Skip to main content

Ultra-Low-Power Digital Design with Body Biasing for Low Area and Performance-Efficient Operation

Buy Article:

$107.14 + tax (Refund Policy)

We present a design methodology towards minimum-area maximum-performance designs in sub-/ near-threshold operation. Our methodology is based on a new metric called performance-per-area. Unlike conventional gate sizing, we use forward body biasing at synthesis time to render faster, smaller and more energy-efficient circuits. Our theory introduces body biasing into delay and energy models in the form of nonlinear derating functions that can easily be fitted to a technology node. The methodology is validated using an industrial microprocessor consisting of approximately 31 K gates and 3.7 K flip-flops in CMOS 90 nm. We obtain 4.2x better EDP, 3.8x higher speed and 9% smaller area than the non-body-biased counterpart.

Keywords: BODY BIASING; NEAR-THRESHOLD DESIGN; SUB-THRESHOLD CIRCUITS; SYNTHESIS

Document Type: Research Article

Publication date: 01 December 2010

More about this publication?
  • The electronic systems that can operate with very low power are of great technological interest. The growing research activity in the field of low power electronics requires a forum for rapid dissemination of important results: Journal of Low Power Electronics (JOLPE) is that international forum which offers scientists and engineers timely, peer-reviewed research in this field.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content