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Abstract– Heartbeat classification using electrocardiogram (ECG) data is an essential feature of modern
day wearable devices. State-of-the-art machine learning-based heartbeat classifiers are designed using
convolutional neural networks (CNN). Despite their high classification accuracy, CNNs require significant
computational resources and power. This makes the mapping of CNNs on resource- and power-constrained
wearable devices challenging. In this paper, we propose heartbeat classification using spiking neural
networks (SNN), an alternative approach based on a biologically inspired, event-driven neural networks.
SNNs compute and transfer information using discrete spikes that require fewer operations and less complex
hardware resources, making them energy-efficient compared to CNNs. However, due to complex
error-backpropagation involving spikes, supervised learning of deep SNNs remains challenging. We propose
an alternative approach to SNN-based heartbeat classification. We start with an optimized CNN
implementation of the heartbeat classification task and then convert the CNN operations, such as
multiply-accumulate, pooling and softmax, into spiking equivalent with a minimal loss of accuracy. We
evaluate the SNN-based heartbeat classification using publicly available ECG database of the Massachusetts
Institute of Technology and Beth Israel Hospital (MIT/BIH), and demonstrate a minimal loss in accuracy
when compared to 85.92% accuracy of a CNN-based hearbeat classification. We demonstrate that, for every
operation, the activation of SNN neurons in each layer is sparse when compared to CNN neurons, in the
same layer. We also show that this sparsity increases with an increase in the number of layers of the neural
network. In addition, we detail the power-accuracy trade-off of the SNN and show a 87.76% and 96.82%
reduction in SNN neuron and synapse activity,respectively, for accuracy loss ranging between 0.6% and
1.00%, when compared to a CNN-only implementation.
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1 INTRODUCTION

With the advance in electrocardiogram (ECG) sensor technology, modern day wearable devices are able to
measure, monitor and classify several key biological metrics associated with the human heart [1–3]. In recent
years, heartbeat classification techniques using ECG signals is successful at detecting cardiac abnormalities
such as (1) cardiac arrhythmia, related to abnormal heart rhythms; (2) ischemia, related to poor blood flow to
the heart muscles, and (3) past heart attacks, to name a few [4].

Over the past few decades, significant research is conducted to autonomously and accurately classify
heartbeats. Deterministic algorithms classify heartbeat by manually identified features such as ECG mor-
phology and heartbeat intervals [5–12]. Although accurate, these techniques requires relevant features to be
identified by medical experts. Many of these approaches fail to classify heartbeats for patients with irreg-
ular heart conditions such as for patients following Transcatheter Aortic Valve Implantation (TAVI) proce-
dure [13]. Additionally, the resource and power requirements for extracting the most relevant information
from ECG signals limits the portability of these algorithms on wearables. Contrarily, the machine learning
approaches allow to find hidden features in the ECG signal that may have been missed in these deterministic
approaches. Machine learning algorithms such as support vector machines [14] (SVM) and deep learning [15]
such as convolutional neural networks (CNN) have achieved excellent heartbeat classification accuracies.

A typical CNN uses four operators: (1) Multiply-accumulate (convolution), (2) zero thresholding (recti-
fied linear unit, ReLU) , (3) downsampling (pooling), and (4) classification. These operations are computa-
tion, memory, and power intensive, and require larger systems like multi-core CPUs and GPUs to compute
quickly and accurately. This makes the mapping of CNNs on resource- and power-constrained wearable
devices challenging.

Recently, spiking neural networks [16] (SNN) are used to solve classification problems as alternatives to
CNN. SNNs are bio-inspired, event driven, analog neural networks. When mapped on dedicated neuromor-
phic hardware such as CxQuad [17], Loihi [18], NeuCube [19], NeuroGrid [20], and HICANN [21], SNNs
are highly energy and resource efficient compared to CNNs. This makes SNNs the perfect candidate for
computing on wearable devices. However, the classification accuracy of SNNs are not at-par with the CNNs.
This is due to the non-differentiable discrete activation function in SNNs making it challenging to use the
gradient-based error back-propagation for optimization during the supervised training.

