provoke side phenomena.  The second point concerns the fact that during the 

test time most of bit lines are floating because the pre-charge circuits are OFF. In this condition, the 

bit lines may be more prone to crosstalk effects and remotely influence the contents of the cells that 

are indirectly selected. The authors intend to complete this study by investigating the points given 

above and to extend the proposed method to DRAMs and other types of memories. 

7 CONCLUSION 

In this work we have presented a method that minimizes the test power in SRAM memories by 

reducing the pre-charge activity. This was achieved by exploiting the fact that the addressing 

sequence during test is predictable, and hence only two columns need to be pre-charged in each clock 

cycle. We have implemented this low power test mode by using a modified pre-charge control logic. 

Spice simulations used to validate the proposed method show significant power reduction during test 

for bit-oriented and word-oriented SRAM memories. It has been shown that the effect of the 

modified pre-charge logic on the normal functional mode is negligible.  
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Figure 1. Functional mode of an SRAM array 
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Figure 2. Pre-charge action for a selected and an unselected column 

 

 



 

 

 

Figure 3.  Access order “word line after word line” 

 

 

Figure 4.  Proposed pre-charge activation 

 

 



 

 

Figure 5.  Scheme of interaction between unselected cells and bit lines 

 

 



 

 

Figure 6.  Spice simulations of the interaction between unselected cells and bit lines 

 

 



 

 

Figure 7.  Preserving faulty cell swap during row transition 
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Figure 8.  The modified pre-charge control logic 

 

 

 

 

 

 

 



 
 

Figure 9.  Example of four blocks configuration SRAM 
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Figure 10.  PRR for different algorithms and different configurations of 8kx32 SRAM 

 

 



 
TABLE I 

BIT-ORIENTED SRAM: PRR FOR DIFFERENT MARCH ALGORITHMS  

Algorithm # elm # oper # read # write PRRBO

March C- 6 10 5 5 47.3 % 

March SS 6 22 13 9 50.0 % 

Mats+ 3 5 2 3 48.1 % 

March SR 6 14 8 6 49.5 % 

March G 7 23 10 13 50.5 % 

 

 
TABLE II 

WORD-ORIENTED SRAM: PRR FOR DIFFERENT ALGORITHMS AND  
DIFFERENT CONFIGURATIONS OF 8KX32 SRAM 

Algorithm #elem #oper #read #write 
PRR 

16 bits WO 
128 blocks 

PRR 
16 bits WO 
64 blocks 

PRR 
8 bits WO 
128 blocks 

PRR 
8 bits WO 
64 blocks 

March C- 6 10 5 5 22.4% 33.6% 23.5% 35.3% 

March SS 6 22 13 9 24.0% 36.0% 24.5% 36.7% 

Mats+ 3 5 2 3 22.1% 33.1% 23.2% 34.7% 

March SR 6 14 8 6 23.3% 35.0% 24.1% 36.2% 

March G 7 23 10 13 23.3% 35.0% 23.8% 35.8% 
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