Skip to main content

Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling

Buy Article:

$107.14 + tax (Refund Policy)

Workload consolidation is usually performed in datacenters to improve server utilization for higher energy efficiency. One of the key issues in workload consolidation is the contention for shared resources. Dynamic voltage and frequency scaling (DVFS) of CPU is another effective technique that has been widely used to trade performance for power reduction. We have found that the degree of resource contention of a system affects its performance sensitivity to CPU frequency. Without detailed architecture level information, the complex relationship between contention, frequency and performance cannot be retrieved analytically. In this paper, we apply machine learning techniques to construct a model for chip multiprocessor (CMP) Performance Estimation under Fixed workload Scheduling (PEFS). It quantifies performance degradation of target process caused by resource contention and frequency scaling for current CMP workload with the assumption of a fixed task mapping. The model is further generalized for performance prediction with task migration (PPTM), which predicts the performance degradation after potential intra-processor task migration. Both models are tested on an SMT-enabled chip multi-processor with 10∼20% estimation error on average. Experimental results show that our PEFS model can keep the performance of those bottleneck tasks much closer to the performance threshold than all other techniques, which leads to almost no performance violation while achieves more energy savings, and task migration guided by our PPTM model produces 4%∼9% higher performance than conventional task migration guided by last level cache miss.

Keywords: CONSOLIDATION; FREQUENCY SCALING; MIGRATION; POWER MANAGEMENT; RESOURCE CONTENTION

Document Type: Research Article

Publication date: 01 September 2015

More about this publication?
  • The electronic systems that can operate with very low power are of great technological interest. The growing research activity in the field of low power electronics requires a forum for rapid dissemination of important results: Journal of Low Power Electronics (JOLPE) is that international forum which offers scientists and engineers timely, peer-reviewed research in this field.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content