In this paper, we propose heartbeat classification using SNNs compatible with neuromorphic hardware.
In our approach, we first train a CNN to perform heartbeat classification. To extract the time-domain and
the frequency-domain features from ECG signals effectively, we propose time-frequency joint distribution
of ECG signals over a time window containing the critical QRS peak. We then use this joint distribution as
features and the hand-labeled QRS classes as labels for the CNN. We optimize the CNN topology to obtain
the highest classification accuracy. Next, we map the CNN operations into their SNN equivalents ensuring
a near lossless conversion. Our approach achieves promising classification accuracy while demonstrating
significantly lower neuron and synaptic activation when simulated.

Contributions: Following are our key contributions.

• We propose a CNN-based heartbeat classification using time-frequency joint distribution of ECG sig-
nals

• We propose a technique to map CNN operations into SNN equivalent with near lossless conversion;

• We demonstrate the sparsity of the Spiking Neural Network activations, and show that this sparsity
increases with the number of layers in the network;

• We perform power-accuracy trade-off analysis of the trained SNN by measuring the reduction in
operation-count for SNNs;

The remainder of this paper is organized as follows. Related works are discussed in Section 2. Back-
ground on CNNs and SNNs are provided in Section 3. The overall design flow is introduced in Section 4.
Results are presented in Section 5 and conclusions in Section 6.



2 RELATED WORKS

Heartbeat classification is an important research problem for medical diagnosis. Heartbeat classification can
be performed using two methods: (1) classification using heuristic techniques based on deterministic features
extracted from ECG, and (2) classification using machine learning.

2.1 Heartbeat Classification with Clinically-Relevant Features Extracted by Experts-in-the
Field

Clinically-relevant heartbeat features of ECG signals is extracted from the cardiac rhythm (also known as the
RR interval). The features in the RR interval is used with great effect to distinguish the types of heartbeats.
De Chazal et al. [5] propose a method for heartbeat classification into five groups: normal beats, VEBs,
SVEBs, fusion of normal and VEBs, and unknown beat types using ECG morphology, heartbeat intervals
and RR intervals. This method then uses two linear discriminant classifiers (LDC), in tandem, to classify the
heartbeats. The authors have demonstrated a sensitivity of 75.9%-77.7% and a predictivity of 38.5% -81.9%
across the five classes. Christov et al. [6] propose the classification of QRS complex in five classes using ECG
morphological and time-frequency features extracted with matching pursuits. This method uses the K nearest
neighbor rule to classify the heartbeats. The authors demonstrate an accuracy between 90.7%-99% across the
five heartbeat classes. Llamedo et al. [7] propose a heartbeat classification technique using R-R interval and
morphology based features from the ECG signal, the two dimensional vectocardiogram (VCG) loop and the
discrete wavelet transform of the ECG signal. This method then uses two linear discriminant classifiers to
classify the heartbeats. The authors demonstrate a global accuracy of 93% across several heartbeat classes.
Rakowski et al. [12] propose a ECG heartbeat classification technique using ECG morphology and R-R
intervals based features. This method uses a SOM and Learning Vector Quantization algorithm to classify the
ECG signals. The author compares the classifier using features from original ECG signals and features from
a mathematically morphed ECG signals. The author reports accuracies ranging between 49.56%-97.14% for
classification using original ECG signals and 41.86%-97.14% for classification using preprocessed signals.
Lin et al. [22] propose heartbeat classification using normalized RR intervals and morphological features,
extracted using wavelets. This method then uses a linear discriminant classifier (LDC) to classify heartbeats.
Authors have demonstrated an accuracy of over 93% for supraventricular ectopic beats.

