Skip to main content

Dynamic Reconfiguration of Two-Level Cache Hierarchy in Real-Time Embedded Systems

Buy Article:

$107.14 + tax (Refund Policy)

System optimization techniques based on efficient dynamic reconfiguration have been widely adopted in recent years. Cache reconfiguration is a promising optimization technique for reducing memory hierarchy energy consumption with little or no impact on overall system performance. While cache reconfiguration is successful in desktop-based and embedded systems, it is not directly applicable in real-time systems due to timing constraints. Existing scheduling-aware cache reconfiguration techniques consider only one-level cache. It is a major challenge to dynamically tune multi-level caches since the exploration space is prohibitively large. This paper efficiently integrates cache reconfiguration in real-time systems with a unified two-level cache hierarchy. We propose a set of exploration heuristics for our static analysis which effectively reduces the exploration time while keeps the generated profile results beneficial to be leveraged during runtime. Our experimental results have demonstrated 40–58% energy savings with minor impact on performance.

Keywords: CACHE; EMBEDDED SYSTEMS; LOW-POWER; MEMORY; REAL-TIME SYSTEMS

Document Type: Research Article

Publication date: 01 February 2011

More about this publication?
  • The electronic systems that can operate with very low power are of great technological interest. The growing research activity in the field of low power electronics requires a forum for rapid dissemination of important results: Journal of Low Power Electronics (JOLPE) is that international forum which offers scientists and engineers timely, peer-reviewed research in this field.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content