2.2 Heartbeat Classification with Automatic Feature Extraction using Machine Learning
Techniques

In recent years, alternative models for heartbeat classification using machine learning algorithms are becom-
ing popular. This is due to their ability to extract hidden features from ECG signals and use them to achieve
high classification accuracy. Dutta et al. [23] propose a cross-correlation based approach cross-spectral den-
sity information in the frequency domain of the ECG signal is used as features. These features are then used
in a least-square support vector machine classifier. The ECG heartbeats are classified into three classes –
normal beats, PVC beats, and other beats. Authors have demonstrated an accuracy of 95% for these classes.
Faziludeen et al. [24] propose to use daubechies wavelet, a type of time-frequency joint distribution, to ex-
tract heartbeat features from ECG signals. These extracted features are classified using a one-against-one
(OAO) SVM. Authors have demonstrated an accuracy of 99.92% accuracy for premature ventricular contrac-
tion beats. Melgani et al. [25] propose a two-step approach for the classification of five heartbeat classes.
First, a SVM is used to classify the QRS heartbeat by autonomously extracting the hidden features. Next, it
uses particle swarm optimization, an evolutionary algorithm, to improve the generalization performance of
the SVM classifier. The combined technique achieves an average accuracy of 89.72% for all the critical heart-
beats. Ye at al. [8] propose an approach for heartbeat classification using morphological features extracted
using wavelet transform, independent component analysis, and RR intervals. The method uses a Support Vec-
tor Machine to classify the heartbeat into sixteen separate classes. The authors demonstrate a classification
accuracy of 99.3% across the sixteen classes.

Apart from SVM, neural networks are also proposed for heartbeat classification. Hu et al. [26] propose a



method for QRS detection and heartbeat classification using an adaptive multi-layer perceptron (MLP). The
QRS detection technique employs a MLP that enhances the QRS complex while avoiding the non-linear back-
ground noise. The classifier works with 12 classes. Osowski et al. [27] propose a method for the heartbeat
classification using a fuzzy hybrid neural network. The features used are the cumulants of the second, third,
and fourth order. The classifier is a combination of a fuzzy self-organizing subnetwork (using c-means and
Gustafson-Kessel algorithms) followed by a multilayer perceptron. They achieve good accuracy. The classi-
fication accuracy presented by the author ranges between 90.28% to 96.94% across seven different wavelet
types. Yu et al. [28] present a method for ECG beat classification using a probabilistic neural network (PNN)
classifier. Sub-bands of the discrete wavelet transformed (DTW) ECG signal, along with AC power and
the RR interval are used as features for classification. The author demonstrates a classification accuracy of
99.65% using the PNN classifier with a 11 dimension features set. Al Rahhal et al. [29] propose an approach
for classification of ECG signals using a deep neural network (DNN). The classification is achieved in two
steps: (1) features are extracted from a raw ECG signal using a unsupervised stacked denoising autoencoder
(DEA) with sparsity constraints, and (2) most reliable and label ECG signals are used to train the DNN
classifier. The author shows accuracies ranging from 86.39% to 99.77% while using the publicly available
ECG database. Zubair et al. [30] propose a ECG classification method using convolution neural networks.
The model extracts hidden features from raw ECG signals. The ECG signals are classified into five different
classes. Authors reports superior accuracy than most of the state-of-the-art methods for ECG signal classi-
fication. Rajpurkar et al. [31] present an algorithm for heart arrhythmia detection using ECG signals. The
method uses a 34-layer CNN as the classifier. The author also attributes the performance of the classifier to a
larger annotated dataset, 500 times larger than the number used in other studies. The accuracy of the CNN is
presented as a F1 score ranging between 0.8 and 0.809.

Recently, SNNs are used for building medical applications on wearables. Das et al. [32], propose to
encode the ECG signals into a spike train (using temporal coding). The discrimination of ECG signals is done
using an unsupervised classifier built using a network of recurrently connected spiking neurons followed by
a probabilistic inference unit at the output layer. The approach demonstrates high classification accuracy and
low power consumption for 23 distinct heartbeat classes.

3 BACKGROUND

3.1 Background on Convolution Neural Networks

Convolutional neural networks (CNNs) are a class of deep neural networks [15] used extensively for image
classification, feature clustering, and object recognition. CNNs are arrangement of neurons into layers, with
synaptic weights connecting the neurons. Figure 1 shows a typical organization of CNN, which performs
four key operations: (1) convolution, (2) non-linear activation, (3) pooling, and (4) classification. We briefly
describe these four operations involved in a CNN.

3.1.1 Convolution

The convolution operation is used to extract features from the input image. Typically, a small matrix (3 × 3
or 5 × 5), also called the kernel, is used to extract these features. The kernel is slide over the input image
to compute the dot product of the matrix coefficient and the image pixels. The resultant matrix is called the
activation map or the feature map, and contains the encoded features of the input image.

3.1.2 Non-linear Activation

The results of the convolution operations are subjected to a non-linear function, Rectified Linear Unit (ReLU)
to replaces all negative pixel values in the feature map by zero. Mathematically, ReLU computes the function
f(x) = max(0, x), i.e., the activation is thresholded to zero. Other non-linear activation functions are also
used for neural networks, such as sigmoid and tanh.
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Figure 1: Example of a Convolution Neural Network (CNN)

3.1.3 Pooling

Spatial pooling is a downsampling technique to reduce the dimensionality of each feature map while retain-
ing the most important features from the map. Typically, a spatial neighborhood is defined for this process.
Downsampling is performed selecting one value for the neighborhood. If the largest element of the neigh-
borhood is selected, the downsampling process is called the max pooling. If the average or the sum of the
neighborhood elements is selected, the downsampling process is called the average pooling.

3.1.4 Classification

The output from the convolutional and pooling layers represent high-level features of the input image. The
purpose of the fully-connected layer is to use these features for classifying the input image into various classes
based on the training dataset. For this purpose, a softmax activation function, which takes a vector of arbitrary
real-valued scores and squashes it to a vector of values between zero and one that sum to one.

3.2 Background on Spiking Neural Networks

Spiking neural networks (SNNs) [16] are computational models inspired by the dynamics of human brain.
From an implementation perspective, SNNs are collection of neurons that communicate by sending short
pulses (called spikes) across connections (synapses) to other neurons. In contrast to convolutional neural
networks, the output of the the neurons in SNNs are asynchronous binary events. Event-based asynchronous
computations make SNNs energy and resource-efficient, the key requirements in modern wearable devices.

Two widely used encoding schemes for SNNs are rate coding and temporal coding [33–35]. Rate coding
encodes information in terms of the number of spikes within a timing window, while temporal coding en-
codes information in terms of the inter-spike intervals. Rate coding is used for spatial classification such as
handwritten digit recognition [36], while temporal coding is used for time-series processing, such as speech
recognition [37] and EEG-based brain-machine interface [38].

Similar to its analog counterpart, SNNs can also be organized into feedforward and recurrent typologies.
In feedforward SNNs, the synaptic connections allow spikes to be propagated in the forward direction only.
Figure 2(a) shows a feedforward SNN. The neurons of one layer connect to the neutrons in the next layer.
Connections between layers can be one-to-one, one-to-all, or one-to-many, depending on the application.
In recurrent SNNs, the synaptic connections are organized to allow spike propagation in the forward and
backward directions. Figure 2(b) shows a recurrent SNN. Several computational models have been proposed
for recurrent SNNs. Examples include liquid state machine [39], and Hopfield networks [40].

As SNNs use spikes rather than analog values to encode and communicate information between neurons,
supervised learning using error backpropagation in SNNs remain challenging. This is because, the backprop-



prei1

prei2

prein

postj

ri1,j

ri2,j

rin,j

(a) (b)

f

ba c

e

d
4 11 3

3
2

5 5

Figure 2: Example of feedforward and recurrent neural networks.

agation algorithm requires to compute the gradient of the error function, which is infeasible due to its discrete
nature. To overcome this limitation, gradient-following approach is used. This usually requires simplifica-
tions of some sort, such as calculating the gradient in a time range where the post-synaptic potential can be
estimated as a linear function of time up to a certain degree of accuracy [41], and using stochastic gradient
descent where neuron firings are modeled with Poisson firing rate [42]. An alternative to backpropagation
is using spike timing dependent plasticity [43], a form of Hebbian learning for spiking neurons. Based on
STDP, remote supervised learning method (ReSuMe) is proposed [44], which uses local STDP to adapt the
synaptic potentials across the networks of SNNs.

Recently, alternative approaches to supervised learning in SNNs are proposed, which involve conversion
of a CNN to an equivalent SNN by transforming the CNN operations directly into SNN equivalents. Diehl
et al. [45] propose a near lossless conversion of an ANN into a SNN. The SNN built using this technique
out-performed all previous SNNs working on the MNIST database, with an accuracy of 98.64%. Cao et
al. [46] propose to train a CNN to perform object recognition using the CIFAR-10 database. The CNN is then
tailored to reduce the complexity of conversion to a SNN. The tailoring process includes the elimination of
negative valued convolution features, restricted use of activation functions (ReLU only) and the removal of
biases from all the layers of the CNN. Weights of the trained CNN are then applied to the SNN architecture,
that is derived from the CNN. Rueckauer et al. [47] propose an extension to [46]. Here, the implementation
of SNN-compatible versions for operations such as max pooling, softmax, and batch normalization have been
achieved, hence allowing for a larger class of CNNs to be converted to an SNN.

4 DESIGN FLOW

4.1 High-level Overview

Figure 3 shows the high-level flow of our proposed approach. There are three major steps in our approach.
First, we convert ECG data recorded from ECG sensors (see description in Section 4.2.1) to ECG joint
distribution signatures using time-frequency joint distribution of ECG signals (see Section 4.2.2). Next we
train convolutional neural networks (CNN) to classify these time-frequency joint distribution signatures into
heartbeat classes. The CNN is optimized by varying its topology (layer width, layer depth, etc), design
parameters (epochs, dropout rate, etc.), and operations (max ReLU, mean ReLU etc.) (see Section 4.2.3).
Finally, we convert the CNN operations to SNN equivalents with minimal loss in accuracy (see Section
4.2.4). The resultant SNN is analyzed in terms of its operation counts and the energy-performance trade-offs
is demonstrated by varying layers of the CNNs in the step marked as ‘Optimization’ in Figure 3.
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4.2 Detailed Design

We now describe the steps of our approach in detail.

4.2.1 ECG Heartbeat Classification

Figure 4 shows a typical QRS complex in ECG signal. The ECG signal is characterized by five valleys and
peaks, labeled P, Q, R, S and T. In general, ECG signals are analyzed using the QRS complex along with the T
and P waves. The database of the Massachusetts Institute of Technology and Beth Israel Hospital (MIT/BIH)
[48] is commonly used for QRS detection and classification as this is one of the databases indicated for
performance evaluation of ventricular arrhythmia detection systems by the Association for the Advancement
of Medical Instrumentation, AAMI/EC57 [49]. The heartbeats in the MIT-BIH database can be classified into
23 classes. As a proof of concept, we train our CNN with five classes – (1) normal beats, (2) superventricular
beats, (3) ventricular beats, (4) fusion beats and (5) unclassified beats. Our approach can be trivially extended
to consider all 23 classes.

P

Q

R

S

T

Figure 4: QRS complex in ECG.

4.2.2 Generating ECG Sparse Distributed Signatures

The classical Fourier analysis assumes that signals are of infinite duration or periodic in nature. However,
non-stationary signals such as the ECG and speech are of short duration (transient), and change substan-
tially over this duration. To accurately capture time varying frequency components of these transient signals,
time-frequency joint distributions (such as short-time Fourier transform [50] and wavelet transform [51]) are
frequently used. We use the short-time Fourier transform of ECG signals due to its real-time properties, low
resource requirements, and energy efficiency.



Figure 5: ECG signal segments and plot for real and imaginary components of time-frequency joint distribu-
tion. Also shown are the sparse distributed signatures [4].

The short-time Fourier transform of a discrete-time signal x(t) is given by the following equation [52]

X(t, ω) =
∞∑

τ=−∞
h(t− τ) · x(τ) · e−jωτ (1)

where, h(t) is the analysis window, which is narrow in time and frequency, and is normalized such that
h(0) = 1. This equation is similar to the classical Fourier transform, except that X(t, ω) is now a function of
both time and frequency, and represents only a local behavior of x(τ) as viewed through the sliding window
h(t− τ). Using the real and the imaginary components, we create a signature as follows.

S = [f {R(X)} f {I(X)} P] (2)

where f {x} is a transformation of x; R(X) and I(X) are respectively, the real and the imaginary components
of X (Equation 1); and P is the padded zero component, which is introduced for future extension of the
approach to incorporate additional parameters. The signature generated using the short-time Fourier transform
components are shown in the third subplot of Figure 5. Each signature is a 82× 82 matrix.

Each QRS peak is first transformed into its time-frequency representation. The ECG signal together
with its real and imaginary components of time-frequency joint distribution are plotted in Figure 5 for three
scenarios – (1) No Beat, (2) Normal Beat and (3) Atrial Premature Beat. As seen from Figure 5, the real
and imaginary plots differ from each other for all three scenarios indicating the significance of both these
components. We propose to combine these components to form unique signatures. These ECG signatures
together with their original labels are then used for training the CNN. This is described next.



4.2.3 Classifying ECG Heartbeats using CNN

In this section, we describe a CNN model that we use to classify ECG signals. The input to the CNN is
a 82x82 matrix that represents the sparse distributed signature of the ECG QRS complex. The network is
trained using back propagation algorithm to classify the ECG signals into five heartbeat classes. All the
remaining heartbeat classes are considered as a separate class. In total, the CNN is trained with six classes.

The CNN is designed using a series of generic convolution layers. A convolution layer consists of a
convolution feature extraction layer, followed by a ReLU activation function, a pooling layer and a final ReLU
activation function. Our network uses a maximum of two such convolution layers. The first convolution layer
filters the 82x82x1 input sparse signature of an ECG signal with 64 kernels of size 5x5x1 and a pooling filter
of size 2x2. The second convolution layer operates on the output of the first convolution layer. This layer
consists of 64 kernels of size 5x5x1 and a pooling filter of size 2x2. The convolution layer is followed by
a fully connected layer of neurons that perform the classification of the input ECG signals into 6 classes.
As the fully connected layers are computationally expensive we set a dropout ranging between 0.3 and 0.5
across each of the fully connected layers. Weights of the neurons are initialized using the Xavier initialization
function. The final decision layer uses a softmax function to produce the probability distribution across the
six classes.

During the training phase, our network employs the conventional back-propagation algorithm [53] to
compute the stochastic gradient descent with a batch size of 100, momentum of 0.9, and a learning rate of
0.03. We trained our network for 300 epochs with a training set of 6500 ECG signals selected randomly from
120K QRS complexes in the database.

4.2.4 Converting CNN Operations to Equivalent SNN Operations

In this section, we perform a one-to-one mapping of CNN neurons and their connection weights to SNN. In
the following we highlight the design considerations to achieve this one-to-one mapping.

• ReLU Activation Functions: The ReLU activation function acts as a firing rate approximator for an
Integrate and Fire (IF) neuron wherein, the output of the activation function is proportional to the spike
rate of the IF neuron.

• Bias: A bias in CNN allows the classifier to translate its decision boundary by a fixed value (positive
or negative). In SNNs, bias is represented as a constant input current to its neurons, the value of which
is proportional to the CNN biases. The constant current contributes to the membrane potential of the
SNN neuron. However, by including a zero bias in the training phase of the CNN we ensure that the
SNN neurons are only defined by their threshold function and the synaptic weights. This reduces the
complexity of the design space.

• Weight Normalization: Weight normalization is a method used to control the firing rate of SNN neurons.
This is done to ensure that the firing rate of SNN neuron are not saturated. Unfortunately, this technique
can also induce a low firing rate for neurons, thereby increasing the latency with which data reaches the
higher layers of the network. The normalization is performed layer-wise and the weight normalization
factor (λ) is set to all the neurons in a layer. This is done to ensure that the firing rate of all the neurons
in the layer do not exceed the maximum firing rate of the network. This unfortunately induces very
high activations for a small group of neurons in a layer, while the remaining neurons are normalized
to a low firing rate. In order to minimize the temporal delay of the neuron and simultaneously ensure
that the neuron firing threshold is not too low, we weight-normalize the first layer depending on the
maximum spike-based input received by the first layer.

After the threshold of the first layer is set, we are provided with a representative spike train at the output
of the first layer which enables us to generate the input spike-stream for the next layer. The process
is continued sequentially for all the layers of the network. Our approach ensure that the proposed
weight-normalization scheme accounts for the actual SNN operation during the conversion process.
By applying weight normalization per operation of the SNN we can ensure a balance between temporal
delay and excessive firing rates of the SNN.



• Spiking Softmax: Softmax activation functions are used in the output layer of the CNN. The softmax
activation function generates the probability distribution or the likelihood of the output belonging to
a particular class. To replicate this behavior in a spiking neuron, an external spike generator, like a
Poisson generator, is used to generate spikes based on the weighted sum accumulated by each spiking
neuron.

• Spiking Pooling Layers Pooling layers in CNNs are often used to reduce the size of a convolution
output. Max-pooling and average-pooling are the commonly used pooling functions in CNNs. Max-
pooling in the CNNs detect the maximum output with-in the neighborhood of its filter. In SNNs, the
neuron that fires first is said to have the maximum value as its input. We can hence disregard the output
from the other neighboring neurons. Average pooling however is simpler to implement on SNNs and
achieve similar results as max-pooling. Therefore, we use average-pooling in our CNN design.

4.2.5 Comparing CNN operations to SNN operations:

During the classification stage of the CNN, the number of operations required to complete one forward pass
remains a constant. The operation count is calculated by finding the total number of incoming connections to
every neuron in the network. For instance, in the convolution and fully-connected layers, neurons perform a
multiple and accumulate operation (macc). Therefore, depending on the number of incoming connections to
each neuron, we can calculate the number of MACC operations performed by neuron in the layer. Similarly,
in during the classification stage of the SNN, we only require the addition operator [47] to update the state
of each neuron. The number of operations are calculated using the number of synaptic connections of each
neuron.

It is known that addeultiply operation. Raueckauer et al. [47] show that, in certain cases, the addition operation
is upto 14x faster. Therefore, it is important to note that even if SNNs use a similar number of operations as
the CNN to perform classification, the SNN operations require less time and far less complex computational
resources to perform classification.

5 RESULTS AND DISCUSSION

The performance of the SNN depends on two factors: (1) a well-trained CNN, (2) a near lossless conversion
of CNN operations into SNNs. The proposed method for the above approaches are discussed in section 4. In
this section, we discuss the performance of the CNN for heartbeat classification, followed by the performance
of the CNN-SNN conversion method.

5.1 Performance of CNN:

We train, validate and test the CNN using the MIT-BIH database. The QRS signals are preprocessed using
python: short-time Fourier Transform using specgram from the python-matplotlib and the CNN is trained
using the lasagne library along with python-theano. The heartbeat database consists of 23 classes [1]. But
as the dataset is unbalanced (does not have same number of samples for every class), we only choose top 5
performing classes. The remaining 18 classes are grouped into the sixth class. The training and validation set
contains 6500 labeled QRS signals selected from 120K QRS signals in the database. The test set consists of
all the 120K QRS signals (excluding the ones chosen for the training dataset). The training, validation and
test QRS signals represent all 48 patients and 6 classes. We explore multiple configurations of the the CNN
and choose the best performing configuration to be converted into the SNN.

5.1.1 Exploring CNN configurations:

Table 1 shows the CNN configurations considered for heartbeat classification. The output layer of the CNN
consists of 6 neurons. The performance of the CNN configurations are reported in Table 2. As can be seen



Config
#

Learning
Rate

# of
Convolution

Layers

# of
Convolution

Filters

Filter
Size

Pooling
Filter
Size

# of
Hidden
layers

# of Neurons

1 0.03 2 32,32 5,5 2,2 1 256
2 0.03 2 64,64 5,5 2,2 4 512,256,256,256
3 0.03 2 64,64 7,7 2,2 2 512,256
4 0.03 2 64,64 3,3 2,2 2 512,256
5 0.05 2 128,128 5,5 2,2 1 512

Table 1: CNN configurations

from Table 2, the classification accuracy of CNN-1 is consistent across all the six chosen classes. The accu-
racy achieved ranges between 76.31% - 96.71% (average of 85.92%) across the chosen classes.

In CNN1, the number of neurons in the input layer is 6724 (82x82 Sparse Distributed Signature of ECG
signal). CNN-1 consists of two convolution layers (CONV1 and CONV2 - with 32 filters of size 5x5, each),
ReLU activation (ReLU1 and ReLU2), two max pooling layers (POOL1 and POOL2 - with filter size of 2x2)
after every convolution layer, followed by two fully connected layers (FC1 - with 256 neurons and 6 neurons
respectively). The output layer uses the softmax function.

The performance of CNN 1, verified using patient specific data is seen in Figure 6.

Configuration
#

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

1 82.88% 76.31% 89.32% 96.71% 84.4% 45.29%
2 83.78% 73.26% 90.88% 96.43% 72.6% 56.84%
3 82.08% 62.98% 83.62% 96.29% 96.40% 35.62%
4 80.22% 81.91% 92.29 88.29% 90.60% 45.29%
5 82.83% 59.49% 76.61 97.57% 82.80% 38.87%

Table 2: Performance of CNNs across six classes

5.2 Performance of CNN-SNN Conversion Technique:

The CNN is converted to an SNN using the method described in 4.2.4. The neurons in the trained CNN are
replaced by Integrate and Fire (IF) neurons with positive threshold and no incoming synaptic delay. The input
joint distributed signatures are temporally-coded with a minimum period of 10 ns and a maximum period of
100 µs. Additionally, we limit the number of spikes required for the computation of each stimulus by adding
a decision delta threshold at the output layer. Empirically the decision threshold value is set to 4, this value
minimizes conversion loss. We used n2d2 software [54] for exploring conversion parameters for converting
the CNN into an efficient SNN.

The conversion of the chosen CNN into an SNN leads to a conversion loss of 0.8% (+-0.2% on average)
in accuracy for each of the 6 classes.

5.2.1 Analyzing the SNN Network

Table 3 shows the average number of neuron activations per layer of the network per input image. From the
table we can see that, on average, the SNN performs 96.82% fewer neuron activations when compared to
CNN neurons, for a single input image.
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Figure 6: The Confusion Matrices of the proposed CNN using patient specific data. We have chosen two
patients at random from the 48 available patients.

As discussed in Section 4, every CNN layer can be represented by basic operations such as multiply and
accumulate (macc), compare (comp) and accumulate (acc), while SNN neurons only use the accumulate
(acc) operator. On average, for every input image, each layer of the network performs: CONV1 - 3.04 M
macc, ReLU1 - 121.68k comp, POOL1 - 121.68k acc, CONV2 - 30.63M macc, ReLU2 - 61.25k comp,
POOL2 - 64.8k acc and FC1 - 4.15M macc operations respectively. On analyzing the CNN we see that 18.79
events (macc, comp or acc) are generated per connection per input image. However, the SNN only generates
2.35 events (acc only) per synapse per input image. On comparison, for every input, the average number of
events per synapse of the SNN is 87.76% lower when compared to a CNN connection. This in-turn signifies
that, for every forward pass of network, the SNN neurons and synapses are far less active when compared to
their CNN counterparts.

Layer CNN-Neuron
Activation

SNN-Neuron
Activation

Conv - 1 121,680 5,293
Pool - 1 30,420 1,170
Conv - 2 61,250 613
Pool - 2 16,200 157
FC - 1 256 75

Table 3: Average number of neurons activated per layer of the network per input image.

It is also important to note that the SNN operation (accumulate) is faster to execute and requires less
complex hardware when compared to CNN operations (MACC). Therefore, we are able to reduce the total
number of operations of the network and ensure that the operation are less complex and computationally
demanding when compared to the CNN approach.

Figure 7 shows the firing rate of SNN neurons at every layer of the SNN. From the figure we see that
deeper layers in the network have sparser firing rates. We know that, in general, deeper CNNs have better



classification accuracies. As we are able to convert these CNNs into SNNs in a near loss-less manner (0.8%
loss in accuracy), and see that SNN activations and synapse events become more sparse the deeper we traverse
through the network, we conclude that our proposed method for the conversion of CNN into SNN is successful
at reducing the energy consumption of the network with a minimal loss in accuracy.
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Figure 7: Layer-wise firing rates of SNN neurons

6 CONCLUSIONS

In this paper we propose heartbeat classification from Electrocardiogram (ECG) signals using event-driven
spiking neural networks (SNN). We first convert the window of ECG signals containing the QRS peak into
joint distribution signatures using short-time Fourier transform, a time-frequency joint distribution of ECG
signals. Next, we build a convolution neural network (CNN)-based heartbeat classifier using the ECG joint
distribution signatures. We then convert the CNN operations into spiking equivalents with minimal loss in
accuracy. We then simulate the SNN and demonstrate that for every layer of the network, on average, the
SNN generates 87.76% fewer events per synapse and 96.82% fewer neuron activations for a single input
when compared to the CNN, and does so with an accuracy loss of only 0.6% -1.0% across the 6 classes.

We conclude that our approach of converting a heartbeat classification CNN to SNN is more energy
efficient and has shorter runtime latency, with minimal loss of classification accuracy, when compared to
previously-proposed neural networks-based heartbeat classification.
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